
f -GANs in an Information Geometric Nutshell
— Supplementary Material —

Abstract

This is the Supplementary Material to Paper ”f -GANs in an Information Geometric Nutshell”
by R. Nock, Z. Cranko, A-K. Menon, L. Qu and and R.-C. Williamson. Theorems and Lemmata
are numbered with letters (A, B, ...) to make a clear difference with the main file numbering.

Table of contents
Supplementary material on proofs and formal results Pg 2
Proof of Theorem 5 Pg 2
Proof of Theorem 6 Pg 3
Proof of Theorem 7 Pg 4
Proof of Theorem 9 Pg 5
Proof of Lemma 11 Pg 11
Proof of Theorem 12 Pg 13

Supplementary material on experiments Pg 14
Architectures Pg 14
Experimental setup for varying the activation function in the generator Pg 14
Visual results Pg 15
↪→MNIST results for GAN DCGAN at varying µ (µ = 1 is ReLU) Pg 16
↪→MNIST results for WGAN DCGAN at varying µ (µ = 1 is ReLU) Pg 17
↪→MNIST results for WGAN MLP at varying µ (µ = 1 is ReLU) Pg 18
↪→MNIST results for GAN MLP at varying µ (µ = 1 is ReLU) Pg 19
↪→ LSUN results for GAN DCGAN at varying µ (µ = 1 is ReLU) Pg 20

1

Supplementary material on proofs and formal results

I Proof of Theorem 5
Our basis for the proof of the Theorem is the following Lemma.

Lemma A [10, Proposition 1.6.1] Let f : I → R be continuous convex and let ξ : I → R such that
ξ(z) ∈ ∂f(z), ∀z ∈ intI . Then for any a < b in I , it holds that:

f(b) = f(a) +

∫ b

a

ξ(t)dt . (1)

Suppose that b < a. Then Lemma A says that we have f(a) = f(b) +
∫ a
b
ξ(t)dt, that is, after re-

ordering, f(b) = f(a) −
∫ a
b
ξ(t)dt = f(a) +

∫ b
a
ξ(t)dt, so in fact the requested ordering between the

integral’s bounds can be removed. Also, we can suppose that the integral may not be proper, in which
case we compute it as a limit of a proper integral for which Lemma A therefore holds.

We now prove Theorem 5. Suppose there exists M ∈ R such that sup ξ(IP,Q) ≤ M , for some
∂f 3 ξ : int dom(f) → R. For any constants k, letting fk(z)

.
= f(z) − k(z − 1), which is convex

since f is, we note that

EX∼Q

[
fk

(
P (X)

Q(X)

)]
= EX∼Q

[
f

(
P (X)

Q(X)

)]
− k · EX∼Q

[
P (X)

Q(X)
− 1

]
= EX∼Q

[
f

(
P (X)

Q(X)

)]
− k ·

(∫
P (X)dµ(X)−

∫
Q(X)dµ(X)

)
= EX∼Q

[
f

(
P (X)

Q(X)

)]
. (2)

Let ξk
.

= ξ − k ∈ ∂fk. Since fk is convex continuous, it follows from [10, Proposition 1.6.1] (Lemma
A) that:

fk

(
P (x)

Q(x)

)
= fk(1) + lim

ρ→P (x)
Q(x)

∫ ρ

1

ξk(t)dt

= − lim
ρ→P (x)

Q(x)

∫ ρ

1

(−ξ(t) + k)dt . (3)

The second identity comes from the assumption that f(1) = 0 = fk(1). The limit appears to cope
with a subdifferential that would diverge around a density ratio. Fix some constant ε > 0 and let

χ(t) =

{ 1
−ξ(t)+M+ε

if t < sup IP,Q
1
ε

if t ≥ sup IP,Q
, (4)

2

which, since sup ξ(IP,Q) ≤ M , guarantees χ ≥ 0 and χ is also increasing since ξ is increasing (f is
convex). We then check, using eqs. (2) and (4) that:

KLχ(Q‖P) = EX∼Q

[
− logχ

(
P (X)

Q(X)

)]
= EX∼Q

[
− lim

ρ→P (X)
Q(X)

∫ ρ

1

1

χ(t)
dt

]

= EX∼Q

[
− lim

ρ→P (X)
Q(X)

∫ ρ

1

(−ξ(t) +M + ε)dt

]

= EX∼Q

[
fM+ε

(
P (X)

Q(X)

)]
= EX∼Q

[
f

(
P (X)

Q(X)

)]
= If (P‖Q) . (5)

This ends the proof of Theorem 5.

