
Successor Features for
Transfer in Reinforcement Learning

Supplementary Material

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt,
Tom Schaul, Hado van Hasselt, David Silver

{andrebarreto,wdabney,munos,jjhunt,schaul,hado,davidsilver}@google.com

DeepMind

Abstract

In this supplement we give details of the theory and experiments that had to be
left out of the main paper due to the space limit. For the convenience of the
reader the statements of the theoretical results are reproduced before the respective
proofs. We also provide a thorough description of the protocol used to carry out our
experiments, present details of the algorithms, including their pseudo-code, and
report additional empirical analysis that could not be included in the paper. The
numbering of sections, equations, and figures resume that used in the main paper,
so we refer to these elements as if paper and supplement were a single document.
We also cite references listed in the main paper.

A Proofs of theoretical results

Theorem 1. (Generalized Policy Improvement) Let π1, π2, ..., πn be n decision policies and let
Q̃π1 , Q̃π2 , ..., Q̃πn be approximations of their respective action-value functions such that

|Qπi(s, a)− Q̃πi(s, a)| ≤ ε for all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n}.

Define

π(s) ∈ argmax
a

max
i
Q̃πi(s, a).

Then,

Qπ(s, a) ≥ max
i
Qπi(s, a)− 2

1− γ
ε

for any s ∈ S and any a ∈ A, where Qπ is the action-value function of π.

Proof. To simplify the notation, let

Qmax(s, a) = maxiQ
πi(s, a) and Q̃max(s, a) = maxi Q̃

πi(s, a).

We start by noting that for any s ∈ S and any a ∈ A the following holds:

|Qmax(s, a)− Q̃max(s, a)| = |max
i
Qπi(s, a)−max

i
Q̃πi(s, a)| ≤ max

i
|Qπi(s, a)− Q̃πi(s, a)| ≤ ε.

12

For all s ∈ S, a ∈ A, and i ∈ {1, 2, ..., n} we have

TπQ̃max(s, a) = r(s, a) + γ
∑
s′

p(s′|s, a)Q̃max(s′, π(s′))

= r(s, a) + γ
∑
s′

p(s′|s, a) max
b
Q̃max(s′, b)

≥ r(s, a) + γ
∑
s′

p(s′|s, a) max
b
Qmax(s′, b)− γε

≥ r(s, a) + γ
∑
s′

p(s′|s, a)Qmax(s′, πi(s
′))− γε

≥ r(s, a) + γ
∑
s′

p(s′|s, a)Qπi(s′, πi(s
′))− γε

= TπiQπi(s, a)− γε
= Qπi(s, a)− γε.

Since TπQ̃max(s, a) ≥ Qπi(s, a)− γε for any i, it must be the case that

TπQ̃max(s, a) ≥ max
i
Qπi(s, a)− γε

= Qmax(s, a)− γε
≥ Q̃max(s, a)− ε− γε.

Let e(s, a) = 1 for all s, a ∈ S × A. It is well known that Tπ(Q̃max(s, a) + ce(s, a)) =

TπQ̃max(s, a) + γc for any c ∈ R. Using this fact together with the monotonicity and contrac-
tion properties of the Bellman operator Tπ , we have

Qπ(s, a) = lim
k→∞

(Tπ)kQ̃max(s, a)

≥ Q̃max(s, a)− 1 + γ

1− γ
ε

≥ Qmax(s, a)− ε− 1 + γ

1− γ
ε.

Lemma 1. Let δij = maxs,a |ri(s, a)− rj(s, a)|. Then,

Q
π∗i
i (s, a)−Qπ

∗
j

i (s, a) ≤ 2δij
1− γ

.

Proof. To simplify the notation, let Qji (s, a) ≡ Qπ
∗
j

i (s, a). Then,

Qii(s, a)−Qji (s, a) = Qii(s, a)−Qjj(s, a) +Qjj(s, a)−Qji (s, a)

≤ |Qii(s, a)−Qjj(s, a)|+ |Qjj(s, a)−Qji (s, a)|. (11)

Our strategy will be to bound |Qii(s, a)−Qjj(s, a)| and |Qjj(s, a)−Qji (s, a)|. Note that |Qii(s, a)−
Qjj(s, a)| is the difference between the value functions of two MDPs with the same transition function

13

but potentially different rewards. Let ∆ij = maxs,a |Qii(s, a)−Qjj(s, a)|. Then, 2

|Qi
i(s, a)−Qj

j(s, a)| =

∣∣∣∣∣ri(s, a) + γ
∑
s′

p(s′|s, a) max
b
Qi

i(s
′, b)− rj(s, a)− γ

∑
s′

p(s′|s, a) max
b
Qj

j(s
′, b)

