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Abstract

We present theoretical guarantees for an alternating minimization algorithm for
the dictionary learning/sparse coding problem. The dictionary learning problem
is to factorize vector samples y1, y2, . . . , yn into an appropriate basis (dictionary)
A∗ and sparse vectors x1∗, . . . , xn∗. Our algorithm is a simple alternating min-
imization procedure that switches between `1 minimization and gradient descent
in alternate steps. Dictionary learning and specifically alternating minimization
algorithms for dictionary learning are well studied both theoretically and empiri-
cally. However, in contrast to previous theoretical analyses for this problem, we
replace a condition on the operator norm (that is, the largest magnitude singular
value) of the true underlying dictionary A∗ with a condition on the matrix infinity
norm (that is, the largest magnitude term). Our guarantees are under a reasonable
generative model that allows for dictionaries with growing operator norms, and
can handle an arbitrary level of overcompleteness, while having sparsity that is
information theoretically optimal. We also establish upper bounds on the sample
complexity of our algorithm.

Erratum, August 7, 2019: An earlier version of this paper appeared in NIPS 2017 which had
an erroneous claim about convergence guarantees with random initialization. The main result –
Theorem 3 – has been corrected by adding an assumption about the initialization (Assumption B1).

1 Introduction

In the problem of sparse coding/dictionary learning, given i.i.d. samples y1, y2, . . . , yn ∈ Rd pro-
duced from the generative model

yi = A∗xi∗ (1)

for i ∈ {1, 2, . . . , n}, the goal is to recover a fixed dictionary A∗ ∈ Rd×r and s-sparse vectors
xi∗ ∈ Rr. (An s-sparse vector has no more than s non-zero entries.) In many problems of interest,
the dictionary is often overcomplete, that is, r ≥ d. This is believed to add flexibility in modeling and
robustness. This model was first proposed in neuroscience as an energy minimization heuristic that
reproduces features of the V1 region of the visual cortex (Olshausen and Field, 1997; Lewicki and
Sejnowski, 2000). It has also been an extremely successful approach to identifying low dimensional
structure in high dimensional data; it is used extensively to find features in images, speech and video
(see, for example, references in Elad and Aharon, 2006).

Most formulations of dictionary learning tend to yield non-convex optimization problems. For ex-
ample, note that if either xi∗ orA∗ were known, given yi, this would just be a (matrix/sparse) regres-
sion problem. However, estimating both xi∗ and A∗ simultaneously leads to both computational as
well as statistical complications. The heuristic of alternating minimization works well empirically
for dictionary learning. At each step, first an estimate of the dictionary is held fixed while the sparse
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coefficients are estimated; next, using these sparse coefficients the dictionary is updated. Note that in
each step the sub-problem has a convex formulation, and there is a range of efficient algorithms that
can be used. This heuristic has been very successful empirically, and there has also been significant
recent theoretical progress in understanding its performance, which we discuss next.

1.1 Related Work

A recent line of work theoretically analyzes local linear convergence rates for alternating minimiza-
tion procedures applied to dictionary learning (Agarwal et al., 2014; Arora et al., 2015). Arora et al.
(2015) present a neurally plausible algorithm that recovers the dictionary exactly for sparsity up
to s = O(

√
d/(µ log(d))), where µ/

√
d is the level of incoherence in the dictionary (which is a

measure of the similarity of the columns; see Assumption A1 below). Agarwal et al. (2014) analyze
a least squares/`1 minimization scheme and show that it can tolerate sparsity up to s = O(d1/6).
Both of these establish local linear convergence guarantees for the maximum column-wise distance.
Exact recovery guarantees require a singular-value decomposition (SVD) or clustering based proce-
dure to initialize their dictionary estimates (see also the previous work Arora et al., 2013; Agarwal
et al., 2013).

For the undercomplete case (when r ≤ d), Sun et al. (2017) provide a Riemannian trust region
method that can tolerate sparsity s = O(d), while earlier work by Spielman et al. (2012) provides
an algorithm that works in this setting for sparsity O(

√
d).

Local and global optima of non-convex formulations for the problem have also been extensively
studied in (Wu and Yu, 2015; Gribonval et al., 2015; Gribonval and Nielsen, 2003), among others.
Apart from alternating minimization, other approaches (without theoretical convergence guarantees)
for dictionary learning include K-SVD (Aharon et al., 2006) and MOD (Engan et al., 1999). There
is also a nice formulation by Barak et al. (2015), based on the sum-of-squares hierarchy. Recently,
Hazan and Ma (2016) provide guarantees for improper dictionary learning, where instead of learning
a dictionary, they learn a comparable encoding via convex relaxations. Our work also adds to the
recent literature on analyzing alternating minimization algorithms (Jain et al., 2013; Netrapalli et al.,
2013, 2014; Hardt, 2014; Balakrishnan et al., 2017).

1.2 Contributions

Our main contribution is to present new conditions under which alternating minimization for dic-
tionary learning converges at a linear rate to the optimum. We impose a condition on the matrix
infinity norm (largest magnitude entry) of the underlying dictionary. This allows dictionaries with
operator norm growing with dimension (d, r). The error rates are measured in the matrix infinity
norm, which is sharper than the previous error rates in maximum column-wise error.

Our results hold for a rather arbitrary level of overcompleteness, r = O(poly(d)). We establish
convergence results for sparsity level s = O(

√
d), which is information theoretically optimal for

incoherent dictionaries and improves the previously best known results in the overcomplete setting
by a logarithmic factor. Our algorithm is simple, involving an `1-minimization step followed by a
gradient update for the dictionary.

A key step in our proofs is an analysis of a robust sparse estimator—{`1, `2, `∞}-MU Selector—
under fixed (worst case) corruption in the dictionary. We prove that this estimator is minimax optimal
in this setting, which might be of independent interest.

1.3 Organization

In Section 2, we present our alternating minimization algorithm and discuss the sparse regression
estimator. In Section 3, we list the assumptions under which our algorithm converges and state the
main convergence result. Finally, in Section 4, we prove convergence of our algorithm. We defer
technical lemmas, analysis of the sparse regression estimator, and minimax analysis to the appendix.

Notation

For a vector v ∈ Rd, vi denotes the ith component of the vector, ‖v‖p denotes the `p norm, supp(v)
denotes the support of a vector v, that is, the set of non-zero entries of the vector, sgn(v) denotes
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Algorithm 1: Alternating Minimization for Dictionary Learning

Input : Step size η, samples {yk}nk=1, initial estimate A(0), number of steps T , thresholds
{τ (t)}Tt=1, initial radius R(0) and parameters {γ(t)}Tt=1, {λ(t)}Tt=1 and {ν(t)}Tt=1.

1 for t = 1, 2, . . . , T do
2 for k = 1, 2, . . . , n do
3 wk,(t) = MUSγ(t),λ(t),ν(t)(yk, A(t−1), R(t−1))
4 for l = 1, 2, 3 . . . , r do
5 x

k,(t)
l = w

k,(t)
l I

(
|wk,(t)l | > τ (t)

)
, (xk,(t) is the sparse estimate)

6 end
7 end
8 for i = 1, 2, . . . , d do
9 for j = 1, 2, . . . , r do

10 A
(t)
ij = A

(t−1)
ij − η

n

∑n
k=1

[∑r
p=1

(
A

(t−1)
ip x

k,(t)
p x

k,(t)
j − yki x

k,(t)
j

)]
11 end
12 end
13 R(t) = 7

8R
(t−1).

14 end

the sign of the vector v, that is, a vector with sgn(v)i = 1 if vi > 0, sgn(v)i = −1 if vi < 0
and sgn(v)i = 0 if vi = 0. For a matrix W , Wi denotes the ith column, Wij is the element in
the ith row and jth column, ‖W‖op denotes the operator norm, and ‖W‖∞ denotes the maximum
of the magnitudes of the elements of W . For a set J , we denote its cardinality by |J |. Throughout
the paper, we use C multiple times to denote global constants that are independent of the problem
parameters and dimension. We denote the indicator function by I(·).

2 Algorithm

Given an initial estimate of the dictionary A(0) we alternate between an `1 minimization procedure
(specifically the {`1, `2, `∞}-MU Selector—MUSγ,λ,ν in the algorithm—followed by a thresh-
olding step) and a gradient step, under sample `2 loss, to update the dictionary. We analyze this
algorithm and demand linear convergence at a rate of 7/8; convergence analysis for other rates fol-
lows in the same vein with altered constants. Below we state the permitted range for the various
parameters in the algorithm above.