II Proof of Theorem 6
We have

EX∼Q̃[−(logχ(P (X))− logχ(Q(X)))]

= EX∼Q̃[−(logχ(P (X))− logχ(Q̃(X)))] + EX∼Q̃[−(logχ(Q̃(X))− logχ(Q(X)))]

= EX∼Q̃[−(logχ(P (X))− logχ(Q̃(X)))]− EX∼Q̃[−(logχ(Q(X))− logχ(Q̃(X)))] .

Consider some fixed x ∈ X. We have

logχ(P (x))− logχ(Q̃(x)) =

∫ P (x)

1

1

χ(t)
· dt−

∫ Q̃(x)

1

1

χ(t)
· dt

=

∫ P (x)

Q̃(x)

1

χ(t)
· dt

=

∫ P (x)

Q̃(x)

1

Q̃(x)

χ(tQ̃(x))
· dt

=

∫ P (x)

Q̃(x)

1

1

χQ̃(x)(t)
· dt

= logχQ̃(x)

(
P (x)

Q̃(x)

)
, (6)

with

χQ̃(x)(t)
.

=
1

Q̃(x)
· χ(tQ̃(x)) . (7)

3

To cope with the case where any of the integrals is improper, we derive the limit expression:

(logχ(P (x))− logχ(Q̃(x))) = lim
(p,q)→(P (x),Q̃(x))

logχq

(
p

q

)
, (8)

so we get in all cases,

EX∼Q̃[−(logχ(P (X))− logχ(Q̃(X)))] = KLχQ̃(Q̃‖P) . (9)

We also note that

logχ(Q(X))− logχ(Q̃(X)) = lim
(q,q′)→(Q(x),Q̃(x))

logχq′

(
q

q′

)
= logχQ̃(x)

(
Q(x)

Q̃(x)

)
(10)

(if the limit exists) so we get

EX∼Q̃[−(logχ(P (X))− logχ(Q̃(X)))] = KLχQ̃(Q̃‖P) , (11)

EX∼Q̃[−(logχ(Q(X))− logχ(Q̃(X)))] = KLχQ̃(Q̃‖Q) , (12)

and

EX∼Q̃[logχ(Q(X))− logχ(P (X))] = KLχQ̃(Q̃‖P)−KLχQ̃(Q̃‖Q) , (13)

as claimed.

III Proof of Theorem 7
Let us denote FQ̃ ⊆ RX denote the subset of functions : X → R whose values are constrained as
follows:

FQ̃
.

=
{
T ∈ RX : T (x) ∈ dom

(
− logχQ̃(x)

)?}
. (14)

Since − logχQ̃(x)
is convex for any x, it follows from Legendre duality,

KLχQ̃(Q̃‖P) = EX∼Q̃

[
− logχQ̃(X)

(
P (X)

Q̃(X)

)]

= EX∼Q̃

 sup

T (X)∈dom
(
logχ

Q̃(X)

)?
{
T (X) · P (X)

Q̃(X)
− (− logχQ̃(X)

)?(T (X))

}
= sup

T∈FQ̃

{
EX∼Q̃

[
T (X) · P (X)

Q̃(X)
− (− logχQ̃(X)

)?(T (X))

]}
= sup

T∈FQ̃

{
EX∼P[T (X)]− EX∼Q̃[(− logχQ̃(X)

)?(T (X))]
}

. (15)

4

Now, we know that − logχQ̃(x)
(z) is proper lower-semicontinuous and therefore (− logχQ̃(x)

)?? =

− logχQ̃(x)
. Being closed, the domain of the derivative of (− logχQ̃(x)

)? is the image of the derivative

of − logχQ̃(x)
, given by −Q̃(x)/χ(Q̃(x)t). If χ : R+ → R+, then −Q̃(x)/χ(Q̃(x)t) ∈ R++,∀Q̃(x)

and so FQ̃ =
{
T ∈ R++

X
}

.

