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Abstract
Generalized Linear Bandits (GLBs), a natural extension of the stochastic linear
bandits, has been popular and successful in recent years. However, existing GLBs
scale poorly with the number of rounds and the number of arms, limiting their
utility in practice. This paper proposes new, scalable solutions to the GLB problem
in two respects. First, unlike existing GLBs, whose per-time-step space and time
complexity grow at least linearly with time t, we propose a new algorithm that
performs online computations to enjoy a constant space and time complexity. At
its heart is a novel Generalized Linear extension of the Online-to-confidence-set
Conversion (GLOC method) that takes any online learning algorithm and turns it
into a GLB algorithm. As a special case, we apply GLOC to the online Newton
step algorithm, which results in a low-regret GLB algorithm with much lower
time and memory complexity than prior work. Second, for the case where the
number N of arms is very large, we propose new algorithms in which each next
arm is selected via an inner product search. Such methods can be implemented
via hashing algorithms (i.e., “hash-amenable”) and result in a time complexity
sublinear inN . While a Thompson sampling extension of GLOC is hash-amenable,
its regret bound for d-dimensional arm sets scales with d3/2, whereas GLOC’s
regret bound scales with d. Towards closing this gap, we propose a new hash-
amenable algorithm whose regret bound scales with d5/4. Finally, we propose a
fast approximate hash-key computation (inner product) with a better accuracy than
the state-of-the-art, which can be of independent interest. We conclude the paper
with preliminary experimental results confirming the merits of our methods.

1 Introduction
This paper considers the problem of making generalized linear bandits (GLBs) scalable. In the
stochastic GLB problem, a learner makes successive decisions to maximize her cumulative rewards.
Specifically, at time t the learner observes a set of arms Xt ⊆ Rd. The learner then chooses an arm
xt ∈ Xt and receives a stochastic reward yt that is a noisy function of xt: yt = µ(x>t θ

∗) + ηt, where
θ∗ ∈ Rd is unknown, µ:R→R is a known nonlinear mapping, and ηt ∈ R is some zero-mean noise.
This reward structure encompasses generalized linear models [29]; e.g., Bernoulli, Poisson, etc.

The key aspect of the bandit problem is that the learner does not know how much reward she would
have received, had she chosen another arm. The estimation on θ∗ is thus biased by the history of the
selected arms, and one needs to mix in exploratory arm selections to avoid ruling out the optimal
arm. This is well-known as the exploration-exploitation dilemma. The performance of a learner is
evaluated by its regret that measures how much cumulative reward she would have gained additionally
if she had known the true θ∗. We provide backgrounds and formal definitions in Section 2.

A linear case of the problem above (µ(z) = z) is called the (stochastic) linear bandit problem. Since
the first formulation of the linear bandits [7], there has been a flurry of studies on the problem [11,
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34, 1, 9, 5]. In an effort to generalize the restrictive linear rewards, Filippi et al. [15] propose the
GLB problem and provide a low-regret algorithm, whose Thompson sampling version appears later
in Abeille & Lazaric [3]. Li et al. [27] evaluates GLBs via extensive experiments where GLBs exhibit
lower regrets than linear bandits for 0/1 rewards. Li et al. [28] achieves a smaller regret bound when
the arm set Xt is finite, though with an impractical algorithm.

However, we claim that all existing GLB algorithms [15, 28] suffer from two scalability issues that
limit their practical use: (i) under a large time horizon and (ii) under a large number N of arms.

First, existing GLBs require storing all the arms and rewards appeared so far, {(xs, ys)}ts=1, so
the space complexity grows linearly with t. Furthermore, they have to solve a batch optimization
problem for the maximum likelihood estimation (MLE) at each time step t whose per-time-step time
complexity grows at least linearly with t. While Zhang et al. [41] provide a solution whose space
and time complexity do not grow over time, they consider a specific 0/1 reward with the logistic link
function, and a generic solution for GLBs is not provided.