1. Step size: We need to set the step size in the range 3r/4s < η < r/s.

2. Threshold: At each step set the threshold at τ (t) = 16R(t−1)M(R(t−1)(s+ 1) + s/
√
d).

3. Tuning parameters: We need to pick λ(t) and ν(t) such that the assumption (D5) is satisfied.
A choice that is suitable that satisfies this assumption is

128s
(
R(t−1)

)2

≤ ν(t) ≤ 3,

32

(
s3/2

(
R(t−1)

)2

+
s3/2R(t−1)

d1/2

)(
4 +

6√
s

)
≤ λ(t) ≤ 3.

We need to set γ(t) as specified by Theorem 16,

γ(t) =
√
s
(
R(t−1)

)2

+

√
s

d
R(t−1).

2.1 Sparse Regression Estimator

Our proof of convergence for Algorithm 1 also goes through with a different choices of robust sparse
regression estimators, however, we can establish the tightest guarantees when the {`1, `2, `∞}-MU

3



Selector is used in the sparse regression step. The {`1, `2, `∞}-MU Selector (Belloni et al., 2014)
was established as a modification of the Dantzig selector to handle uncertainty in the dictionary.
There is a beautiful line of work that precedes this that includes (Rosenbaum et al., 2010, 2013;
Belloni et al., 2016). There are also modified non-convex LASSO programs that have been studied
(Loh and Wainwright, 2011) and Orthogonal Matching Pursuit algorithms under in-variable errors
(Chen and Caramanis, 2013). However these estimators require the error in the dictionary to be
stochastic and zero mean which makes them less suitable in this setting. Also note that standard `1
minimization estimators like the LASSO and Dantzig selector are highly unstable under errors in the
dictionary and would lead to much worse guarantees in terms of radius of convergence (as studied in
Agarwal et al., 2014). We establish the error guarantees for a robust sparse estimator {`1, `2, `∞}-
MU Selector under fixed corruption in the dictionary. We also establish that this estimator is mini-
max optimal when the error in the sparse estimate is measured in infinity norm ‖θ̂ − θ∗‖∞ and the
dictionary is corrupted.

The {`1, `2, `∞}-MU Selector

Define the estimator θ̂ such that (θ̂, t̂, û) ∈ Rr×R+×R+ is the solution to the convex minimization
problem

min
θ,t,u

{
‖θ‖1 + λt+ νu

∣∣∣∣∣ θ ∈ Rr,
∥∥∥1

d
A>
(
y −Aθ

)∥∥∥
∞
≤ γt+R2u, ‖θ‖2 ≤ t, ‖θ‖∞ ≤ u

}
(2)

where, γ, λ and ν are tuning parameters that are chosen appropriately. R is an upper bound on
the error in our dictionary measured in matrix infinity norm. Henceforth the first coordinate (θ̂) of
this estimator is called MUSγ,λ,ν(y,A,R), where the first argument is the sample, the second is
the matrix, and the third is the value of the upper bound on the error of the dictionary measured in
infinity norm. We will see that under our assumptions we will be able to establish an upper bound
on the error on the estimator, ‖θ̂ − θ∗‖∞ ≤ 16RM

(
R(s+ 1) + s/

√
d
)

, where |θ∗j | ≤ M ∀j. We

define a threshold at each step τ = 16RM(R(s+1)+s/
√
d). The thresholded estimate θ̃ is defined

as

θ̃i = θ̂iI[|θ̂i| > τ ] ∀i ∈ {1, 2, . . . , r}. (3)

Our assumptions will ensure that we have the guarantee sgn(θ̃) = sgn(θ∗). This will be crucial in
our proof of convergence. The analysis of this estimator is presented in Appendix B.

To identify the signs of the sparse covariates correctly using this class of thresholded estimators, we
would like in the first step to use an estimator θ̂ that is optimal, as this would lead to tighter control
over the radius of convergence. This makes the choice of {`1, `2, `∞}-MU Selector natural, as we
will show it is minimax optimal under certain settings.

Theorem 1 (informal). Define the sets of matrices A = {B ∈ Rd×r
∣∣‖Bi‖2 ≤ 1, ∀i ∈ {1, . . . , r}}

andW = {P ∈ Rd×r
∣∣‖P‖∞ ≤ R} withR = O(1/

√
s). Then there exists anA∗ ∈ A andW ∈ W

with A , A∗ +W such that

inf
T̂

sup
θ∗
‖T̂ − θ∗‖∞ ≥ CRL

(√
1− log(s)

log(r)

)
, (4)

where the inf T̂ is over all measurable estimators T̂ with input (A∗θ∗, A,R), and the sup is over
s-sparse vectors θ∗ with 2-norm L > 0.

Remark 2. Note that when R = O(1/
√
s) and s = O(

√
d), this lower bound matches the upper

bound we have for Theorem 16 (up to logarithmic factors) and hence the {`1, `2, `∞}-MU Selector
is minimax optimal.

The proof of this theorem follows by Fano’s method and is relegated to Appendix C.
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2.2 Gradient Update for the dictionary

We note that the update to the dictionary at each step in Algorithm 1 is as follows

A
(t)
ij = A

(t−1)
ij − η

(
1

n

n∑
k=1

[
r∑
p=1

(
A

(t−1)
ip xk,(t)p x

k,(t)
j − yki x

k,(t)
j

)])
︸ ︷︷ ︸

,ĝ(t)ij

,

for i ∈ {1, . . . , d}, j ∈ {1, . . . , r} and t ∈ {1, . . . , T}. If we consider the loss function at time step
t built using the vector samples y1, . . . , yn and sparse estimates x1,(t), . . . , xn,(t),

Ln(A) =
1

2n

n∑
k=1

∥∥∥yk −Axk,(t)∥∥∥2

2
, ∀A ∈ Rd×r,

we can identify the update to the dictionary ĝ(t) as the gradient of this loss function evaluated at
A(t−1),

ĝ(t) =
∂Ln(A)

∂A

∣∣∣
A(t−1)

.

3 Main Results and Assumptions

In this section we state our convergence result and state the assumptions under which our results are
valid.

3.1 Assumptions

Assumptions on A∗

(A1) Incoherence: We assume the the true underlying dictionary is µ/
√
d-incoherent

|〈A∗i , A∗j 〉| ≤
µ√
d
∀ i, j ∈ {1, . . . , r} such that, i 6= j.

This is a standard assumption in the sparse regression literature when support recovery is of
interest. It was introduced in (Fuchs, 2004; Tropp, 2006) in signal processing and indepen-
dently in (Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006) in statistics. We can also
establish guarantees under the strictly weaker `∞-sensitivity condition (cf. Gautier and Tsy-
bakov, 2011) used in analyzing sparse estimators under in-variable uncertainty in (Belloni
et al., 2016; Rosenbaum et al., 2013). The {`1, `2, `∞}-MU selector that we use for our sparse
recovery step also works with this more general assumption, however for ease of exposition
we assume A∗ to be µ/

√
d-incoherent.

(A2) Normalized Columns: We assume that all the columns of A∗ are normalized to 1,

‖A∗i ‖2 = 1 ∀ i ∈ {1, . . . , r}.

Note that the samples {yi}ni=1 are invariant when we scale the columns ofA∗ or under permu-
tations of its columns. Thus we restrict ourselves to dictionaries with normalized columns and
label the entire equivalence class of dictionaries with permuted columns and varying signs as
A∗.

(A3) Bounded max-norm: We assume that A∗ is bounded in matrix infinity norm

‖A∗‖∞ ≤
Cb
s
,

where Cb = 1/2000M2. This is in contrast with previous work that imposes conditions
on the operator norm of A∗ (Arora et al., 2015; Agarwal et al., 2014; Arora et al., 2013).
Our assumptions help provide guarantees under alternate assumptions and it also allows the
operator norm to grow with dimension, whereas earlier work requires A∗ to be such that
‖A∗‖op ≤ C

(√
r/d
)

. In general the infinity norm and operator norm balls are hard to
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compare. However, one situation where a comparison is possible is if we assume the entries
of the dictionary to be drawn iid from a Gaussian distribution N (0, σ2). Then by standard
concentration theorems, for the operator norm condition to be satisfied we would need the
variance (σ2) of the distribution to scale asO(1/d) while, for the infinity norm condition to be
satisfied we need the variance to be Õ(1/s2). This means that modulo constants the variance
can be much larger for the infinity norm condition to be satisfied than for the operator norm
condition.