A pointwise differentiation of eq. (15) yields that at the optimum, we have

P (x)− Q̃(x) · (− logχQ̃(x)
)?′(T (x)) = P (x)− Q̃(x) · (− logχQ̃(x)

)′
−1

(T (x))

= 0 , (16)

that is, exploiting the fact that (− logχQ̃(x)
)′ = −Q̃(x)/χ(Q̃(x)t),

T ∗(x) = (− logχQ̃)′
(
P (x)

Q̃(x)

)
= − Q̃(x)

χ
(
P (x)

Q̃(x)
· Q̃(x)

) (17)

= − Q̃(x)

χ(P (x))

= − 1

Z
· χ(Q(x))

χ(P (x))
. (18)

IV Proof of Theorem 9
In the context of the proof, we simplify notations and replace signature χnet by χ and output activation
vOUT by v2. Let us call z ∈ Rd the output of g. We revert the transformation and check:

φl−1(z)
.

= W−1l (v−1(φl(z))− bl) ,∀l ∈ {1, 2, ..., L} , (19)
φL(z) = Γ−1

(
v−12 (z)− β

)
. (20)

For the sake of readability, we shall sometimes remove the dependence in z. Letting ai denote coor-
dinate i in vector a, (A)ij the coordinate in row i and column j of matrix A, for any i, j ∈ [d], and al,i
coordinate i in vector al, we have

∂φl−1,i
∂φl,j

= (W−1l)ij ·
1

v′i(v
−1(φl))

, (21)

and furthermore

∂φL,i
∂zj

= (Γ−1)ij ·
1

v′2i(v
−1
2 (z))

. (22)

5

Let us denote vector ã as the vector whose coordinates are the inverses of those of a, namely ãi
.

= 1/ai.
From eqs. (21) and (22), the layerwise Jacobians are:

∂φl−1
∂φ>l

= W−1l � ṽ′(v
−1(φl))1

> ,∀l ∈ {1, 2, ..., L} , (23)

∂φL
∂z>

= Γ−1 � ṽ′2(v−12 (z))1> , (24)

where� is Hadamard (coordinate-wise) product. These Jacobians have a very convenient form, since:

det

(
∂φl−1
∂φ>l

)
=

∑
σ∈Sd

sign(σ) ·
d∏
i=1

(
W−1l � ṽ′(v

−1(φl))1
>)

i,σi

=
∑
σ∈Sd

sign(σ) ·
d∏
i=1

(W−1)l,i,σi
(
ṽ′(v−1(φl))1

>)
i,σi

=
∑
σ∈Sd

(
d∏
i=1

ṽ′i(v
−1(φl))

)
· sign(σ) ·

d∏
i=1

(W−1)l,i,σi

=

(
d∏
i=1

ṽ′i(v
−1(φl))

)
·
∑
σ∈Sd

sign(σ) ·
d∏
i=1

(W−1)l,i,σi

=

(
d∏
i=1

ṽ′i(v
−1(φl))

)
· det

(
W−1l

)
=

(
d∏
i=1

ṽ′i(v
−1(φl))

)
· (det (Wl))

−1 ,∀l ∈ {1, 2, ..., L} ,

and, using the same derivations,

det

(
∂φL
∂z>

)
=

(
d∏
i=1

ṽ′2i(v
−1
2 (z))

)
· (det (Γ))−1 . (25)

6

The change of variable formula [4] yields:

Qg(z) = Qin(g
−1(z)) ·

∣∣∣∣det

(
∂g−1

∂z>

)∣∣∣∣
= Qin(g

−1(z)) ·
∣∣∣∣det

(
∂φ0

∂z>

)∣∣∣∣
= Qin(g

−1(z)) ·

∣∣∣∣∣det

(
L∏
l=1

∂φl−1
∂φ>l

· ∂φL
∂z>

)∣∣∣∣∣
= Qin(g

−1(z)) ·

∣∣∣∣∣
L∏
l=1

det

(
∂φl−1
∂φ>l

)
· det

(
∂φL
∂z>

)∣∣∣∣∣
= Qin(g

−1(z)) ·
L∏
l=1

d∏
i=1

|ṽ′i(v−1(φl))| ·
d∏
i=1

|ṽ′2i(v
−1
2 (z))| ·

∣∣∣∣∣det

(
Γ ·

L∏
l=1

Wl

)∣∣∣∣∣
−1

= Qin(g
−1(z)) · 1∏L

l=1

∏d
i=1 |v′i(v−1(φl))| ·

∏d
i=1 |v′2i(v

−1
2 (z))

| ·

∣∣∣∣∣det

(
Γ ·

L∏
l=1

Wl

)∣∣∣∣∣
−1

= Qin(g
−1(z)) · 1∏L

l=1

∏d
i=1 |v′(v−1(φl,i))| ·

∏d
i=1 |v′2(v

−1
2 (zi))|

·

∣∣∣∣∣det

(
Γ ·

L∏
l=1

Wl

)∣∣∣∣∣
−1

=
Qin(g

−1(z))∏L
l=1

∏d
i=1 |v′(v−1(φl,i))|

· 1∏d
i=1 |v′2(v

−1
2 (zi))| · |det (N)|

,

because v and v2 are coordinatewise. We have let

N = Γ ·
L∏
l=1

Wl , (26)

and also φl,i
.