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

p(s′|s, a)
(

max
b
Qi

i(s
′, b)−max

b
Qj

j(s
′, b)
)∣∣∣∣∣

≤ |ri(s, a)− rj(s, a)|+ γ
∑
s′

p(s′|s, a)
∣∣∣max

b
Qi

i(s
′, b)−max

b
Qj

j(s
′, b)
∣∣∣

≤ |ri(s, a)− rj(s, a)|+ γ
∑
s′

p(s′|s, a) max
b

∣∣∣Qi
i(s

′, b)−Qj
j(s

′, b)
∣∣∣

≤ δij + γ∆ij . (12)

Since (12) is valid for any s, a ∈ S ×A, we have shown that ∆ij ≤ δij + γ∆ij . Solving for ∆ij we
get

∆ij ≤
1

1− γ
δij . (13)

We now turn our attention to |Qjj(s, a) − Qji (s, a)|. Following the previous steps, define ∆′ij =

maxs,a |Qii(s, a)−Qji (s, a)|. Then,

|Qjj(s, a)−Qji (s, a)| =

∣∣∣∣∣rj(s, a) + γ
∑
s′

p(s′|s, a)Qjj(s
′, π∗j (s′))− ri(s, a)− γ

∑
s′

p(s′|s, a)Qji (s
′, π∗j (s′))

∣∣∣∣∣
=

∣∣∣∣∣ri(s, a)− rj(s, a) + γ
∑
s′

p(s′|s, a)
(
Qjj(s

′, π∗j (s′))−Qji (s
′, π∗j (s′))

)∣∣∣∣∣
≤ |ri(s, a)− rj(s, a)|+ γ

∑
s′

p(s′|s, a)
∣∣∣Qjj(s′, π∗j (s′))−Qji (s

′, π∗j (s′))
∣∣∣

≤ δij + γ∆′ij .

Solving for ∆′ij , as above, we get

∆′ij ≤
1

1− γ
δij . (14)

Plugging (13) and (14) back in (11) we get the desired result.

Theorem 2. Let Mi ∈ Mφ and let Q
π∗j
i be the value function of an optimal policy of Mj ∈ Mφ

when executed in Mi. Given the set {Q̃π
∗
1
i , Q̃

π∗2
i , ..., Q̃

π∗n
i } such that∣∣∣Qπ∗ji (s, a)− Q̃π

∗
j

i (s, a)
∣∣∣ ≤ ε for all s ∈ S, a ∈ A, and j ∈ {1, 2, ..., n},

let

π(s) ∈ argmax
a

max
j
Q̃
π∗j
i (s, a).

Finally, let φmax = maxs,a ||φ(s, a)||, where || · || is the norm induced by the inner product adopted.
Then,

Q∗i (s, a)−Qπi (s, a) ≤ 2

1− γ
(φmax minj ||wi −wj ||+ ε) .

2We follow the steps of Strehl and Littman [31].

14

Proof. The result is a direct application of Theorem 1 and Lemma 1. For any j ∈ {1, 2, ..., n}, we
have

Q∗i (s, a)−Qπi (s, a) ≤ Q∗i (s, a)−Qπ
∗
j

i (s, a) +
2

1− γ
ε (Theorem 1)

≤ 2

1− γ
maxs,a |ri(s, a)− rj(s, a)|+ 2

1− γ
ε (Lemma 1)

=
2

1− γ
maxs,a |φ(s, a)>wi − φ(s, a)>wj |+

2

1− γ
ε

=
2

1− γ
maxs,a |φ(s, a)>(wi −wj)|+

2

1− γ
ε

≤ 2

1− γ
maxs,a ||φ(s, a)|| ||wi −wj ||+

2

1− γ
ε (Cauchy-Schwarz’s inequality)

=
2φmax

1− γ
||wi −wj ||+

2

1− γ
ε.

B Details of the experiments

In this section we provide additional information about our experiments. We start with the four-room
environment and then we discuss the reacher domain. In both cases the structure of the discussion is
the same: we start by giving a more in depth description of the environment itself, both at a conceptual
level and at a practical level, then we provide a thorough description of the algorithms used, and,
finally, we explain the protocol used to carry out the experiments.

B.1 Four-room environment

B.1.1 Environment

In Section 5 of the paper we gave an intuitive description of the four-room domain used in our
experiments. In this section we provide a more formal definition of the environmentM as a family
of Markov decision processes (MDPs) M , each one associated with a task.

The environment has objects that can be picked up by the agent by passing over them. There is a total
of no objects, each belonging to one of nc ≤ no classes. The class of an object determines the reward
rc associated with it. An episode ends when the agent reaches the goal, upon which all the objects
re-appear. We assume that rg is always 1 but rc may vary: a specific instantiation of the rewards rc
defines a task. Every time a new task starts the rewards rc are sampled from a uniform distribution
over [−1, 1]. Figure 1 shows the specific environment layout used, in which no = 12 and nc = 3.