(A4) Separation: We assume that ∀i ∈ {1, . . . , r}

‖A∗i ‖∞ >
3Cb
4s

, and, min
z∈{−1,1}

‖A∗i − zA∗j‖∞ ≥
3Cb
2s

∀ j 6= i ∈ {1, . . . , r}.

This condition ensures that two dictionaries in the equivalence class with varying signs of
columns or permutations are separated in infinity norm. The first condition ensures that for
any column A∗i and −A∗i are separated ‖A∗i − (−A∗i )‖∞ ≥ 3Cb/2s.

Assumption on the initial estimate and initialization

(B1) We require an initial estimate for the dictionary A(0) that is close in infinity norm,

‖A(0) −A∗‖∞ ≤
Cb
2s
.

This initialization combined with the separation condtion above ensures that the initial estimate
A(0) is close to only one dictionary in the equivalence class. The algorithm is going to be
contractive, hence this will hold true throughout the run of the algorithm.

Assumptions on x∗

Next we assume a generative model on the s-sparse covariates x∗. Here are the assumptions we
make about the (unknown) distribution of x∗.

(C1) Conditional Independence: We assume that distribution of non-zero entries of x∗ is condi-
tionally independent and identically distributed. That is, x∗i ⊥⊥ x∗j |x∗i , x∗j 6= 0.

(C2) Sparsity Level:We assume that the level of sparsity s is bounded

2 ≤ s ≤ min(2
√
d,Cb

√
d,C
√
d/µ),

where C is an appropriate global constant such that A∗ satisfies assumption (D3), see Re-
mark 15. For incoherent dictionaries, this upper bound is tight up to constant factors for sparse
recovery to be feasible (Donoho and Huo, 2001; Gribonval and Nielsen, 2003).

(C3) Boundedness: Conditioned on the event that i is in the subset of non-zero entries, we have
m ≤ |x∗i | ≤M,

with m ≥ 32R(0)M(R(0)(s + 1) + s/
√
d) and M > 1. This is needed for the thresholded

sparse estimator to correctly predict the sign of the true covariate (sgn(x) = sgn(x∗)). We
can also relax the boundedness assumption: it suffices for the x∗i to have sub-Gaussian distri-
butions.

(C4) Probability of support: The probability of i being in the support of x∗ is uniform over all
i ∈ {1, 2, . . . , r}. This translates to

Pr(x∗i 6= 0) =
s

r
∀ i ∈ {1, . . . , r},

Pr(x∗i , x∗j 6= 0) =
s(s− 1)

r(r − 1)
∀ i 6= j ∈ {1, . . . , r}.

(C5) Mean and variance of variables in the support: We assume that the non-zero random vari-
ables in the support of x∗ are centered and are normalized

E(x∗i |x∗i 6= 0) = 0, E(x∗2i |x∗i 6= 0) = 1.

We note that these assumptions (A1), (A2) and (C1) - (C5) are similar to those made in (Arora
et al., 2015; Agarwal et al., 2014). Agarwal et al. (2014) require the matrices to satisfy the restricted
isometry property, which is strictly weaker than µ/

√
d-incoherence, however they can tolerate a

much lower level of sparsity (d1/6).
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3.2 Main Result

Theorem 3. Suppose that true dictionary A∗ and the distribution of the s-sparse sam-
ples x∗ satisfy the assumptions stated in Section 3.1 and we are given an estimate A(0)

such that ‖A(0) − A∗‖∞ ≤ R(0) ≤ Cb/2s. If we are given {n(t)}Tt=1 i.i.d. samples

in every iteration with n(t) = Ω
(

r
s(R(t−1))2

log(dr/δ)
)

then Algorithm 1 with parameters

({τ (t)}Tt=1, {γ(t)}Tt=1, {λ(t)}Tt=1, {ν(t)}Tt=1, η) chosen as specified in Section 3.1 after T iterations
returns a dictionary A(T ) such that,

‖A(T ) −A∗‖∞ ≤
(

7

8

)T
R(0), with probability 1− Tδ.

4 Proof of Convergence

In this section we prove the main convergence result. To prove this we analyze the gradient update to
the dictionary at each step. We can decompose this gradient update (which is a random variable) into
a first term which is its expected value and a second term which is its deviation from expectation.
We will prove a deterministic convergence result by working with the expected value of the gradient
and then appeal to standard concentration arguments to control the deviation of the gradient from its
expected value with high probability.

By Lemma 8, Algorithm 1 is guaranteed to estimate the sign pattern correctly at every round of the
algorithm, sgn(x) = sgn(x∗) (see proof in Appendix A.1). Also note that by assumption (B1), the
initial dictionary A(0) is close to only one dictionary A∗ in the equivalence class.

To un-clutter notation let, A∗ij = a∗ij , A
(t)
ij = aij , A

(t+1)
ij = a

′

ij . The kth coordinate of the mth

covariate is written as xm∗k . Similarly let xmk be the kth coordinate of the estimate of the mth

covariate at step t. Finally let R(t) = R, n(t) = n and ĝij be the (i, j)th element of the gradient
with n (n(t)) samples at step t. Unwrapping the expression for ĝij we get,

ĝij =
1

n

n∑
m=1

[
r∑

k=1

(
aikx

m
k x

m
j

)
− ymi xmj

]
=

1

n

n∑
m=1

[
r∑

k=1

(
aikx

m
k − a∗ikxm∗k

)
xmj

]

= E

[
r∑

k=1

(
aikxk − a∗ikx∗k

)
xj

]

+

[
1

n

n∑
m=1

[
r∑

k=1

(
aikx

m
k − a∗ikxm∗k

)
xmj

]
− E

[
r∑

k=1

(
aikxk − a∗ikx∗k

)
xj

]]
= gij + ĝij − gij︸ ︷︷ ︸

,εn

,

where gij denotes (i, j)th element of the expected value (infinite samples) of the gradient. The sec-
ond term εn is the deviation of the gradient from its expected value. By Theorem 10 we can control
the deviation of the sample gradient from its mean via an application of McDiarmid’s inequality.
With this notation in place we are now ready to prove Theorem 3.

Proof [Proof of Theorem 3] First we analyze the structure of the expected value of the gradient.

Step 1: Unwrapping the expected value of the gradient we find it decomposes into three terms

gij = E
(
aijx

2
j − a∗ijx∗jxj

)
+ E

∑
k 6=j

aikxkxj − a∗ikx∗kxj


= (aij − a∗ij)

s

r
E
[
x2
j |x∗j 6= 0

]
︸ ︷︷ ︸

,gcij

+ a∗ij
s

r
E
[
(xj − x∗j )xj |x∗j 6= 0

]
︸ ︷︷ ︸

,Ξ1

+E

∑
k 6=j

aikxkxj − a∗ikx∗kxj


︸ ︷︷ ︸

,Ξ2

.
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The first term gcij points in the correct direction and will be useful in converging to the right answer.
The other terms could be in a bad direction and we will control their magnitude with Lemma 5 such
that |Ξ1| + |Ξ2| ≤ s

3rR. The proof of Lemma 5 is the main technical challenge in the convergence
analysis to control the error in the gradient. Its proof is deferred to the appendix.

Step 2: Given this bound, we analyze the gradient update,

a
′

ij = aij − ηĝij = aij − η(gij + εn) = aij − η
[
gcij + (Ξ1 + Ξ2) + εn

]
.

So if we look at the distance to the optimum a∗ij we have the relation,

a
′

ij − a∗ij = aij − a∗ij − η(aij − a∗ij)
s

r
E
[
x2
j |x∗j 6= 0

]
− η {(Ξ1 + Ξ2) + εn} .