= v(w>l,iφl−1 + bl,i), where wl,i
.

= W>l 1i is the (column) vector built from row i in Wl

and similarly zi
.

= v2(γ
>
i φL + βi) with γi

.
= Γ>1i. Notice that we can also write

L∏
l=1

d∏
i=1

|v′(v−1(φl,i))| =
L∏
l=1

d∏
i=1

|v′(w>l,iφl−1 + bl,i)| . (27)

So, letting Q̃∗deep

.
=
∏L

l=1

∏d
i=1 |v′(w>l,iφl−1 + bl,i)|, Hout

.
=
∏d

i=1 |v′OUT
(γ>i φL(x) + βi)| (with x .

=
g−1(z)), and dropping the determinant which does not depend on z, we get:

Qg(z) ∝ Qin(g
−1(z))

Q̃∗deep

· 1

Hout

. (28)

To finish up the proof, we are going to identify Q̃∗deep to (a constant times) the product of escorts in eq.
(14). To do so, we are first going to design the general activation function v as a function of χ, and

7

choose:

v(z)
.

= k + k′ · expχ(z) , (29)

for k ∈ R, k′ > 0 constants, which can be chosen e.g. to ensure that zero signal implies zero activation
(v(0) = 0). Our choice for v has the following key properties.

Lemma B v is C1, invertible and we have v′(z) = k′ · χ(expχ(z)).

Proof The derivative comes from [2, Eq. 84]. Notice that expχ is continuous as an integral, χ
is continuous by assumption and so v′ is continuous, implying v is C1. We prove the invertibility.
Because of the expression of v′, v is increasing, and in fact strictly increasing with the sole exception
when expχ(z) ∈ χ−1(0). Hovever, note that χ−1(0) 6⊂ dom(logχ) because of the definition of logχ.
Since expχ is the inverse of logχ [9, Section 10.1], it follows that χ−1(0) 6⊂ im(expχ) and so expχ(z) 6∈
χ−1(0),∀z ∈ dom(expχ), which implies v invertible.

What the Lemma shows is that we can plug v as in eq. (29) directly in Q̃∗deep. To do so, let us now define
strictly positive constants Zli that shall be fixed later. We directly get from eq. (27)

Q̃∗deep =

(
L∏
l=1

d∏
i=1

Zli

)
·
L∏
l=1

d∏
i=1

1

Zli
· |v′(w>l,iφl−1 + bl,i)|

=

(
k′Ld ·

L∏
l=1

d∏
i=1

Zli

)
·
L∏
l=1

d∏
i=1

1

Zli
· χ(expχ(w>l,iφl−1 + bl,i))︸ ︷︷ ︸

.
=Q̃deep

(30)

(we can remove the absolute values since χ is non-negative). We now ensure that Q̃deep is indeed a
product of escorts: to do so, we just need to ensure that (i) bl,i normalizes the deformed exponential
family, i.e. defines (negative) its cumulant (Definition 2), and (ii) Zli normalizes its escort as in eq.
(6). To be more explicit, we pick bl,i the solution of∫

φ

expχ(w>l,iφ− bl,i)dνl−1(φ) = 1 , (31)

where dνl−1(φ)
.

=
∫
φl−1(x)=φ

dµ(x) is the pushforward measure, and

Zli =

∫
x

χ(Pχ,bl,i(x|wl,i,φl−1))dµ(x) . (32)

We get

Q̃deep =
∏L

l=1

∏d
i=1 P̃χ,bl,i(x|wl,i,φl−1) , (33)

and finally,

Qg(z) =
Qin(x)

Q̃∗deep(x)
· 1

Hout(x) · |det (N)|

=
Qin(x)

Q̃deep(x)
· 1

Hout(x) · Znet

, (34)

8

with

Znet
.