We now focus on a single task M ∈M. We start by describing the state and action spaces, and the
transition dynamics. The agent’s position at any instant in time is a point {sx, sy} ∈ [0, 1]2. There
are four actions available, A ≡ {up,down, left, right}. The execution of one of the actions moves
the agent 0.05 units in the desired direction, and normal random noise with zero mean and standard
deviation 0.005 is added to the position of the agent (that is, a move along the x axis would be
s′x = sx ±N (0.05, 0.005), where N (0.05, 0.005) is a normal variable with mean 0.05 and standard
deviation 0.005). If after a move the agent ends up outside of the four rooms or on top of a wall
the move is undone. Otherwise, if the agent lands on top of an object it picks it up, and if it lands
on the goal region the episode is terminated (and all objects re-appear). In the specific instance of
the environment shown in Figure 1 objects were implemented as circles of radius 0.04, the goal is a
circle of radius 0.1 centered at one of the extreme points of the map, and the walls are rectangles of
width 0.04 traversing the environment’s range.

As described in the paper, within an episode each of the no objects can be present or absent, and since
they define the reward function a well defined Markov state must distinguish between all possible
2no object configurations. Therefore, the state space of our MDP is S ≡ {0, 1}no × R2. An intuitive
way of visualizing S is to note that each of the 2no object configurations is potentially associated
with a different value function over the continuous space [0, 1]2.

Having already described S , A, and p(·|s, a), we only need to define the reward function R(s, a, s′)
and the discount factor γ in order to conclude the formulation of the MDP M . As discussed in

15

Section 5, the reward R(s, a, s′) is a deterministic function of s′: if the agent is over an object of
class c in s′ it gets a reward of rc, and if it is in the goal region it gets a reward of rg = 1; in all other
cases the reward is zero. In our experiments we fixed γ = 0.95.

By mapping each object onto its class, it is possible to construct features φ(s, a, s′) that perfectly
predicts the reward for all tasks M in the environmentMφ, as in (2) and (5). Let φc(s, a, s

′) ≡ δ{is
the agent over an object of class c in s′?}, where δ{false} = 0 and δ{true} = 1. Similarly, let
φg(s, a, s

′) ≡ δ{is the agent over the goal region in s′?}. By concatenating the nc functions φc and
φg we get the vector φ(s, a, s′) ∈ {0, 1}nc+1; now, if we make wc = rc for all c and wnc+1 = rg,
it should be clear that r(s, a, s′) = φ(s, a, s′)>w, as desired.

Since r(s, a, s′) can be written in the form of (2), the definition of M can be naturally extended to
M, as in (5). In our experiments we assume that the agents receive a signal fromM whenever the
task changes (see Algorithms 1, 2, and 3 and discussion below).

B.1.2 Algorithms

We assume that the agents know their position {sx, sy} ∈ [0, 1]2 and also have an “object detector”
o ∈ {0, 1}no whose ith component is 1 if and only if the agent is over object i. Using this information
the agents build two vectors of features. The vector ϕp(s) ∈ R100 is composed of the activations of a
regular 10× 10 grid of radial basis functions at the point {sx, sy}. Specifically, in our experiments
we used Gaussian functions, that is:

ϕpi(s) = exp

(
− (sx − ci1)2 + (sy − ci2)2

σ

)
, (15)

where ci ∈ R2 is the center of the ith Gaussian. As explained in Section B.1.3, the value of σ was
determined in preliminary experiments with QL; all algorithms used σ = 0.1. In addition to ϕp(s),
using o the agents build an “inventory” ϕi(s) ∈ {0, 1}no whose ith component indicates whether
the ith object has been picked up or not. The concatenation of ϕi(s) and ϕp(s) plus a constant term
gives rise to the feature vector ϕ(s) ∈ RD used by all the agents to represent the value function:
Q̃π(s, a) = ϕ(s)>zπa , where zπa ∈ RD are learned weights.

It is instructive to take a closer look at how exactly SFQL represents the value function. Note
that, even though our algorithm also represents Q̃π as a linear combination of the features ϕ(s), it
never explicitly computes zπa . Specifically, SFQL represent SFs as ψ̃

π
(s, a) = ϕ(s)>Zπa , where

Zπa ∈ RD×d, and the value function as Q̃π(s, a) = ψ̃
π
(s, a)>w̃ = ϕ(s)>Zπaw̃. By making

zπa = Zπaw̃, it becomes clear that SFQL unfolds the problem of learning zπa into the sub-problems of
learning Zπa and w̃. These parameters are learned via gradient descent in order to minimize losses
induced by (4) and (2), respectively (see below).

The pseudo-codes of QL, PRQL, and SFQL are given in Algorithms 1, 2, and 3, respectively. As
one can see, all algorithms used an ε-greedy policy to explore the environment, with ε = 0.15 [21].
Two design choices deserve to be discussed here. First, as mentioned in Section B.1.1, the agents
“know” when the task changes. This makes it possible for the algorithms to take measures like
reinitializing the weights zπa or adding a new representative to the set of decision policies. Another
design choice, this one specific to PRQL and SFQL, was not to limit the number of decision policies
(or ψ̃

πi) stored. It is not difficult to come up with strategies to avoid both an explicit end-of-task
signal and an ever-growing set of policies. For example, in Section 4.2 we discuss how w̃ can be
used to select which ψ̃

πi to keep in the case of limited memory. Also, by monitoring the error in
the approximation φ̃(s, a, s′)>w̃ one can detect when the task has changed in a significant way.
Although these are interesting extensions, given the introductory character of this paper we refrained
from overspecializing the algorithms in order to illustrate the properties of the proposed approach in
the clearest way possible.