Taking absolute values, we get

|a
′

ij − a∗ij |
(i)

≤
(

1− η s
r
E
[
x2
j |x∗j 6= 0

])
|aij − a∗ij |+ η {|Ξ1|+ |Ξ2|+ |εn|}

(ii)

≤
(

1− η s
r
E
[
x2
j |x∗j 6= 0

])
|aij − a∗ij |+ η

( s
3r
R
)

+ η|εn|

≤
(

1− η s
r

{
E
[
x2
j |x∗j 6= 0

]
− 1

3

})
R+ η|εn|,

provided the first term is at non-negative. Here, (i) follows by triangle inequality and (ii) is by
Lemma 5. Next we give an upper and lower bound on E

[
x2
j |x∗j 6= 0

]
. We would expect that as

R gets smaller this variance term approaches E
[
x∗2j |x∗j 6= 0

]
= 1. By invoking Lemma 6 we can

bound this term to be 2
3 ≤ E

[
x2
j |x∗j 6= 0

]
≤ 4

3 . We want the first term to contract at a rate 3/4; it
suffices to have

0
(i)

≤
(

1− η s
r

{
E
[
x2
j |x∗j 6= 0

]
− 1

3

})
(ii)

≤ 3

4
.

Coupled with Lemma 6, Inequality (i) follows from η ≤ r
s while (ii) follows from η ≥ 3r

4s . We also
have by Theorem 10 that η|εn| ≤ R/8 with probability 1− δ. So if we unroll the bound for t steps
we have,

|a(t)
ij − a

∗
ij | ≤

3

4
R(t−1) + η|εn| ≤

3

4
R(t−1) +

1

8
R(t−1) =

7

8
R(t−1) ≤

(
7

8

)t
R(0).

We also have η|εn| ≤ R/8 ≤ R(0)/8 with probability at least 1 − δ in each iteration, for all
t ∈ {1, . . . , T}; thus by taking a union bound over the iterations we are guaranteed to remain in our
initial ball of radius R(0) with high probability, completing the proof.

5 Conclusion

An interesting question would be to further explore and analyze the range of algorithms for which
alternating minimization works and identifying the conditions under which they provably converge.
Going beyond sparsity

√
d still remains challenging, and as noted in previous work alternating mini-

mization also appears to break down experimentally and new algorithms are required in this regime.
Also all theoretical work on analyzing alternating minimization for dictionary learning seems to
rely on identifying the signs of the samples (x∗) correctly at every step. It would be an interesting
theoretical question to analyze if this is a necessary condition or if an alternate proof strategy and
consequently a bigger radius of convergence are possible. Lastly, it is not known what the optimal
sample complexity for this problem is and lower bounds there could be useful in designing more
sample efficient algorithms.
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A Additional details for the proof of convergence

For Appendix A.1 and A.2, we borrow the notation from Section 4. In Appendix A.1 we prove
Lemma 4 that controls an error term which will be useful in establishing Lemma 5 that bounds the
error terms in the gradient, Ξ1 and Ξ2. Corollary 9 establishes the error bound for the sparse estimate
while Lemma 8 establishes that the sparse estimate after the thresholding step has the correct sign.
In Appendix A.2, we establish finite sample guarantees.

A.1 Proof of Auxillary Lemmas

Before we prove Lemma 5, which controls the terms in the gradient, we prove Lemma 4, which will
be vital in controlling the cross-term in the gradient.
Lemma 4. Let the assumptions stated in Section 3.1 hold. Then at each iteration step we have the
guarantee that ∣∣∣∣max

k:k 6=j

{
E
[
aikxkxj − a∗ikx∗kxj |x∗k 6= 0, x∗j 6= 0

]}∣∣∣∣ ≤ R

6(s− 1)
.

Proof Let us define

Γ , max
k:k 6=j

{
E
[
aikxkxj − a∗ikx∗kxj |x∗k 6= 0, x∗j 6= 0

]}
,

and let us define the event Ejk , {x∗j 6= 0, x∗k 6= 0}. Expanding Γ,

Γ = max
k:k 6=j

{
E
[
aik(xk − x∗k + x∗k)(xj − x∗j + x∗j )− a∗ikx∗k(xj − x∗j + x∗j )|Ejk

] }
= max
k:k 6=j

{
(aik − a∗ik)E

[
x∗k(xj − x∗j )|Ejk

]︸ ︷︷ ︸
,n1

+ aikE
[
(xk − x∗k)x∗j |Ejk

]︸ ︷︷ ︸
,n2

+ aikE
[
(xk − x∗k)(xj − x∗j )|Ejk

]︸ ︷︷ ︸
,n3

+ (aik − a∗ik)E
[
x∗kx

∗
j |Ejk

]︸ ︷︷ ︸
,n4

}
.

Given that the non-zero entries of x∗ are independent and mean zero we have n4 = 0. Next we see
n1, n2 and n3 are bounded above as

n1 ≤ |aik − a∗ik|M‖x− x∗‖∞ ≤ RM‖x− x∗‖∞
n2 ≤ |aik|M‖x− x∗‖∞ ≤ (|a∗ik|+R)M‖x− x∗‖∞
n3 ≤ |aik|‖x− x∗‖2∞ ≤ (R+ |a∗ik|)‖x− x∗‖2∞,

these follow as |x∗j | ≤ M , |xj − x∗j | ≤ ‖x − x∗‖∞ and |aik − a∗ik| ≤ R. The goal now is to show
that n1 ≤ R/30(s− 1), n2 ≤ R/15(s− 1) and n3 ≤ R/15(s− 1). Let us unwrap the first term of
n1

n1 ≤ RM‖x− x∗‖∞
(i)

≤ R

30(s− 1)

[
30(s− 1)M · 16RM

(
R(s+ 1) +

s√
d

)]
(ii)

≤ R

30(s− 1)

[
30(s− 1)M · 8CbM

s

(
Cb(s+ 1)

2s
+ 2

)]

=
R

30(s− 1)

240M2

(
s− 1

s

)
︸ ︷︷ ︸
≤1

Cb

Cb
(

(s+ 1)

2s

)
︸ ︷︷ ︸
≤3/4

+2




≤ R

30(s− 1)

[
240M2Cb

(
3

4
Cb + 2

)]
︸ ︷︷ ︸

,ξ1

, (5)
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where (i) follows by invoking Corollary 9 and (ii) follows as s ≤ 2
√
d and R ≤ Cb/2s. Our choice

Cb = 1/2000M2 ensures that ξ1 ≤ 1. The second term in the upper bound on n2 can be bounded
by the same technique as we used to bound n1, giving RM‖x−x∗‖∞ ≤ R/30(s− 1). For the first
term in n2, we have

|a∗ik|M‖x− x∗‖∞ ≤
R

30(s− 1)

[
480

(s− 1)

s
M2Cb

(
R(s+ 1) +

s√
d

)]
≤ R

30(s− 1)

[
480M2Cb

(
Cb

(s+ 1)

2s
+ 2

)]
︸ ︷︷ ︸

,ξ2

, (6)

where these inequalities follow by invoking Corollary 9 and by the upper bounds on |a∗ik| and R.
Again our choice Cb = 1/2000M2 ensures that ξ2 ≤ 1 which leaves us with the upper bound on
n2 ≤ R

15(s−1) . Finally to bound n3 we observe that the first term is bounded as follows,

R‖x− x∗‖2∞ ≤
R

30(s− 1)

[
30(s− 1) · 162R2M2

(
R(s+ 1) +

s√
d

)2
]

≤ R

30(s− 1)

[√
30(s− 1) · 16

Cb
2s
M

(
Cb

(s+ 1)

2s
+ 2

)]2

≤ R

30(s− 1)
,

where the last inequality is due to the fact that ξ1 ≤ 1. We have |a∗ik| ≤ Cb/s and similar arguments
as above can be used to show that the second term in n3 is also bounded above by R

30(s−1) . Having
controlled n1, n2 and n3 at the appropriate levels completes the proof and yields the desired bound
on Γ.

Lemma 5. Let the assumptions stated in Section 3.1 hold. Then at each iteration step we can bound
the error terms in the gradient as

|Ξ1| =
∣∣∣a∗ij srE [(xj − x∗j )xj |x∗j 6= 0

]∣∣∣ ≤ s

6r
R

|Ξ2| =

∣∣∣∣∣∣E
∑
k 6=j

aikxkxj − a∗ikx∗kxj

∣∣∣∣∣∣ ≤ s

6r
R.