Second, existing GLBs have linear time complexities in N . This is impractical when N is very large,
which is not uncommon in applications of GLBs such as online advertisements, recommendation
systems, and interactive retrieval of images or documents [26, 27, 40, 21, 25] where arms are items in
a very large database. Furthermore, the interactive nature of these systems requires prompt responses
as users do not want to wait. This implies that the typical linear time in N is not tenable. Towards a
sublinear time in N , locality sensitive hashings [18] or its extensions [35, 36, 30] are good candidates
as they have been successful in fast similarity search and other machine learning problems like active
learning [22], where the search time scales with Nρ for some ρ < 1 (ρ is usually optimized and
often ranges from 0.4 to 0.8 depending on the target search accuracy). Leveraging hashing in GLBs,
however, relies critically on the objective function used for arm selections. The function must take a
form that is readily optimized using existing hashing algorithms.1 For example, algorithms whose
objective function (a function of each arm x ∈ Xt) can be written as a distance or inner product
between x and a query q are hash-amenable as there exist hashing methods for such functions.

To be scalable to a large time horizon, we propose a new algorithmic framework called Generalized
Linear Online-to-confidence-set Conversion (GLOC) that takes in an online learning (OL) algorithm
with a low ‘OL’ regret bound and turns it into a GLB algorithm with a low ‘GLB’ regret bound. The
key tool is a novel generalization of the online-to-confidence-set conversion technique used in [2]
(also similar to [14, 10, 16, 41]). This allows us to construct a confidence set for θ∗, which is then
used to choose an arm xt according to the well-known optimism in the face of uncertainty principle.
By relying on an online learner, GLOC inherently performs online computations and is thus free from
the scalability issues in large time steps. While any online learner equipped with a low OL regret
bound can be used, we choose the online Newton step (ONS) algorithm and prove a tight OL regret
bound, which results in a practical GLB algorithm with almost the same regret bound as existing
inefficient GLB algorithms. We present our proposed algorithms and their regret bounds in Section 3.

Algorithm Regret Hash-amenable
GLOC Õ(d

√
T ) 7

GLOC-TS Õ(d3/2
√
T ) 3

QGLOC Õ(d5/4
√
T ) 3

Table 1: Comparison of GLBs algorithms for
d-dimensional arm sets T is the time horizon.
QGLOC achieves the smallest regret among
hash-amenable algorithms.

For large number N of arms, our proposed algorithm
GLOC is not hash-amenable, to our knowledge, due
to its nonlinear criterion for arm selection. As the first
attempt, we derive a Thompson sampling [5, 3] exten-
sion of GLOC (GLOC-TS), which is hash-amenable
due to its linear criterion. However, its regret bound
scales with d3/2 for d-dimensional arm sets, which
is far from d of GLOC. Towards closing this gap, we
propose a new algorithm Quadratic GLOC (QGLOC)
with a regret bound that scales with d5/4. We summarize the comparison of our proposed GLB
algorithms in Table 1. In Section 4, we present GLOC-TS, QGLOC, and their regret bound.

Note that, while hashing achieves a time complexity sublinear in N , there is a nontrivial overhead
of computing the projections to determine the hash keys. As an extra contribution, we reduce this
overhead by proposing a new sampling-based approximate inner product method. Our proposed
sampling method has smaller variance than the state-of-the-art sampling method proposed by [22, 24]
when the vectors are normally distributed, which fits our setting where projection vectors are indeed
normally distributed. Moreover, our method results in thinner tails in the distribution of estimation

1 Without this designation, no currently known bandit algorithm achieves a sublinear time complexity in N .
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error than the existing method, which implies a better concentration. We elaborate more on reducing
the computational complexity of QOFUL in Section 5.