SFQL

We now discuss some characteristics of the specific SFQL algorithm used in the experiments. First,
note that errors in the value-function approximation can potentially have a negative effect on GPI,
since an overestimated Q̃πi(s, a) may be the function determining the action selected by π in (7). One

16

Algorithm 1 QL

Require: ε exploration parameter for ε-greedy strategy
α learning rate

1: for t← 1, 2, ...,num_tasks do
2: za ← small random initial values for all a ∈ A
3: new_episode← true
4: for i← 1, 2, ...,num_steps do
5: if new_episode then
6: new_episode← false
7: s← initial state
8: end if
9: sel_rand_a ∼ Bernoulli(ε) // Sample from a Bernoulli distribution with parameter ε

10: if sel_rand_a then a ∼ Uniform ({1, 2, ..., |A|}) // ε-greedy exploration strategy
11: else a← argmaxbQ(s, b)
12: Take action a and observe reward r and next state s′
13: if s′ is a terminal state then
14: γ ← 0
15: new_episode← true
16: end if
17: za ← za + α(r + γmaxa′ Q(s′, a′)−Q(s, a))∇zQ(s, a)

// For Q(s, a) = ϕ(s)>za,∇zQ(s, a) = ϕ(s)
18: s← s′

19: end for
20: end for

way of keeping this phenomenon from occurring indefinitely is to continue to update the functions
Q̃πi(s, a) that are relevant for action selection. In the context of SFs this corresponds to constantly
refining ψ̃

πi , which can be done as long as we have access to πi. In the scenario considered here
we can recover πi by keeping the weights w̃i used to learn the SFs ψ̃

πi (line 2 of Algorithm 3).
Note that with this information one can easily update any ψ̃

πi off-policy; as shown in lines 25–30 of
Algorithm 3, in the version of SFQL used in the experiments we always update the ψ̃

πi that achieves
the maximum in (7) (line 10 of the pseudo-code).

Next we discuss the details of how w̃ and ψ̃
π

are learned. We start by showing the loss function used
to compute w̃:

Lw(w̃) = E(s,a,s′)∼D

[(
r(s, a, s′)− φ̃(s, a, s′)>w̃

)2]
, (16)

whereD is a distribution over S ×A×S which in RL is usually the result of executing a policy under
the environment’s dynamics p(·|s, a). The minimization of (16) is done in line 21 of Algorithm 3. As
discussed, SFQL keeps a set of ψ̃

πi , each one associated with a policy πi. The loss function used to
compute each ψ̃

πi is

LZ(ψ̃
πi

) ≡ LZ(Zπia) = E(s,a,s′)∼D

[(
φ̃(s, a, s′) + γψ̃

πi
(s′, a′)− ψ̃

πi
(s, a)

)2]
= E(s,a,s′)∼D

[(
φ̃(s, a, s′) + γϕ(s′)>Zπia′ −ϕ(s)>Zπia

)2]
,

(17)

where a′ = argmaxbQ̃
πi(s′, b) = argmaxbψ̃

πi
(s′, b)>w̃. Note that the policy that induces D is not

necessarily πi—that is, ψ̃
πi

(s, a) can be learned off-policy, as discussed above. As usual in RL, the
target φ̃(s, a, s′) + γϕ(s′)>Zπia′ is considered fixed, i.e., the loss LZ is minimized with respect to
Zπia only. The minimization of (17) is done in lines 23 and 28 of Algorithm 3.

As discussed in Section 5, we used two versions of SFQL in our experiments. In the first one,
SFQL-φ, we assume that the agent knows how to construct a vector of features φ that perfectly
predicts the reward for all tasks M in the environmentMφ. The other version of our algorithm,
SFQL-h, uses an approximate φ̃ learned from data. We now give details of how φ̃ was computed

17

Algorithm 2 PRQL

Require:

ε exploration parameter for ε-greedy strategy
α learning rate
η parameter to control probability to reuse old policy
τ parameter to control bias in favor of stronger policies

1: for t← 1, 2, ...,num_tasks do
2: for k ← 1, 2, ..., t do
3: scorek ← 0 // scorek is the score associated with policy πk

4: usedk ← 0 // usedk is the number of times policy πk was used
5: end for
6: c← t // c is the index of the policy currently being used
7: zta ← small random initial values
8: curr_score← 0
9: new_episode← true