Proof Part 1-We first prove the bound on Ξ1. We start by unpacking Ξ1

|Ξ1| =
∣∣∣s
r
a∗ijE

[
(xj − x∗j )xj |x∗j 6= 0

]∣∣∣
≤ s

r
|a∗ij | ·

∣∣E [(xj − x∗j )(x∗j + xj − x∗j )|x∗j 6= 0
]∣∣

(i)

≤ s

r
|a∗ij |M · E

[
‖x− x∗‖∞|x∗j 6= 0

]
+
s

r
|a∗ij |E

[
‖x− x∗‖2∞|x∗j 6= 0

]
(ii)

≤ s

r
|a∗ij |M ·

(
16RM

(
(s+ 1)R+

s√
d

))
+
s

r
|a∗ij |

(
16RM

(
(s+ 1)R+

s√
d

))2

=
s

6r
R

{
96|a∗ij |M2

(
R(s+ 1) +

s√
d

)
+ 6|a∗ij |R

(
16M

(
R(s+ 1) +

s√
d

))2
}

(7)

≤ s

6r
R,

where (i) follows by triangle inequality and |x∗j | ≤ M and, (ii) follows by Corollary 9. It can be
shown that in (7) the term in the curly braces is ≤ 1 by arguments similar to those used in Lemma 4
(because R ≤ 1/4000M2s, s ≤ 2

√
d and |a∗ij | ≤ 1/2000M2s), thus establishing the desired bound

on |Ξ1| .
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Part 2- Expanding Ξ2 we find

|Ξ2| =

∣∣∣∣∣∣E
∑
k 6=j

aikxkxj − a∗ikx∗kxj

∣∣∣∣∣∣
(i)
=
s(s− 1)

r(r − 1)

∣∣∣∣∣∣E
∑
k 6=j

aikxkxj − a∗ikx∗kxj |x∗k 6= 0, x∗j 6= 0

∣∣∣∣∣∣
≤ s(s− 1)

r(r − 1)
· (r − 1)

∣∣∣∣max
k 6=j

{
E
[
aikxkxj − a∗ikx∗kxj |x∗k 6= 0, x∗j 6= 0

]}∣∣∣∣
=

s

6r
R

(
6(s− 1)

R

∣∣∣∣max
k 6=j

{
E
[
aikxkxj − a∗ikx∗kxj |x∗k 6= 0, x∗j 6= 0

]}∣∣∣∣)
(ii)

≤ s

6r
R,

where (i) follows from assumption (C4) and (ii) follows by invoking Lemma 4.

Lemma 6. Let the assumptions stated in Section 3.1 hold. Then at each iteration step we can bound
the variance of the estimate,

2

3
≤ E

[
x2
j |x∗j 6= 0

]
≤ 4

3
.

Proof Consider the expectation of the random variable x2
j − x∗2j |x∗j 6= 0. We have

x2
j − x∗2j ≤ |xj + x∗j |‖x− x∗‖∞

= |2x∗j + xj − x∗j |‖x− x∗‖∞ ≤ 2|x∗j |‖x− x∗‖∞ + ‖x− x∗‖2∞
≤ 2M‖x− x∗‖∞ + ‖x− x∗‖2∞︸ ︷︷ ︸

,ξ3

.

Note that ξ3 ≤ 1
3 , if ‖x − x∗‖∞ ≤ 1

3

(√
3
√

3M2 + 1− 3M
)
. We also have an upper bound on

‖x− x∗‖∞ by Corollary 9

‖x− x∗‖∞ ≤ 16RM

(
R(s+ 1) +

s√
d

)
≤ 8

s︸︷︷︸
≤4

CbM

Cb s+ 1

2s︸ ︷︷ ︸
≤3/4

+
s√
d︸︷︷︸
≤2


≤ 4CbM

(
3

4
Cb + 2

)
.

Our choice Cb = 1/2000M2 with M > 1 guarantees that

4CbM

(
3

4
Cb + 2

)
≤ 1

3

(√
3
√

3M2 + 1− 3M
)
, (8)

this yields the claimed bound.

The next corollary establishes an infinity norm bound on the error in the sparse estimate under the
assumptions made in Section 3.1 and choice of parameters in Section 2.
Corollary 7. Under the assumptions specified in Section 3.1 and choice of parameters for Algorithm
1 in Section 2 we have the bound for all t ∈ {1, . . . , T} and k ∈ {1, . . . , n},

‖wk,(t) − xk∗‖∞ ≤ 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
,

where wk,(t) is as defined in Algorithm 1.
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Proof We have ‖xk∗‖2 ≤
√
sM , ‖xk∗‖∞ ≤ M thus plugging this into Theorem 16 gives us the

desired result.

The next theorem guarantees that at each round of the algorithm, under the assumptions stated in
Section 3.1, we correctly predict the sign pattern.
Lemma 8. Under the assumptions (A1)-(A6),(B1) and (C1)-(C5) stated in Section 3.1 with

32R(0)M

(
R(0)(s+ 1) +

s√
d

)
< m, (9)

and under the choice of the parameters η,R(t), τ (t), γ(t), λ(t) and ν(t) specified in Section 2 for all
t ∈ {1, 2, . . . , T} we have the guarantee that Algorithm 1 returns a sparse estimate {xk,(t)}nk=1
such that,

sgn(xk,(t)) = sgn(xk∗), ∀k ∈ {1, 2, . . . , n}.

Proof Under the assumptions stated we can invoke Corollary 7 to get,

‖wk,(t) − xk∗‖∞ ≤ 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
∀k ∈ {1, . . . , n}, t ∈ {1, . . . , T},

(10)

where wk,(t) is defined as in Algorithm 1. Note that the thresholds are defined by the schedule,

τ (t) = 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
.

By definition xk,(t) is the coordinate-wise thresholded estimate,

x
k,(t)
l = w

k,(t)
l I

(
|wk,(t)l | > τ (t)

)
∀l ∈ {1, 2, . . . , r}.

We know that for all t > 1 we have R(t) < R(0). So by the infinity norm bound in the above display
(10) and, by the assumptions on the distribution of x∗, we have that

sgn
(
xk,(t)

)
= sgn

(
xk∗
)

∀k ∈ {1, 2, . . . , n}.

This follows as the thresholding step only zeros out the non-zero elements in xk,(t) that are not in
supp(xk∗).

Corollary 9. Under the assumptions specified in Section 3.1 and choice of parameters for Algorithm
1 in Section 2 we have the bound for all t ∈ {1, . . . , T} and k ∈ {1, . . . , n},

‖xk,(t) − xk∗‖∞ ≤ 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
,

where xk,(t) is as defined in Algorithm 1.

Proof Note that by Lemma 8 we have that sgn(xk,(t)) = sgn(xk∗). Thus for any l ∈ {1, . . . , r} if
l /∈ supp(xk∗) then the choice of threshold of τ (t) = 16R(t−1)M

(
R(t−1)(s+ 1) + s√

d

)
implies

that,

|xk,(t)l − xk∗l | = |x
k,(t)
l | ≤ 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
.

While for l ∈ supp(xk∗) Corollary 7 implies

|xk,(t)l − xk∗l | ≤ 16R(t−1)M

(
R(t−1)(s+ 1) +

s√
d

)
.

This completes the proof.
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A.2 Finite Sample Guarantees

In this section, we establish finite sample guarantees and state convergence results used in the proof
of convergence of our algorithm.
Theorem 10. Let εn ≤ R

8η , where 3r
4s ≤ η ≤

r
s is the step-size used at each gradient step. If we are

given n i.i.d. samples at each round where n = Ω( r
sR2 log(dr/δ)), then we have the guarantee that

max
i∈{1,...,r},j∈{1,...,d}

{|ĝij − gij |} ≤ εn,

with probability 1− δ.

Proof We define the set W = {m : j ∈ supp(xm∗)} and then we have that

ĝij =
|W |
n
· 1

|W |
∑
m∈W

(∑
k

aikx
m
k − a∗ikxm∗k

)
xmj︸ ︷︷ ︸

,ĝWij

.