2 Preliminaries
We review relevant backgrounds here. A refers to a GLB algorithm, and B refers to an online
learning algorithm. Let Bd(S) be the d-dimensional Euclidean ball of radius S, which overloads
the notation B. Let A·i be the i-th column vector of a matrix A. Define ||x||A :=

√
x>Ax and

vec(A) := [A·1;A·2; · · · ;A·d] ∈ Rd
2

Given a function f : R → R, we denote by f ′ and f ′′ its
first and second derivative, respectively. We define [N ] := {1, 2, . . . , N}.

Generalized Linear Model (GLM) Consider modeling the reward y as one-dimensional exponen-
tial family such as Bernoulli or Poisson. When the feature vector x is believed to correlate with
y, one popular modeling assumption is the generalized linear model (GLM) that turns the natural
parameter of an exponential family model into x>θ∗ where θ∗ is a parameter [29]:

P(y | z = x>θ∗) = exp

(
yz −m(z)

g(τ)
+ h(y, τ)

)
, (1)

where τ ∈ R+ is a known scale parameter and m, g, and h are normalizers. It is known that
m′(z) = E[y | z] =: µ(z) and m′′(z) = Var(y | z). We call µ(z) the inverse link function.
Throughout, we assume that the exponential family being used in a GLM has a minimal representation,
which ensures that m(z) is strictly convex [38, Prop. 3.1]. Then, the negative log likelihood (NLL)
`(z, y) := −yz +m(z) of a GLM is strictly convex. We refer to such GLMs as the canonical GLM.
In the case of Bernoulli rewards y ∈ {0, 1}, m(z) = log(1 + exp(z)), µ(z) = (1 + exp(−z))−1,
and the NLL can be written as the logistic loss: log(1 + exp(−y′(x>t θ

∗))), where y′ = 2y − 1.

Generalized Linear Bandits (GLB) Recall that xt is the arm chosen at time t by an algorithm.
We assume that the arm set Xt can be of an infinite cardinality, although we focus on finite arm sets in
hashing part of the paper (Section 4). One can write down the reward model (1) in a different form:

yt = µ(x>t θ
∗) + ηt, (2)

where ηt is conditionally R-sub-Gaussian given xt and {(xs, ηs)}t−1
s=1. For example, Bernoulli

reward model has ηt as 1 − µ(x>t θ
∗) w.p. µ(x>t θ

∗) and −µ(x>t θ
∗) otherwise. Assume that

||θ∗||2 ≤ S, where S is known. One can show that the sub-Gaussian scale R is determined by µ:
R = supz∈(−S,S)

√
µ′(z) ≤

√
L, where L is the Lipschitz constant of µ. Throughout, we assume

that each arm has `2-norm at most 1: ||x||2 ≤ 1,∀x ∈ Xt,∀t. Let xt,∗ := maxx∈Xt
x>θ∗. The

performance of a GLB algorithm A is analyzed by the expected cumulative regret (or simply regret):
RegretAT :=

∑T
t=1 µ(x>t,∗θ

∗)− µ((xAt )>θ∗), where xAt makes the dependence on A explicit.

We remark that our results in this paper hold true for a strictly larger family of distributions than the
canonical GLM, which we call the non-canonical GLM and explain below. The condition is that the
reward model follows (2) where the R is now independent from µ that satisfies the following:
Assumption 1. µ is L-Lipschitz on [−S, S] and continuously differentiable on (−S, S). Furthermore,
infz∈(−S,S) µ

′(z) = κ for some finite κ > 0 (thus µ is strictly increasing).
Define µ′(z) at ±S as their limits. Under Assumption 1, m is defined to be an integral of µ. Then,
one can show that m is κ-strongly convex on B1(S). An example of the non-canonical GLM is the
probit model for 0/1 reward where µ is the Gaussian CDF, which is popular and competitive to the
Bernoulli GLM as evaluated by Li et al. [27]. Note that canonical GLMs satisfy Assumption 1.