10: for i← 1, 2, ...,num_steps do
11: if new_episode then

12: scorec ←
scorec × usedc + curr_score

usedc + 1
// Update score for policy currently being used

13: for k ← 1, 2, ..., t do pk ← eτ×scorek/
∑t
j=1 e

τ×scorej // Turn scores into probabilities
14: c ∼ Multinomial(p1, p2, ..., pt) // Select policy c with probability pc
15: usedc ← usedc + 1 // Update number of times policy πc has been used
16: curr_score← 0
17: new_episode← false
18: s← initial state
19: end if
20: if t 6= c then use_prev_policy ∼ Bernoulli(η) else use_prev_policy← false
21: if use_prev_policy then // Action will be selected by πc, the policy being reused
22: a← argmaxa′Qc(s, a

′)
23: else // Action will be selected by πc, the most recent policy
24: sel_rand_a ∼ Bernoulli(ε)
25: if sel_rand_a then a ∼ Uniform ({1, 2, ..., |A|}) else a← argmaxa′Qt(s, a

′)
// ε-greedy exploration strategy

26: end if
27: Take action a and observe reward r and next state s′
28: if s′ is a terminal state then
29: γ ← 0
30: new_episode← true
31: end if
32: zta ← zta + α(r + γmaxa′ Qt(s

′, a′)−Qt(s, a))∇zQt(s, a)
// For Qt(s, a) = ϕ(s)>zta,∇zQt(s, a) = ϕ(s)

33: curr_score← curr_score + r
34: s← s′

35: end for
36: end for

in this case. In order to learn φ̃, we used the samples (si, ai, ri, s
′
i)t collected by QL in the first

t = 1, 2, ..., 20 tasks. Since this results in an unbalanced dataset in which most of the transitions have
ri = 0, we kept all the samples with ri 6= 0 and discarded 75% of the remaining samples. We then
used the resulting dataset to minimize the following loss:

LH(φ̃) ≡ LH(H,wt) = E(s,s′,r)∼D′t

[(
ς(ϕ(s, s′)>H)>wt − r

)2]
for t = 1, 2, ..., 20, (18)

where D′t reflects the down-sampling of zero rewards. The vector of features ϕ(s, s′) is the con-
catenation of ϕ(s) and ϕ(s′), and ς(·) is a sigmoid function applied element-wise. We note that
o(s′) = ϕi(s

′) − ϕi(s), from which it is possible to compute an “exact” φ̃ = φ. In order to
minimize (18) we used the multi-task framework proposed by Caruana [6]. Simply put, Caruana’s [6]
approach consists in looking at ς(ϕ(s, s′)>H)>wt as a neural network with one hidden layer and 20

18

Algorithm 3 SFQL

Require:

ε exploration parameter for ε-greedy strategy
α learning rate for ψ’s parameters
αw learning rate for w
φ features to be predicted by SFs

1: for t← 1, 2, ...,num_tasks do
2: wt ← small random initial values
3: Zta ← small random initial values in RD×h if t = 1 else Zt−1a

// The kth column of Zt
a, ztka , are the parameters of the kth component of ψ̃t, (ψ̃t)k ≡ ψ̃tk

4: new_episode← true
5: for i← 1, 2, ...,num_steps do
6: if new_episode then
7: new_episode← false
8: s← initial state
9: end if

10: c← argmaxk∈{1,2,...,t}maxb ψ̃k(s, b)>wt

// c is the index of the ψ̃ associated with the largest value in s
11: sel_rand_a ∼ Bernoulli(ε) // Sample from a Bernoulli distribution with parameter ε
12: if sel_rand_a then a ∼ Uniform ({1, 2, ..., |A|}) // ε-greedy exploration strategy
13: else a← argmaxbψ̃c(s, b)

>wt

14: Take action a and observe reward r and next state s′
15: if s′ is a terminal state then
16: γ ← 0
17: new_episode← true
18: else
19: a′ ← argmaxb maxk∈{1,2,...,t} ψ̃k(s′, b)>wt // a′ is the action with the highest value in s′

20: end if
21: wt ← wt + αw

[
r − φ(s, a, s′)>w

]
φ(s, a, s′) // Update w

22: for k ← 1, 2, ..., d do
23: ztka ← ztka + α

[
φk(s, a, s′) + γψ̃tk(s′, a′)− ψ̃tk(s, a)

]
∇zψ̃tk(s, a)

// For ψ̃t(s, a) = ϕ(s)>Zt
a,∇zψ̃tk(s, a) = ϕ(s)

24: end for
25: if c 6= t then
26: a′ ← argmaxbψ̃c(s

′, b)>wc // a′ is selected according to reward function induced by wc

27: for k ← 1, 2, ..., d do
28: zcka ← zcka + α

[
φk(s, a, s′) + γψ̃ck(s′, a′)− ψ̃ck(s, a)

]
∇zψ̃ck(s, a) // Update ψ̃c

29: end for
30: end if
31: s← s′

32: end for
33: end for

outputs, that is, w̃ is replaced with W̃ ∈ Rh×20 and a reward r received in the tth task is extended
into a 20-dimensional vector in which the tth component is r and all other components are zero. One
can then minimize (18) with respect to the parameters H and wt through gradient descent.