Let xl∗ be a sample such that l ∈ W . We will bound the term Λ = |
(∑

k aikx
l
k − a∗ikxl∗k

)
xlj | and

later invoke McDiarmid’s inequality. To ease notation we drop the superscript l. Expanding Λ we
get

Λ =

∣∣∣∣∣
r∑

k=1

(aik − a∗ik)(xk − x∗k)(xj − x∗j ) + (aik − a∗ik)(xk − x∗k)x∗j

+ (aik − a∗ik)x∗k(xj − x∗j ) + (aik − a∗ik)x∗kx
∗
j − a∗ikx∗k(xj − x∗j )− a∗ikx∗kx∗j

∣∣∣∣∣
Recall that by Lemma 8 we have that sgn(xl) = sgn(xl∗), and xl∗ is s-sparse thus only s terms in
the above sum are non-zero. We repeatedly use the bounds,

1. |a∗ik| ≤
Cb

s .

2. |aik − a∗ik| ≤ R ≤ R(0) ≤ Cb

2s .

3. ‖x− x∗‖∞ ≤ 16RM
(
R(s+ 1) + s√

d

)
.

4. 2 ≤ s ≤ 2
√
d.

Using these we can upper bound Λ by

Λ ≤ 3CbM
2

4
+

10C2
bM

2

s

(
Cb(s+ 1)

2s
+ 2

)
+

Cb
2

(
8CbM

s

(
Cb(s+ 1)

2s
+ 2

))2

.

By our choice of Cb = 1/2000M2, where M > 1 we have that

Λ ≤ B,
for an appropriate global constant B (independent of s and M ).

By simple concentration arguments we can get that |W |/n is close to s/r. Conditioned on a value of
|W | by invoking McDiarmid’s inequality (Theorem 11), we have that |ĝWij −E [ĝij |j ∈ supp(x∗)]| ≤
εW,n with probability 1− 2e−2|W |ε2W,n/B

2

. We demand

εW,n =
C · r ·R

8sη
, (11)

with probability 1− cδ/dr for every (i, j), where c and C are appropriate constants such that |ĝij −
gij | ≤ R/8η with probability at least 1− δ/dr. Thus we need |W | = Ω(( sηrR )2 log(dr/δ)). As η is
proportional to r/s, this implies that for (11) to hold, we need that |W | = Ω(1/R2 log(dr/δ)).

As stated above we have that |W |/n is close to s/r so if |W | = Ω(1/R2 log(dr/δ)) it suffices to
have n = Ω( r

sR2 log(dr/δ)). We finish the proof by a union bound over all entries of the matrix.
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A.3 Concentration Theorems

We recall McDiarmid’s inequality (McDiarmid, 1989).
Theorem 11. Let X1, . . . , Xm be independent random variables all taking values in the set X .
Further, let f : Xm 7→ R be a function of X1, X2, . . . , Xm that satisfies ∀i, ∀x1, . . . , xm, x

′
i ∈ X ,

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci.

Then for all ε > 0,

P(f − E [f ] ≥ ε) ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
.

Next we present a concentration theorem for a sum of the squares of d independent Gaussian random
variables each with variance σ2 (χ2-concentration theorem).
Theorem 12 (Gaussian concentration inequality, see Theorem 5.6 in (Boucheron et al., 2013)).
Let X = (X1, . . . , Xn) be a vector of n independent standard normal random variables. Let
f : Rn 7→ R denote an L-Lipschitz function with respect to Euclidean distance. Then, for all t > 0,

P(f(X)− E(f(X)) ≥ t) ≤ e−t
2/(2L2).

Lemma 13. If {Zk}dk=1 ∼ N (0, 1) are i.i.d. standard normal variables, then Y , σ2
∑d
k=1 Z

2
k is

a scaled chi-squared variate with d degrees of freedom. Define V ,
√
Y , then for all δ > 0 we have

P
[
V ≥ σ

√
d+ δ

]
≤ exp

(
− δ2

2σ2

)
.

Proof Note that by definition V (Z1, . . . , Zd) is a σ-Lipschitz function of d standard normal vari-
ables. By Jensen’s inequality we have,

E [V ] ≤
√

E [V 2] = σ
√
d.

Thus by applying Theorem 12 to V we have the claimed bound.

B Analysis of Robust Sparse Estimator

Analysis of the {`1, `2, `∞}-MU Selector (2) is presented in (Belloni et al., 2014), which we adapt
here to present guarantees for deterministic (worst case) perturbations to the dictionary. The analysis
in (Belloni et al., 2014) is in a setting where the error in the A is random with zero mean. Here, we
consider the error to be deterministic (worst case). Let us start by introducing some notation and
important definitions.

B.1 Notation and Definitions

Let J ⊂ {1, . . . , r} be a set of integers. For a vector θ = (θ1, . . . , θr) ∈ Rr we denote by θJ the
vector in Rr whose jth component satisfies (θJ)j = θj if j ∈ J , and (θJ)j = 0 otherwise. Let
diag(·) be the matrix formed by just the diagonal entries and zeroing out the off diagonal terms.
Also let ∆ , θ̂− θ∗ and W , A−A∗, where θ∗ is the true parameter and A∗ is the true dictionary
without error. Define the cone,

CJ(u) , {∆ ∈ Rr : ‖∆Jc‖1 ≤ u‖∆J‖1},
where J is a subset of {1, . . . , r}. For q ∈ [1,∞] and an integer s ∈ [1, r], the `q-sensitivity (see
for example Gautier and Tsybakov (2011); Rosenbaum et al. (2013); Belloni et al. (2014, 2016)) is
defined as

κq(s, u) , min
J:|J|≤s

(
min

∆∈CJ (u):‖∆‖q=1

1

d
‖A∗>A∗∆‖∞

)
.

The `q-sensitivity is routinely used to study convergence of estimators under sparsity constraints. If
we have κq(s, u) ≥ cs−1/q for some constant c > 0, this leads to optimal bounds for the errors.
It has also been shown to be a strict generalization of the restricted eigenvalue property and of
the mutual incoherence condition. Relations between these conditions are provided by Lemma 6
of Belloni et al. (2016). We restate that lemma here.
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Lemma 14 (Restated from Belloni et al. (2016)). Let u > 0. For any α ∈ (0, 1) there exists a c > 0

such that for 1 ≤ s ≤ r and 1 ≤ d ≤ r with µ/
√
d ≤ 1/(cs) then

κ∞(s, u) ≥ α.
Furthermore, for any 1 ≤ q ≤ ∞,

κq(s, u) ≥
(

1

2s

)1/q

κ∞(s, u).

Next we highlight the assumptions under which we can establish guarantees for this estimator.

B.2 Assumptions

We make the following assumptions in the analysis of {`1, `2, `∞}-MU Selector.

(D1) We assume that the true dictionaryA∗ is deterministic. We also assume thatA is deterministic.
(D2) We assume that the columns of A∗ are normalized, that is, ‖A∗i ‖2 = 1 ∀i ∈ {1, 2, . . . , r}.
(D3) For the matrix A∗ we assume the `∞-sensitivity is bounded below

κ∞(s, 1 + λ+ ν) ≥ 1/4.

(D4) We demand that ‖W‖∞ ≤ R.
(D5) Finally, the tuning parameters λ and ν are chosen such that

8s

(√sR2 +
√

s
dR
) (

1 + ν + 2λ√
s

)
λ

+
R2(1 + λ)

ν


︸ ︷︷ ︸

,ζ

≤ 1

2
.

Remark 15. If the dictionary A∗ is µ/
√
d-incoherent and if the sparsity level s ≤ C

√
d/µ for an

appropriate global constant C then by Lemma 14 Assumption (D3) holds for A∗.
Theorem 16 (Adapted from Belloni et al. (2014)). Let assumptions (D1) - (D5) hold. Assume that
the true parameter θ∗ is s−sparse and belongs to Θ. Let 0 < λ, ν < ∞, γ =

√
sR2 +

√
s
dR, and

let θ̂ be the {`1, `2, `∞}-MU Selector. Then

‖θ̂ − θ∗‖∞ ≤ 16(γ‖θ∗‖2 +R2‖θ∗‖∞).