3 Generalized Linear Bandits with Online Computation
We describe and analyze a new GLB algorithm called Generalized Linear Online-to-confidence-set
Conversion (GLOC) that performs online computations, unlike existing GLB algorithms.

GLOC employs the optimism in the face of uncertainty principle, which dates back to [7]. That is, we
maintain a confidence set Ct (defined below) that traps the true parameter θ∗ with high probability
(w.h.p.) and choose the arm with the largest feasible reward given Ct−1 as a constraint:

(xt, θ̃t) := arg max
x∈Xt,θ∈Ct−1

〈x,θ〉 (3)

The main difference between GLOC and existing GLBs is in the computation of the Ct’s. Prior
methods involve “batch" computations that involve all past observations, and so scale poorly with
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t. In contrast, GLOC takes in an online learner B, and uses B as a co-routine instead of relying on
a batch procedure to construct a confidence set. Specifically, at each time t GLOC feeds the loss
function `t(θ) := `(x>t θ, yt) into the learner B which then outputs its parameter prediction θt. Let
Xt ∈ Rt×d be the design matrix consisting of x1, . . . ,xt. Define Vt := λI + X>t Xt, where λ
is the ridge parameter. Let zt := x>t θt and zt := [z1; · · · ; zt]. Let θ̂t := V

−1

t X>t zt be the ridge
regression estimator taking zt as responses. Theorem 1 below is the key result for constructing our
confidence set Ct, which is a function of the parameter predictions {θs}ts=1 and the online (OL)
regret bound Bt of the learner B. All the proofs are in the supplementary material (SM).
Theorem 1. (Generalized Linear Online-to-Confidence-Set Conversion) Suppose we feed loss func-
tions {`s(θ)}ts=1 into online learner B. Let θs be the parameter predicted at time step s by B.
Assume that B has an OL regret bound Bt: ∀θ ∈ Bd(S),∀t ≥ 1,∑t

s=1 `s(θs)− `s(θ) ≤ Bt . (4)

Let α(Bt) := 1 + 4
κBt+ 8R2

κ2 log( 2
δ

√
1 + 2

κBt + 4R4

κ4δ2 ). Then, with probability (w.p.) at least 1− δ,

∀t ≥ 1, ||θ∗ − θ̂t||2Vt
≤ α(Bt) + λS2 −

(
||zt||22 − θ̂

>
t X
>
t zt

)
=: βt . (5)

Note that the center of the ellipsoid is the ridge regression estimator on the predicted natural
parameters zs = x>s θs rather than the rewards. Theorem 1 motivates the following confidence set:

Ct := {θ ∈ Rd : ||θ − θ̂t||2Vt
≤ βt} (6)

which traps θ∗ for all t ≥ 1, w.p. at least 1− δ. See Algorithm 1 for pseudocode. One way to solve
the optimization problem (3) is to define the function θ(x) := maxθ∈Ct−1 x

>θ, and then use the
Lagrangian method to write:

xGLOC
t := arg max

x∈Xt

x>θ̂t−1 +
√
βt−1||x||V−1

t−1
. (7)

We prove the regret bound of GLOC in the following theorem.
Theorem 2. Let {βt} be a nondecreasing sequence such that βt ≥ βt. Then, w.p. at least 1− δ,

RegretGLOC
T = O

(
L
√
βT dT log T

)
Algorithm 1 GLOC
1: Input: R > 0, δ ∈ (0, 1), S > 0, λ > 0, κ > 0,

an online learner B with known regret bounds
{Bt}t≥1.

2: Set V0 = λI.
3: for t = 1, 2, . . . do
4: Compute xt by solving (3).
5: Pull xt and then observe yt.
6: Receive θt from B.
7: Feed into B the loss `t(θ) = `(x>t θ, yt).
8: Update Vt = Vt−1 + xtx

>
t and zt = x>t θt

9: Compute θ̂t = V
−1
t X>t zt and βt as in (5).