=

(
k′Ld ·

L∏
l=1

d∏
i=1

Zli

)
· |det (N)| (35)

a constant. We get the statement of Theorem 9.
Remark. (unnormalized densities) since in practice all bls are learned, we in fact work with deformed
exponential families with unspecified normalization. We may also consider that the normalization of
escorts is unspecified and therefore drop all Zlis, which simplifies Znet to Znet = |det (N)|.
Remark. (completely factoring Qg as an escort) Denote for short zp

.
= φL(x) the penultimate

layer of g, and gp the net obtain from eliminating the last layer of g, which allows us to drop Hout(.)
from Qgp(z) and we have Qg(z) ∝ Qr

.
= Qin(g

−1
p (zp))/Q̃deep(g

−1
p (zp)). One can factor Qr as a proper

likelihood over escorts of χnet-exponential families: for this, replace all Ld inner nodes of gp by random
variables, say Φl,i (for l ∈ {0, 1, ..., L−1}, i ∈ {1, 2, ..., d}), treat the deep net gp as a directed graphical
model whose connections are the dashed arcs. Now, if we let, say, Qin(g

−1
p (zp))

.
= Q̃a(∩l,iΦl,i)

and Q̃deep(g
−1
p (zp))

.
= Q̃b(∩l>0,iΦl,i), and if we use as Qin an uninformed escort (i.e. with constant

coordinate, say for example θ = 1, Definition 2), then assuming correct factorization one may obtain
Qr = Q̃c(g

−1
p (zp)| ∩l>0,i Φl,i) for some escort Q̃c that we can plug directly in eq. (11). To properly

understand the relationships between χ,Qa, Qb and how the escorts factor in Qc requires a push of the
state of the art: conjugacy in deformed exponential families is less understood than for exponential
families; it is also unknown how product of deformed exponential families factor within the same
deformed exponential families [1]; some factorizations are known but only on subsets of deformed
exponential families and rely on particular notions of independence [8];
Remark. (twist introduced by the last layer) We return to the twist introduced by the last layer of g:

Hout(x) =
d∏
i=1

|v′2(γ>i φL(x) + βL)| . (36)

It is clear that when v2 is the identity, Hout(x) is constant; so deep architectures, as experimentally
carried out e.g. in Wasserstein GANs [3] or analyzed theoretically e.g. in [7] exactly fit to the escort
factoring — notice that one can choose as input density one from some particular deformed exponential
family, as e.g. done experimentally for [11, Section 2.5] (standard Gaussian), so that in this caseQg(z)
factors completely as escorts.

Suppose now that v2 is not the identity but chosen so that, for some couple (χ, g) where χ is
differentiable and g : R+ → R is invertible,

(v′2 ◦ g)(z) =
d

dz
(logχ ◦χ)(z) =

χ′(z)

χ(z)
, (37)

which is equivalent, after a variable change, to having v2 satisfy

v′2(t) =
χ′ ◦ g−1

χ ◦ g−1
(t) . (38)

9

In addition, suppose that g is chosen so that
∑

i g
−1(γ>i φL(x) + βi) = 1. Call D .

= {p1, p2, ..., pd}
this discrete distribution, removing reference to x. We then have:

Hout(x) =
d∏
i=1

χ′(g−1(γ>i φL(x) + βi))

χ(g−1(γ>i φL(x) + βi))

=
d∏
i=1

χ′(pi)

χ(pi)

=
d∏
i=1

χ(pi) ·
χ′(pi)

χ(pi)

=

∣∣∣∣∣
d∏
i=1

((expχ)′ ◦ logχ)(pi) · (logχ)′′(pi)

∣∣∣∣∣
∝ |det(H)| . (39)

Here, H is the χ-Fisher information metric of D [2, Theorem 12, eqs 119, 120]. In other words,
Hout(x) can be absorbed in the volume element in eq. (34).