Although this strategy of using the k first tasks to learn φ̃ is feasible, in practice one may want to
replace this arbitrary decision with a more adaptive approach, such as updating φ̃ online until a
certain stop criterion is satisfied. Note though that a significant change in φ̃ renders the SFs ψ̃

πi

outdated, and thus the benefits of refining the former should be weighed against the overhead of
constantly updating the latter, potentially off-policy.

As one can see in this section, we tried to keep the methods as simple as possible in order to not
obfuscate the main message of the paper, which is not to propose any particular algorithm but rather
to present a general framework for transfer based on the combination of SFs and GPI.

19

B.1.3 Experimental setup

In this section we describe the precise protocol adopted to carry out our experiments. Our initial
step was to use QL, the basic algorithm behind all three algorithms, to make some decisions that
apply to all of them. First, in order to define the features ϕ(s) used by the algorithms, we checked
the performance of QL when using different configurations of the vector ϕp(s) giving the position of
the agent. Specifically, we tried two-dimensional grids of Gaussians with 5, 10, 15, and 20 functions
per dimension. Since the improvement in QL’s performance when using a number of functions larger
than 10 was not very significant, we adopted a 10 × 10 grid of Gaussians in our experiments. We
also varied the value of the parameter σ appearing in (15) in the set {0.01, 0.1, 0.3}. Here the best
performance of QL was obtained with σ = 0.1, which was then the value adopted throughout the
experiments. The parameter ε used for ε-greedy exploration was also set based on QL’s performance.
Specifically, we varied ε in the set {0.15, 0.2, 0.3} and verified that the best results were obtained
with ε = 0.15 (we tried relatively large values for ε because of the non-stationarity of the underlying
environment). Finally, we tested two variants of QL: one that resets the weights zπa every time a new
task starts, as in line 2 of Algorithm 1, and one that keeps the old values. Since the performance of
the former was significantly better, we adopted this strategy for all algorithms.

QL, PRQL, and SFQL depend on different sets of parameters, as shown in Algorithms 1, 2, and 3.
In order to properly configure the algorithms we tried three different values for each parameter and
checked the performance of the corresponding agents under each resulting configuration. Specifically,
we tried the following sets of values for each parameter:

Parameter Algorithms Values
α QL, PRQL, SFQL {0.01, 0.05, 0.1}
αw SFQL {0.01, 0.05, 0.1}
η PRQL {0.1, 0.3, 0.5}
τ PRQL {1, 10, 100}

The cross-product of the values above resulted in 3 configurations of QL, 27 configurations of PRQL,
and 9 configurations of SFQL. The results reported correspond to the best performance of each
algorithm, that is, for each algorithm we picked the configuration that lead to the highest average
return over all tasks.

B.2 Reacher environment

B.2.1 Environment

The reacher environment is a two-joint torque-controlled robotic arm simulated using the MuJoCo
physics engine [26]. It is based on one of the domains used by Lillicrap et al. [12]. This is a
particularly appropriate domain to illustrate our ideas because it is straightforward to define multiple
tasks (goal locations) sharing the same dynamics.

The problem’s state space S ⊂ R4 is composed of the angle and angular velocities of the two
joints. The two-dimensional continuous action space A was discretized using 3 values per dimension
(maximum positive, maximum negative or zero torque for each actuator), resulting in a total of 9
discrete actions. We adopted a discount factor of γ = 0.9.

The reward received at each time step was −δ, where δ is the Euclidean distance between the target
position and the tip of the arm. The start state at each episode was defined as follows during training:
the inner joint angle was sampled from an uniform distribution over [0, 2π], the outer joint was
sampled from an uniform distribution over {−π/2, π/2}, and both angular velocities were set to 0
(during the evaluation phase two fixed start states were used—see below). We used a time step of
0.02s and episodes lasted for 10s (500 time steps). We defined 12 target locations, 4 of which we
used for training and 8 were reserved for testing (see Figure 3).

B.2.2 Algorithms

The baseline method used for comparisons in the reacher domain was the DQN algorithm by Mnih
et al. [15]. In order to make it possible for DQN to generalize across tasks we provided the target
locations as part of the state description. The action-value function Q̃ was represented by a multi-layer
perceptron (MLP) with two hidden layers of 256 linear units followed by tanh non-linearities. The

20

output of the network was a vector in R9 with the estimated value associated with each action. The
replay buffer adopted was large enough to retain all the transitions seen by the agent—that is, we
never removed transitions from the buffer (this helps prevent DQN from “forgetting” previously
seen tasks when learning new ones). Each value-function update used a mini-batch of 32 transitions
sampled uniformly from the replay buffer, and the associated minimization (line 17 of Algorithm 1)
was carried out using the Adam optimizer with a learning rate of 10−3 [30].