10: Define Ct as in (6).
11: end for

Algorithm 2 ONS-GLM
1: Input: κ > 0, ε > 0, S > 0.
2: A0 = εI.
3: Set θ1 ∈ Bd(S) arbitrarily.
4: for t = 1, 2, 3, . . . do
5: Output θt .
6: Observe xt and yt.
7: Incur loss `(x>t θt, yt) .
8: At = At−1 + xtx

>
t

9: θ′t+1 = θt − `′(x>t θt,yt)

κ
A−1
t xt

10: θt+1 = argminθ∈Bd(S) ||θ − θ′t+1||2At

11: end for

Although any low-regret online learner can be
combined with GLOC, one would like to ensure
that βT is O(polylog(T )) in which case the total
regret can be bounded by Õ(

√
T ). This means

that we must use online learners whose OL regret
grows logarithmically in T such as [20, 31]. In
this work, we consider the online Newton step
(ONS) algorithm [20].

Online Newton Step (ONS) for Generalized
Linear Models Note that ONS requires the loss
functions to be α-exp-concave. One can show
that `t(θ) is α-exp-concave [20, Sec. 2.2]. Then,
GLOC can use ONS and its OL regret bound to
solve the GLB problem. However, motivated by
the fact that the OL regret bound Bt appears in the
radius

√
βt of the confidence set while a tighter

confidence set tends to reduce the bandit regret
in practice, we derive a tight data-dependent OL
regret bound tailored to GLMs.

We present our version of ONS for GLMs (ONS-
GLM) in Algorithm 2. `′(z, y) is the first deriva-
tive w.r.t. z and the parameter ε is for inverting
matrices conveniently (usually ε = 1 or 0.1). The
only difference from the original ONS [20] is that
we rely on the strong convexity of m(z) instead
of the α-exp-concavity of the loss thanks to the
GLM structure.2 Theorem 3 states that we achieve the desired polylogarithmic regret in T .

2 A similar change to ONS has been applied in [16, 41].
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Theorem 3. Define gs := `′(x>s θs, ys). The regret of ONS-GLM satisfies, for any ε > 0 and t ≥ 1,∑t
s=1 `s(θs)− `s(θ

∗) ≤ 1
2κ

∑t
s=1 g

2
s ||xs||2A−1

s
+ 2κS2ε =: BONS

t ,

where BONS
t = O(L

2+R2 log(t)
κ d log t),∀t ≥ 1 w.h.p. If maxs≥1 |ηs| is bounded by R̄ w.p. 1,

BONS
t = O(L

2+R̄2

κ d log t).

We emphasize that the OL regret bound is data-dependent. A confidence set constructed by combining
Theorem 1 and Theorem 3 directly implies the following regret bound of GLOC with ONS-GLM.
Corollary 1. Define βONS

t by replacing Bt with BONS
t in (5). With probability at least 1− 2δ,

∀t ≥ 1,θ∗ ∈ CONS
t :=

{
θ ∈ Rd : ||θ − θ̂t||2Vt

≤ βONS
t

}
. (8)

Corollary 2. Run GLOC with CONS
t . Then, w.p. at least 1 − 2δ, ∀T ≥ 1, RegretGLOC

T =

Ô
(
L(L+R)

κ d
√
T log3/2(T )

)
where Ô ignores log log(t). If |ηt| is bounded by R̄, RegretGLOC

T =

Ô
(
L(L+R̄)

κ d
√
T log(T )

)
.

We make regret bound comparisons ignoring log log T factors. For generic arm sets, our dependence
on d is optimal for linear rewards [34]. For the Bernoulli GLM, our regret has the same order as Zhang
et al. [41]. One can show that the regret of Filippi et al. [15] has the same order as ours if we use their
assumption that the reward yt is bounded by Rmax. For unbounded noise, Li et al. [28] have regret
O((LR/κ)d

√
T log T ), which is

√
log T factor smaller than ours and has LR in place of L(L+R).