As an example, pick a prop-τ activation (Table 1), for which logχ = (τ ?)−1(τ ?(0)z) and

χ(t) =
(τ ?)′ ◦ (τ ?)−1(τ ?(0)z)

τ ?(0)
. (40)

Now, pick g(z) = logχ(K · z), where K .
=
∑

i expχ(γ>i φL(x) + βi) guarantees:∑
i

g−1(γ>i φL(x) + βi) =
1

K
·
∑
i

expχ(γ>i φL(x) + βi) = 1 . (41)

Condition in eq. (37) becomes

(v′2 ◦ (τ ?)−1)(τ ?(0)Kz) =
χ′ ◦ g−1

χ ◦ g−1
(t)

= τ ?(0) · (τ ?)′′ ◦ (τ ?)−1(τ ?(0)Kz)

((τ ?)′ ◦ (τ ?)−1(τ ?(0)Kz))2
, (42)

and we obtain after a variable change,

v2 = τ ?(0) ·
∫
t

(τ ?)′′(t)

((τ ?)′)2(t)
dt , (43)

which does not depend on K and, if τ ? is strictly convex, is strictly increasing. Notice that we can
carry out the integration, v2(z) = K ′ − (τ ?(0)/(τ ?)′(z)) for some constant K ′. To make a parallel
with a popular activation for the last layer, consider the sigmoid, v2

.
= vs(z)

.
= 1/(1 + exp(−z)), for

which

v′s(z) =
exp(z)

(1 + exp(z))2
. (44)

10

Fitting it to eq. (43),

exp(z)

(1 + exp(z))2
= τ ?s (0) · (τ ?s)′′(t)

((τ ?s)′)2(t)
(45)

reveals that we can pick τ ?s (z) = z + exp(z) (we control that τ ?s (0) = 1). Such a τ ? analytically fits to
the prop-τ definition and in fact corresponds to a χ-exponential family, but it does not correspond to
an entropy τ . This would be also true for affine scalings (argument and function) of the sigmoid of the
type v2 = a+ bvs(c+ dz).

V Proof of Lemma 11
We first show point (i). Define function

h(z)
.

=
v(z)− inf v(z)

v(0)− inf v(z)
, (46)

and let g(z)
.

= h−1(z). Since dom(v) ∩ R+ 6= ∅, v(0) − inf v(z) > 0, so h(z) bears the same
properties as v. We first show that g is a valid χ-logarithm. Since v is convex increasing, g(z) is
concave increasing and −g is convex decreasing. Therefore, since g is C1 as well, letting ξ .

= g′, we
get:

g(z) =

∫ z

1

1(
1
ξ(t)

)dt . (47)

We also check that g(1) = 0 since h(0) = 1. If we let χ .
= 1/ξ, then because ξ(z) ≥ 0, χ(z) ≥ 0 and

also because ξ is decreasing, χ is increasing. Finally, χ : R+ → R+. Summarizing, we have shown
that χ defines a valid signature and g(z) = logχ(z). Therefore, h(z) = expχ(z) and it comes that

v(z) = k + k′ · expχ(z) , (48)

for k .
= inf v(z) ∈ R and k′ .

= v(0) − inf v(z) > 0, so v matches the analytic expression in eq. (29),
which allows to complete the proof of point (i) in the Lemma.

The strong admissibility results are easy to check in point (ii), so we concentrate on showing the
weak admissibility of ReLU. We use a scaled perspective transform of the Softplus function and let:

vµ(z)
.

= (1− µ) · log

(
1 + exp

(
z

1− µ

))
, (49)

with µ ∈ [0, 1]. It is clear that vµ is strongly admissible for any µ ∈ [0, 1).

Lemma C For any z ≥ 0, µ ∈ [0, 1],

(1− µ) · log

1 + exp
(

z
1−µ

)
1 + exp(z)

 ≤ µz . (50)

11

Proof Equivalently, we want

1 + exp
(

z
1−µ

)
1 + exp(z)

≤ exp

(
µz

1− µ

)
, (51)

or, equivalently,

1 + exp

(
z

1− µ

)
≤ exp

(
µz

1− µ

)
+ exp(z) · exp

(
µz

1− µ

)
= exp

(
µz

1− µ

)
+ exp

(
z

1− µ

)
, (52)

which, after simplification, is equivalent to µz/(1−µ) ≥ 0, which indeed holds when z ≥ 0, µ ∈ [0, 1].

We now have vµ(z) ≥ max{0, z},∀µ ∈ [0, 1], and we can also check that Lemma C implies

(1− µ) · log

(
1 + exp

(
z

1− µ

))
− z

≤ (1− µ) · (log (1 + exp(z))− z) ,∀z ≥ 0, µ ∈ [0, 1] . (53)

Let us denote, for any z ≥ 0,

Iµ(z)
.