Proof Throughout the proof, J = {j : θ∗j 6= 0}. We proceed in three steps. Step 1 establishes
initial relations and the fact that ∆ = θ̂ − θ∗ belongs to CJ(1 + λ + ν). Step 2 provides a bound
on 1

d‖A
>A∆‖∞. Finally, Step 3 establishes the rate of convergence stated in the theorem. We also

often use the inequality ‖θ‖∞ ≤ ‖θ‖2 ≤ ‖θ‖1,∀θ ∈ Rr.
Step 1: We first note that,

1

d

∥∥A>(y −Aθ∗)
∥∥
∞ =

1

d
‖A>Wθ∗‖∞

(i)

≤ 1

d

∥∥A∗>Wθ∗
∥∥
∞ +

1

d

∥∥W>Wθ∗
∥∥
∞

(ii)

≤ 1

d

∥∥A∗>Wθ∗
∥∥
∞︸ ︷︷ ︸

,n1

+
1

d

∥∥(W>W − diag(W>W ))θ∗
∥∥
∞︸ ︷︷ ︸

,n2

+
1

d

∥∥diag(W>W )θ∗
∥∥
∞︸ ︷︷ ︸

,n3

,

where both (i), (ii) follow by applications of the triangle inequality. Next we bound n1

n1 =
1

d
‖A∗>Wθ∗‖∞.
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Note that the columns of A∗ are normalized, ‖A∗i ‖2 = 1 and we have ‖W‖∞ ≤ R, thus we have
all elements of A∗>W are bounded by

√
dR. We also know that θ∗ is s-sparse, combining these we

get,

n1 =
1

d
‖A∗>Wθ∗‖∞

≤ 1

d
(‖θ∗‖2)(

√
s‖A∗>W‖∞)

≤ 1

d
(‖θ∗‖2)(

√
sdR)

≤ ‖θ∗‖2
(√

s

d
R

)
,

where the last step is by Cauchy-Schwartz. Next for n2

n2 =
1

d

∥∥(W>W − diag(W>W ))θ∗
∥∥
∞ .

We know that ‖W‖∞ ≤ R, thus we have ‖W>W − diag(W>W )‖∞ ≤ dR2. Again using the fact
that θ∗ is s-sparse we have,

n2 =
1

d

∥∥(W>W − diag(W>W ))θ∗
∥∥
∞

≤ 1

d
(‖θ∗‖2)(

√
s‖W>W − diag(W>W )‖∞)

≤ 1

d
(‖θ∗‖2)(

√
sdR2)

= ‖θ∗‖2
√
sR2,

where the first inequality follows by an application of Cauchy-Schwartz. Finally for n3, we again
have ‖W>W‖∞ ≤ dR2, thus by Cauchy-Schwartz inequality

n3 =
1

d

∥∥diag(W>W )θ∗
∥∥
∞ ≤ ‖θ

∗‖∞R2.

Combining these together we get,

1

d
‖A>(y −Aθ∗)‖∞ ≤

(√
sR2 +

√
s

d
R

)
‖θ∗‖2 +R2‖θ∗‖∞. (12)

As γ =
√
sR2 +

√
s
dR, this implies that (θ, t, u) = (θ∗, ‖θ∗‖2, ‖θ∗‖∞) is feasible. Let (θ̂, t̂, û) be

the optimal solution, then we have

‖θ̂‖1 + λ‖θ̂‖2 + ν‖θ̂‖∞ ≤ ‖θ̂‖1 + λt̂+ νû ≤ ‖θ∗‖1 + λ‖θ∗‖2 + ν‖θ∗‖∞.
By rearranging terms and by triangle inequality we get the relation

‖θ̂JC‖1 ≤ (1 + λ+ ν)‖θ̂J − θ∗‖1 = (1 + λ+ ν)‖∆J‖1.
This proves that ∆ ∈ CJ(1 + λ+ ν). Also by similar arguments we get

t̂− ‖θ∗‖2 ≤
‖∆‖1 + ν‖∆‖∞

λ
≤ (1 + ν)‖∆‖1

λ
(13)

and, û− ‖θ∗‖∞ ≤
‖∆‖1 + λ‖∆‖2

ν
≤ (1 + λ)

ν
‖∆‖1. (14)

Step 2: By applications of the triangle inequality we have
1

d
‖A∗>A∗∆‖∞ ≤

1

d

[
‖A>A∗∆‖∞ + ‖W>A∗∆‖∞

]
≤ 1

d

[
‖A>A∆‖∞ + ‖A>W∆‖∞ + ‖W>A∗∆‖∞

]
≤ 1

d

‖A>(y −Aθ∗)‖∞︸ ︷︷ ︸
,m1

+ ‖A>(y −Aθ̂)‖∞︸ ︷︷ ︸
,m2

+ ‖A>W∆‖∞︸ ︷︷ ︸
,m3

+ ‖W>A∗∆‖∞︸ ︷︷ ︸
,m4

 .

18



Now we bound each of these terms

m1

(i)

≤ d(γ‖θ∗‖2 +R2‖θ‖∞)

m2

(ii)

≤ d(γt̂+R2û) ≤ d
(
γ‖θ∗‖2 +R2‖θ∗‖∞ +

{
γ(1 + ν)

λ
+
R2(1 + λ)

ν

}
‖∆‖1

)
m3

(iii)

≤
(
dR2 +

√
dR
)
‖∆‖1 + dR2‖∆‖∞

m4

(iv)

≤
√
dR‖∆‖1,

where (i) follows as (θ∗, ‖θ∗‖2, ‖θ∗‖∞) is a feasible point, (ii) is because (θ̂, t̂, û) is a (optimal)
feasible point along with (13), (14). Bound (iii) follows by similar arguments made to arrive at (12)
and finally (iv) is due to Hölder’s inequality. Combing these we have the following bound

1

d
‖A∗>A∗∆‖∞ ≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞ +

{
γ(1 + ν)

λ
+
R2(1 + λ)

ν

}
‖∆‖1

+
R√
d
‖∆‖1 +R2‖∆‖∞ +

(
R2 +

R√
d

)
‖∆‖1.

Simplifying using ‖∆‖∞ ≤ ‖∆‖1 and γ =
√
s
(
R2 + R√

d

)
we get

1

d
‖A∗>A∗∆‖∞ ≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞ +

γ
(

1 + ν + 2λ√
s

)
λ

+
R2(1 + λ)

ν

 ‖∆‖1. (15)

Step 3: Define

ζ ,

γ
(

1 + ν + 2λ√
s

)
λ

+
R2(1 + λ)

ν

 .

Rewriting (15) using the definition of ζ we have

1

d
‖A∗>A∗∆‖∞ ≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞ + ζ‖∆‖1.

By the assumption on `∞-sensitivity and Lemma 14 we have κ1(s, u) ≥ 1
2sκ∞(s, u) ≥ 1

8s . Thus
by definition of `1-sensitivity we have

1

d
‖A∗>A∗∆‖∞ ≥ κ1(s, 1 + λ+ ν)‖∆‖1.

Combining this with the previous display gives us

1

d
‖A∗>A∗∆‖∞ ≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞ +

ζ

κ1(s, 1 + λ+ ν)

(
1

d
‖A∗>A∗∆‖∞

)
≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞ + 8sζ

(
1

d
‖A∗>A∗∆‖∞

)
.

By assumption (D5) – 8sζ ≤ 1/2, therefore we have the claimed error bound

1

2d
‖A∗>A∗∆‖∞ ≤ 2γ‖θ∗‖2 + 2R2‖θ∗‖∞

κ∞(s, 1 + λ+ ν)‖∆‖∞ ≤ 4γ‖θ∗‖2 + 4R2‖θ∗‖∞
‖θ̂ − θ∗‖∞ ≤ 16(γ‖θ∗‖2 +R2‖θ∗‖∞).

19



C Lower Bounds: Proof of Theorem 1

In this section we will show that when the uncertainty in the dictionary measured in matrix infinity
norm scales as R = O(1/

√
s), the {`1, `2, `∞}-MU Selector is information theoretically optimal

up to logarithmic factors and the infinity norm of the error (in the worst case) is lower bounded by
CR‖θ∗‖2. We will prove this by Fano’s method (see for example review in Yu (1997); Tsybakov
(2009)). The proof technique to show this estimator is minimax optimal is adapted from Belloni
et al. (2016). We define the sets

B0(s) = {θ : ‖θ‖0 ≤ s} and S2(L) = {θ : ‖θ‖2 = L},
where L > 0. We define the parameter set to be Θ = B0(s) ∩ S2(L), which is the set of s−sparse
vectors with ‖·‖2 norm equal to L. To prove this theorem we will choose a particular probability dis-
tribution over the set of underlying true dictionaries PA∗ and also a distribution over the deviations
from the true dictionary PW . We will assume that the entries ofA∗ are drawn i.i.d. from a zero-mean
Gaussian distribution N (0, σ2

D) and the entries of W are chosen i.i.d. from a zero mean Gaussian
distribution N (0, σ2

E) independent of the distribution generating A∗. We set σD = O(1/
√
d) and

σE = O(R/
√
log(dr)). We now restate a formal version of Theorem 1.