SFDQN is similar to SFQL, whose pseudo-code is shown in Algorithm 3, with a few modifications
to make learning with nonlinear function approximators more stable. The vector of features φ ∈ R12

used by SFDQN was composed of the negation of the distances to all target locations.3 We used
a separate MLP to represent each of the four ψ̃i. The MLP architecture was the same as the one
adopted with DQN, except that in this case the output of the network was a matrix Ψ̃i ∈ R9×12

representing ψ̃i(s, a) ∈ R12 for each a ∈ A. This means that the parameters Zi in Algorithm 3
should now be interpreted as weights of a nonlinear neural network. The final output of the network
was computed as ψ̃>i wt, where wt ∈ R12 is an one-hot vector indicating the task t currently active.
Analogously to the the target locations given as inputs to DQN, here we assume that wt is provided
by the environment. Again making the connection with Algorithm 3, this means that line 21 would
be skipped.

Following Mnih et al. [15], in order to make the training of the neural network more stable we updated
ψ̃ using a target network. This corresponds to replacing (17) with the following loss:

LZ(ψ̃
πi

) ≡ LZ(Zπi) = E(s,a,s′)∼D

[(
φ(s, a, s′) + γψ̃

πi
− (s′, a′)− ψ̃

πi
(s, a)

)2]
,

where ψ̃
πi
− is a target network that remained fixed during updates and was periodically replaced

by ψ̃
πi at every 1000 steps (the same configuration used for DQN). For each transition we up-

dated all four MLPs ψ̃i in order to minimize losses derived from (4). As explained in Sec-
tion 5, the policies πi(s) used in (4) were the GPI policies associated with each training task,
πi(s) ∈ argmaxa maxj ψ̃j(s, a)>wi. An easy way to modify Algorithm 3) to reflect this update
strategy would be to select the action a′ in line 26 using πi(s) and then repeat the block in lines 25–30
for all wi, with i ∈ {1, 2, 3, 4} and i 6= t, where t is the current task.

B.2.3 Experimental setup

The agents were trained for 200 000 transitions on each of the 4 training tasks. Data was collected
using an ε-greedy policy with ε = 0.1 (for SFDQN, this corresponds to lines 12 and 13 of Algorithm 3).
As is common in fixed episode-length control tasks, we excluded the terminal transitions during
training to make the value of states independent of time, which corresponds to learning continuing
policies [12].

During the entire learning process we monitored the performance of the agents on all 12 tasks when
using an ε-greedy policy with ε = 0.03. The results shown in Figure 3 reflect the performance of this
policy. Specifically, the return shown in the figure is the sum of rewards received by the 0.03-greedy
policy over two episodes starting from fixed states. Since the maximum possible return varies across
tasks, we normalized the returns per task based on the performance of standard DQN on separate
experiments (this is true for both training and test tasks). Specifically, we carried out the normalization
as follows. First, we ran DQN 30 times on each task and recorded the algorithm’s performance before
and after training. Let Ḡb and Ḡa be the average performance of DQN over the 30 runs before and
after training, respectively. Then, if during our actual experiments DQN or SFDQN got a return of
G, the normalized version of this metric was obtained as Gn = (G − Ḡb)/(Ḡa − Ḡb). These are
the values shown in Figure 3. Visual inspection of videos extracted from the experiments with DQN
alone suggests that the returns used for normalization were obtained by near-optimal policies that
reach the targets almost directly.

3In fact, instead of the negation of the distances −δ we used 1− δ in the definition of both the rewards and
the features φi. Since in our domain δ < 1, this change made the rewards always positive. This helps preventing
randomly-initialized value function approximations from dominating the ‘max’ operation in (7).

21

Figure 4: Understanding how much each type of transfer promoted by SFs helps in performance.
Results averaged over 30 runs; standard errors are shown as shadowed regions but are almost
imperceptible at this scale. PRQL’s results are shown for reference.

C Additional empirical analysis

In this section we report empirical results that had to be left out of the main paper due to the space limit.
Specifically, the objective of the experiments described here is to provide a deeper understanding of
SFQL, in particular, and of SFs, more generally. We use the four-room environment to carry out our
empirical investigation.

C.1 Understanding the types of transfer promoted by SFs

We start by asking why exactly SFQL performed so much better than QL and PRQL in our experiments
(see Figure 2). Note that there are several possible reasons for that to be the case. As shown in (3),
SFQL uses a decoupled representation of the value function in which the environment’s dynamics
are dissociated from the rewards. If the reward function of a given environment can be non-trivially
decomposed in the form (2) assumed by SFQL, the algorithm can potentially build on this knowledge
to quickly learn the value function and to adapt to changes in the environment, as discussed in
Section 3. In our experiments not only did we know that such a non-trivial decomposition exists,
we actually provided such an information to SFQL— either directly, through a handcrafted φ, or
indirectly, by providing features that allow for φ to be recovered exactly. Although this fact should
help explain the good results of SFQL, it does not seem to be the main reason for the difference in
performance. Observe in Figure 2 how the advantage of SFQL over the other methods only starts to
show up in the second task, and it only becomes apparent from the third task on. This suggests that
the the algorithm’s good performance is indeed due to some form of transfer.