While L(L+ R) could be an artifact of our analysis, the gap is not too large for canonical GLMs.
Let L be the smallest Lipschitz constant of µ. Then, R =

√
L. If L ≤ 1, R satisfies R > L, and so

L(L+R) = O(LR). If L > 1, then L(L+R) = O(L2), which is larger than LR = O(L3/2). For
the Gaussian GLM with known variance σ2, L = R = 1.3 For finite arm sets, SupCB-GLM of Li
et al. [28] achieves regret of Õ(

√
dT logN) that has a better scaling with d but is not a practical

algorithm as it wastes a large number of arm pulls. Finally, we remark that none of the existing GLB
algorithms are scalable to large T . Zhang et al. [41] is scalable to large T , but is restricted to the
Bernoulli GLM; e.g., theirs does not allow the probit model (non-canonical GLM) that is popular and
shown to be competitive to the Bernoulli GLM [27].

Discussion The trick of obtaining a confidence set from an online learner appeared first in [13, 14]
for the linear model, and then was used in [10, 16, 41]. GLOC is slightly different from these studies
and rather close to Abbasi-Yadkori et al. [2] in that the confidence set is a function of a known regret
bound. This generality frees us from re-deriving a confidence set for every online learner. Our result
is essentially a nontrivial extension of Abbasi-Yadkori et al. [2] to GLMs.

One might have notice that Ct does not use θt+1 that is available before pulling xt+1 and has the
most up-to-date information. This is inherent to GLOC as it relies on the OL regret bound directly.
One can modify the proof of ONS-GLM to have a tighter confidence set Ct that uses θt+1 as we
show in SM Section E. However, this is now specific to ONS-GLM, which looses generality.

4 Hash-Amenable Generalized Linear Bandits
We now turn to a setting where the arm set is finite but very large. For example, imagine an interactive
retrieval scenario [33, 25, 6] where a user is shown K images (e.g., shoes) at a time and provides
relevance feedback (e.g., yes/no or 5-star rating) on each image, which is repeated until the user is
satisfied. In this paper, we focus on showing one image (i.e., arm) at a time.4 Most existing algorithms
require maximizing an objective function (e.g., (7)), the complexity of which scales linearly with the
number N of arms. This can easily become prohibitive for large numbers of images. Furthermore,
the system has to perform real-time computations to promptly choose which image to show the user
in the next round. Thus, it is critical for a practical system to have a time complexity sublinear in N .

One naive approach is to select a subset of arms ahead of time, such as volumetric spanners [19].
However, this is specialized for an efficient exploration only and can rule out a large number of
good arms. Another option is to use hashing methods. Locality-sensitive hashing and Maximum

3 The reason why R is not σ here is that the sufficient statistic of the GLM is y/σ, which is equivalent to
dealing with the normalized reward. Then, σ appears as a factor in the regret bound.

4 One image at a time is a simplification of the practical setting. One can extend it to showing multiple
images at a time, which is a special case of the combinatorial bandits of Qin et al. [32].
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Inner Product Search (MIPS) are effective and well-understood tools but can only be used when the
objective function is a distance or an inner product computation; (7) cannot be written in this form.
In this section, we consider alternatives to GLOC which are compatible with hashing.

Thompson Sampling We present a Thompson sampling (TS) version of GLOC called GLOC-TS
that chooses an arm xt = arg maxx∈Xt x

>θ̇t where θ̇t ∼ N (θ̂t−1, βt−1V
−1

t−1). TS is known to
perform well in practice [8] and can solve the polytope arm set case in polynomial time5 whereas
algorithms that solve an objective function like (3) (e.g., [1]) cannot since they have to solve an
NP-hard problem [5]. We present the regret bound of GLOC-TS below. Due to space constraints, we
present the pseudocode and the full version of the result in SM.