Theorem 17. Let r ≥ 2, 2 ≤ s ≤ r, and L > 0. Let y = A∗θ∗ where A∗ ∈ Rd×r and θ∗ is a
s-sparse vector with norm ‖θ∗‖2 = L. Further let the entries of A∗ be drawn from N (0, σ2

D) and
independently let the entries of the perturbation W be drawn from the distribution N (0, σ2

E). Let
A = A∗ + W , σ2

D = O(1/d) and σ2
E = R/ log(dr). Then there exists constants C and C ′ > 0

such that

inf
T̂

sup
θ∈B0(s)∩S2(L)

PA∗,W

[
‖T̂ − θ‖∞ ≥ CRL

√
1− log(s)

log(r)

]
> C ′,

where inf T̂ denotes the infimum over all measurable estimators T̂ with input (y,A,R).

Proof We define a finite set of “hypotheses” (packing set) included in B0(s) ∩ S2(L). To this end,
we first introduce

M = {x ∈ {0, 1}r−1 : ρH(0, x) = s− 1},

where ρH denotes the Hamming distance between elements of {0, 1}r−1, and 0 is the zero vector.
Then there exists a subsetM′ ofM such that for any x, x′ inM′ with x 6= x′, we have ρH(x, x′) >
s/16 and moreover the cardinality ofM′ is bounded below

log|M′| ≥ Cs log
(r
s

)
,

for some constant C. This follows from Varshamov-Gilbert bound (see Lemma 2.9 in Tsybakov
(2009)) if s − 1 > (r − 1)/2 and from Lemma A.3 in Rigollet and Tsybakov (2011) if s − 1 ≤
(r − 1)/2. We denote ω′j to be the elements of the finite setM′. For j = 1, . . . , |M|, we define
the vectors ωj ∈ {0, 1}r with components ωj1 = 0 and ωjk = ω′j(k−1) for k > 2, where ωjk is
the k-th component of ωj . We also define ω0 as the vector in {0, 1}r with all components equal
to 0 except the first one equal to 1. We now define the set of “hypotheses” (packing set of Θ)
(ω̄j , j = 0, . . . , |M′|+ 1), where ω̄0 = Rω0 and

ω̄j =
L√

1 + ψ2(s− 1)
(ω0 + ψωj), j = 1, . . . , |M′|+ 1.

Here ψ is a positive parameter that will be chosen appropriately. Note that these vectors are s-sparse
and have ‖ω̄j‖2 = L. By Lemma 18 we have the KL divergence is bounded,

K(Pω̄j ,Pω̄0) =
dσ2

D

2σ2
E‖ω̄0‖22

‖ω̄j − ω̄0‖2

≤ dσ2
D

2σ2
EL

2

(
ψ2L2s

1 + ψ2(s− 1)

)
≤ ψ2

(
sdσ2

D

2σ2
E(1 + ψ2(s− 1))

)
.
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If we choose ψ = C

√
σ2
E log(r/s)

dσ2
D

with C being an appropriately chosen constant independent of

dimensions (s, d, r) and L we get that for all j,

K(Pω̄j
,Pω̄0

) ≤ 1

16
log(|M′|).

Thus for j and j′ both different from 0,

‖ω̄j − ω̄j′‖∞ =
Lψ√

1 + ψ2(s− 1)
≥ C

LσE
√

log(r/s)√
dσD

,

and for j 6= 0 we have

‖ω̄j − ω̄0‖∞ ≥
Lψ‖ωj‖∞√

1 + ψ2(s− 1)
≥ C

LσE
√

log(r/s)√
dσD

.

We want the columns of ‖A∗‖2 ≤ 1 (upper bound used in the proof of Theorem 16), hence we
want σD = O(1/

√
d) (this follows by an application of Lemma 13 followed by a union bound

over the r columns using the fact that r = O(poly(d))). We also demand that our deviation from
the true dictionary be bounded by R with high probability over all entries so we choose σE ≤
O(R/

√
log(dr)). Hence given our choices of σE and σD we have for any j, j′

‖ω̄j − ω̄j′‖∞ ≥ CLR

(√
1− log(s)

log(r)

)
.

We can now apply Theorem 2.7 in Tsybakov (2009) to complete the proof.

Lemma 18. Let θ1 ∈ Rr and θ2 ∈ Rr be such that ‖θ1‖2 = ‖θ2‖2. Under the assumptions stated
in the Appendix C we have

K(Pθ1 ,Pθ2) =
dσ2

D

2σ2
E‖θ2‖22

‖θ1 − θ2‖2.

Proof By the properties of Kullback Leibler divergence between product measures, it suffices to
prove the lemma for d = 1. Let θ ∈ Rr. Consider the random vector (U, V ) where

V = (D1 + E1, . . . , Dr + Er),

with D = (D1, D2, . . . , Dr)
> a zero-mean Gaussian vector with covariance σ2

DIr×r and E =
(E1, E2, . . . , Er)

> a zero mean Gaussian vector with covariance σ2
EIr×r independent of A and

U =

r∑
j=1

θj(Vj − Ej).

We introduce some variables

Σ̃ =
σ2
E

σ2
D + σ2

E

Ir×r, Π =
σ2
D

σ2
D + σ2

E

Ir×r, cθ = θ>Πθ =
σ2
D

σ2
D + σ2

E

‖θ‖22.

We find the conditional distribution Lθ(U |V ) of U given V . Also note that the vector
(V1, . . . , Vr, E1, . . . , Er)

> is a zero-mean Gaussian random vector with covariance matrix(
(σ2
D + σ2

E)Ir×r σ2
EIr×r

σ2
EIr×r σ2

EIr×r

)
.

So that Lθ(E|V ) is a Gaussian with mean Σ̃V and covariance σ2
E(Ir×r − Σ̃). This implies that

Lθ(U |V ) is Gaussian with mean θ>Πθ and variance cθσ2
E . Then the logarithm of density of

Lθ(U |V ), denoted by `θ(U |V ) satisfies

`θ(U |V ) = −1

2
log(2π)− 1

2
log(cθσ

2
E)− 1

2cθσ2
E

(U − θ>ΠV )2.
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Now let θ1 ∈ Rr and θ2 ∈ Rr with ‖θ1‖2 = ‖θ2‖2. Then,

`θ1(U |V )− `θ2(U |V ) =
1

2

(
log

(
cθ2
cθ1

))
︸ ︷︷ ︸

=0

+
1

2cθ2σ
2
E

(
(U − θ>2 ΠV )2 − (U − θ>1 ΠV )2

)

+

(
1

2cθ2σ
2
E

− 1

2cθ1σ
2
E

)
︸ ︷︷ ︸

=0

(U − θ>1 ΠV )2

=
1

2cθ2σ
2
E

(
(U − θ>2 ΠV )2 − (U − θ>1 ΠV )2

)
.

Since the distribution of V does not depend on θ1 we obtain that in the case d = 1,

K(Pθ1 ,Pθ2) =
1

2cθ2σ
2
E

Eθ1
[
(U − θ>2 ΠV )2 − (U − θ>1 ΠV )2

]
=

σ2
D + σ2

E

2σ2
Eσ

2
D‖θ‖22

[
σ2
D(θ>1 − θ>2 Π)Ir×r(θ1 −Πθ2)

− σ2
D(θ>1 − θ>1 Π)Ir×r(θ1 −Πθ1) + (θ>2 Π2θ2 − θ>1 Π2θ1)

]
.

Where in the final step the cross terms are zero by the independence of D and E. Developing this
expression leaves us with

K(Pθ1 ,Pθ2) =
σ2
D + σ2

E

2σ2
Eσ

2
D‖θ‖22

[
(θ1 − θ2)>Πσ2

DIr×r(θ1 − θ2)
]

=
σ2
D

2σ2
E‖θ2‖22

‖θ1 − θ2‖2.
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