But what kind of transfer, exactly? We note that SFQL naturally promotes two forms of transfer. The
first one is of course a consequence of GPI. As discussed in the paper, SFQL applies GPI by storing a
set of SFs ψ̃

πi . Note though that SFs promote a weaker form of transfer even when only a single
ψ̃
π

exists. To see why this is so, observe that if ψ̃
π

persists from task t to t+ 1, instead of arbitrary
approximations Q̃π one will have reasonable estimates of π’s value function under the current w̃. In
other words, ψ̃

π
will transfer knowledge about π from one task to the other.

In order to have a better understanding of the two types of transfer promoted by SFs, we carried
out experiments in which we tried to isolate as much as possible each one of them. Specifically, we
repeated the experiments shown in Figure 2 but now running SFQL with and without GPI (we can
turn off GPI by replacing c with t in line 10 of Algorithm 3).

The results of our experiments are shown in Figure 4. It is interesting to note that even without GPI
SFQL initially outperforms PRQL. This is probably the combined effect of the two factors discussed
above: the decoupled representation of the value function plus the weak transfer promoted by ψ̃

π
.

Note though that, although these factors do give SFQL a head-start, eventually both algorithms reach
the same performance level, as clear by the slope of the respective curves. In contrast, SFQL with
GPI consistently outperforms the other two methods, which is evidence in favor of the hypothesis
that GPI is indeed a crucial component of the proposed approach. Another evidence in this direction

22

φ̃(s, a, s′)>w̃t max
a,i<t

ψ̃i(s, a)>w̃t max
a,i≤t

ψ̃i(s, a)>w̃t

Figure 5: Functions computed by SFQL after 200 transitions into three randomly selected tasks (all
objects present).

is given in Figure 5, which shows all the functions computed by the SFQL agent. Note how after
only 200 transitions into a new task SFQL already has a good approximation of the reward function,
which, combined with the set of previously computed ψ̃

πi , with i < t, provide a very informative
value function even without the current ψ̃

πt .

C.2 Analyzing the robustness of SFs

As discussed in the previous section, part of the benefits provided by SFs come from the decoupled
representation of the value function shown in (3), which depends crucially on a decomposition of the
reward function φ̃(s, a, s′)>w ≈ r(s, a, s′). In Section 5 we illustrated two ways in which such a
decomposition can be obtained: by handcrafting φ̃ based on prior knowledge about the environment
or by learning it from data. When φ̃ is learned it is obviously not reasonable to expect an exact
decomposition of the reward function, but even when it is handcrafted the resulting reward model can
be only an approximation (for example, the “object detector” used by the agents in the experiments
with the four-room environment could be noisy). Regardless of the source of the imprecision, we do
not want SFQL in particular, and more generally any method using SFs, to completely break with
the addition of noise to φ̃. In Section 5 we saw how an approximate φ̃ can in fact lead to very good
performance. In this section we provide a more systematic investigation of this matter by analyzing
the performance of SFQL with φ̃ corrupted in different ways.

Our first experiment consisted in adding spurious features to φ that do not help in any way in the
approximation of the reward function. This reflects the scenario where the agent’s set of predictions
is a superset of the features needed to compute the reward (see in Section 6 the connection with
Sutton et al.’s GVFs, 2011). In order to implement this, we added objects to our environment that
always lead to zero reward—that is, even though the SFs ψ̃

π
learned by SFQL would predict the

occurrence of these objects, such predictions would not help in the approximation of the reward
function. Specifically, we added to our basic layout 15 objects belonging to 6 classes, as shown
in Figure 6, which means that in this case SFQL used a φ̃ ∈ R10. In addition to adding spurious
features, we also corrupted φ̃ by adding to each of its components, in each step, a sample from a
normal distribution with mean zero and different standard deviations σ.

The outcome of our experiment is shown in Figure 7. Overall, the results are as expected, with
both spurious features and noise hurting the performance of SFQL. Interestingly, the two types
of perturbations do not seem to interact very strongly, since their effects seem to combine in an

23

Figure 6: Environment layout with additional objects. Spurious objects are represented as diamonds;
numbers indicate the classes of the objects.

Figure 7: Analyzing SFQL’s robustness to distortions in φ̃. PRQL’s and QL’s results are shown for
reference. Results averaged over 30 runs; standard errors are shown on top of each bar.

additive way. More important, SFQL’s performance seems to degrade gracefully as a result of either
intervention, which corroborate our previous experiments showing that the proposed approach is
robust to approximation errors in φ̃.

References
[30] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[31] Alexander L. Strehl and Michael L. Littman. A theoretical analysis of model-based interval
estimation. In Proceedings of the International Conference on Machine Learning (ICML), pages
857–864, 2005.

24