=

∫ z

0

|vµ(t)−max{0, t}|dt

=

∫ z

0

|vµ(t)− t|dt

=

∫ z

0

(vµ(t)− t)dt . (54)

Since max{0,−t} = max{0, t}−t and vµ(−t) = vµ(t)−t, we have ‖vµ−ReLU‖L1 = 2 limz→+∞ Iµ(z).
It also comes from ineq. (53) that

Iµ(z) ≤ (1− µ)I0(z) , ∀z ≤ 0 , (55)

furthermore, it can be shown by numerical integration that lim+∞ I0(z) = π2/6, so we get

‖vµ − ReLU‖L1 ≤
(1− µ)π2

3
, ∀µ ∈ [0, 1] , (56)

and to have the right hand side smaller than ε > 0, it suffices to take

µ > 1− 3ε

π2
, (57)

which completes the proof of point (ii) and so the statement of the Lemma.

12

VI Proof of Theorem 12
The proof of the Theorem mainly follows from identifying the parameters of eq. (17) with the varia-
tional part of eq. (11). Recall that

(χ•) 1
q
(t) =

1

(χq)
−1 (1

t

) , (58)

so, exploiting the fact that K(Q) does not depend on T , we get:

`′x(−1, z) =
d

dz
(− logχQ̃(x)

)?(−z)

=
d

dz
− log(χ•) 1

Q̃(x)

(−z)

=
(
χQ̃(x)

)−1(
−1

z

)
. (59)

Since `′(+1, z) = −1, we deduce that the loss is proper composite with inverse link function [13,
Corollary 12] given by:

Ψ−1x (z) =
`′(−1, z)

`′(−1, z)− `′(+1, z)

=

(
χQ̃(x)

)−1 (
−1
z

)
(
χQ̃(x)

)−1 (
−1
z

)
+ 1

, (60)

so that the link is

Ψx(z) = − 1

χQ̃(x)

(
z

1−z

) . (61)

Remark. We easily retrieve the optimal discriminator (Theorem 7) but this time from the proper
composite loss, since (the first line is a general property of Ψx, see Section 5):

T ∗(x) = Ψx

(
P (x)

P (x) + Q̃(x)

)
= − 1

χQ̃(x)

(
P (x)

P (x)+Q̃(x)

1− P (x)

P (x)+Q̃(x)

) .
= − 1

χQ̃(x)

(
P (x)

Q̃(x)

)
= − 1

Z
· χ(Q(x))

χ(P (x))
.

The last identity follows from eqs. (17) — (18).

13

Supplementary material on experiments

VII Architectures
We consider two architectures in our experiments: DCGAN [12] and the multilayer feedforward net-
work (MLP) used in [11]. Suppose the size of input images is isize-by-isize, the details of architectures
are given as follows:

Generator of DCGAN :
ConvTranspose(input=100, output=8×isize, stride=1)→BatchNorm→Activation→Conv(input=8×isize,

output=4×isize, stride=2, padding=1)→ BatchNorm→ Activation→ ConvTranspose(input=4×isize,
output=2×isize, stride=2, padding=2)→ BatchNorm→ Activation→ ConvTranspose(input=2×isize,
output= isize, stride=2, padding=1)→ BatchNorm→ Activation → Conv(isize, number of channel,
stride=2, padding=1)→ Last Activation

Discriminator of DCGAN :
Conv(1, 2×isize, stride=2)→ BatchNorm→ LeakyReLU→ Conv(input=2×isize, output=4×isize,

stride=2, padding=1)→ BatchNorm→ LeakyReLU→ Conv(input=4×isize, output=8×isize, stride=2,
padding=2)→ BatchNorm→ LeakyReLU→ Conv(input=8×isize, output= 1, stride=2, padding=1)→
Link function

Generator of MLP :
z → Linear(100, 1024) → BatchNorm → Activation → Linear(1024, 1024) → BatchNorm →

Activation→ Linear(1024, isize×isize)→ last Activation

Discriminator of MLP :
x→ Linear(isize×isize, 1024)→ ELU→ Linear(1024, 1024)→ ELU→ Linear(1024, 1)→ Link

function

VIII Experimental setup for varying the activation function in
the generator

Setup. We train adversarial networks with varying activation functions for the generators on the
MNIST [6] and LSUN [15] datasets. In particular, we compare ReLU, Softplus, Least Square loss
as an example of prop-τ , and µ-ReLU with varying µ in [0, 0.1, ..., 1] by using them as the activation
functions in all hidden layers of the generators. For all models, we fix the learning rate to 0.0002 and
batch size to 64 throughout all experiments after tuning on a hold-out set.

14

MNIST. We evaluate the activation functions by using both DCGAN and the MLP used in [11] as the
architectures. As training divergence, we adopt both GAN and Wasserstein distance (WGAN) because
GAN belongs to variational f -divergence formulation while WGAN does not. The link function of
the discriminators is specific to the respective divergence, which is sigmoid for GAN and linear for
WGAN. We sample random noise z ∈ Uniform100(0, 1) for MLP and z ∈ Gaussian(0, 1) for DCGAN,
which is found slightly better than sampling from Uniform100(−1, 1). As the best practice, we apply
Adam [5] to optimize models with GAN and RMSprop [14] to optimize WGAN based models. For
GAN, we train one batch for discriminator and one batch for generator iteratively during training. For
WGAN, we apply weight clipping with 0.01 and train five batches for discriminator and one batch for
generator interchangeably during training.

We train all models on the full MNIST training data set and evaluate the performance on the test set
by using the kernel density estimation (KDE). Since the size of images accepted by DCGAN should be
n-fold of 16, all images are rescaled to 32-by-32 for all models. Following [11], we apply three-fold
cross validation to find optimal bandwidth for the isotropic Gaussian kernel of KDE on a hold-out
set. To estimate the log probability of the test set, we sample 16k images from the models in the
same way as [11]. We observe that the initialization of model parameters has significant influence
on performance. Therefore, we conduct three runs with different random seeds for each experimental
setting and report the mean and standard deviation of the results.

LSUN. We also evaluate all activation functions in consideration for the generator on LSUN natural
scene images. We train DCGAN with GAN as the divergence on the tower category of images, which
are rescaled and center-cropped to 64-by-64 pixels, as in [12]. Due to the center-cropped images, we
apply tanh as last activation of generators instead of sigmoid for GAN based models.

IX Visual results on MNIST

15

µ µ

0 0.1

0.2 0.3

0.4 0.5

0.6 0.7

0.8 0.9

1

Table A1: MNIST results for GAN DCGAN at varying µ (µ = 1 is ReLU).

16

µ µ

0 0.1

0.2 0.3

0.4 0.5

0.6 0.7

0.8 0.9

1

Table A2: MNIST results for WGAN DCGAN at varying µ (µ = 1 is ReLU).

17

µ µ

0 0.1

0.2 0.3

0.4 0.5

0.6 0.7

0.8 0.9

1

Table A3: MNIST results for WGAN MLP at varying µ (µ = 1 is ReLU).

18

µ µ

0 0.1

0.2 0.3

0.4 0.5

0.6 0.7

0.8 0.9

1

Table A4: MNIST results for GAN MLP at varying µ (µ = 1 is ReLU).

19

µ µ

0 0.1

0.2 0.3

0.4 0.5

0.6 0.7

0.8 0.9

1

Table A5: LSUN results for GAN DCGAN at varying µ (µ = 1 is ReLU).
20

References
[1] S.-I. Amari. Personnal communication, 2017.

[2] S.-I. Amari, A. Ohara, and H. Matsuzoe. Geometry of deformed exponential families: Invariant,
dually-flat and conformal geometries. Physica A: Statistical Mechanics and its Applications,
391:4308–4319, 2012.

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. CoRR, abs/1701.07875, 2017.

[4] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In 5th ICLR,
2017.

[5] D.-P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[7] H. Lee, R. Ge, T. Ma, A. Risteski, and S. Arora. On the ability of neural nets to express distribu-
tions. CoRR, abs/1702.07028, 2017.

[8] H. Matsuzoe and T. Wada. Deformed algebras and generalizations of independence on deformed
exponential families. Entropy, 17:5729–5751, 2015.

[9] J. Naudts. Generalized thermostatistics. Springer, 2011.

[10] C. Niculescu and L.-E. Persson. Convex Functions and their Applications, A Contemporary
Approach. Springer, 2006.

[11] S. Nowozin, B. Cseke, and R. Tomioka. f -GAN: training generative neural samplers using
variational divergence minimization. In NIPS*29, pages 271–279, 2016.

[12] A. Radford, L. Metz, and S. Chintala. unsupervised representation learning with deep convolu-
tional generative adversarial networks. In 4th ICLR, 2016.

[13] M.-D. Reid and R.-C. Williamson. Composite binary losses. JMLR, 11, 2010.

[14] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 2012.

[15] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: Construction of a large-scale image dataset
using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

21