Theorem 4. (Informal) If we run GLOC-TS with θ̇t ∼ N (θ̂t−1, β
ONS
t−1V

−1

t−1), RegretGLOC-TS
T =

Ô
(
L(L+R)

κ d3/2
√
T log3/2(T )

)
w.h.p. If ηt is bounded by R̄, then Ô

(
L(L+R̄)

κ d3/2
√
T log(T )

)
.

Notice that the regret now scales with d3/2 as expected from the analysis of linear TS [4], which
is higher than scaling with d of GLOC. This is concerning in the interactive retrieval or product
recommendation scenario since the relevance of the shown items is harmed, which makes us wonder
if one can improve the regret without loosing the hash-amenability.

Quadratic GLOC We now propose a new hash-amenable algorithm called Quadratic GLOC
(QGLOC). Recall that GLOC chooses the arm xGLOC by (7). Define r = minx∈X ||x||2 and

mt−1 := min
x:||x||2∈[r,1]

||x||
V
−1
t−1

, (9)

which is r times the square root of the smallest eigenvalue of V
−1

t−1. It is easy to see that mt−1 ≤
||x||

V
−1
t−1

for all x ∈ X and that mt−1 ≥ r/
√
t+ λ using the definition of Vt−1. There is an

alternative way to define mt−1 without relying on r, which we present in SM.

Let c0 > 0 be the exploration-exploitation tradeoff parameter (elaborated upon later). At time t,
QGLOC chooses the arm

xQGLOC
t := arg max

x∈Xt

〈θ̂t−1,x〉+
β

1/4
t−1

4c0mt−1
||x||2

V
−1
t−1

= arg max
x∈Xt

〈qt, φ(x)〉 , (10)

where qt = [θ̂t−1; vec(
β
1/4
t−1

4c0mt−1
V
−1

t−1)] ∈ Rd+d2 and φ(x) := [x; vec(xx>)]. The key property of
QGLOC is that the objective function is now quadratic in x, thus the name Quadratic GLOC, and
can be written as an inner product. Thus, QGLOC is hash-amenable. We present the regret bound of
QGLOC (10) in Theorem 5. The key step of the proof is that the QGLOC objective function (10)
plus c0β3/4mt−1 is a tight upper bound of the GLOC objective function (7).
Theorem 5. Run QGLOC with CONS

t . Then, w.p. at least 1 − 2δ, RegretQGLOC
T =

O
((

1
c0

(
L+R
κ

)1/2
+ c0

(
L+R
κ

)3/2)
Ld5/4

√
T log2(T )

)
. By setting c0 =

(
L+R
κ

)−1/2
, the regret

bound is O(L(L+R)
κ d5/4

√
T log2(T )).

Note that one can have a better dependence on log T when ηt is bounded (available in the proof).
The regret bound of QGLOC is a d1/4 factor improvement over that of GLOC-TS; see Table 1.
Furthermore, in (10) c0 is a free parameter that adjusts the balance between the exploitation (the first
term) and exploration (the second term). Interestingly, the regret guarantee does not break down when
adjusting c0 in Theorem 5. Such a characteristic is not found in existing algorithms but is attractive
to practitioners, which we elaborate in SM.

Maximum Inner Product Search (MIPS) Hashing While MIPS hashing algorithms such as [35,
36, 30] can solve (10) in time sublinear in N , these necessarily introduce an approximation error.
Ideally, one would like the following guarantee on the error with probability at least 1− δH:
Definition 1. Let X ⊆ Rd′ satisfy |X | <∞. A data point x̃ ∈ X is called cH-MIPS w.r.t. a given
query q if it satisfies 〈q, x̃〉 ≥ cH ·maxx∈X 〈q,x〉 for some cH < 1. An algorithm is called cH-MIPS
if, given a query q ∈ Rd′ , it retrieves x ∈ X that is cH-MIPS w.r.t. q.

Unfortunately, existing MIPS algorithms do not directly offer such a guarantee, and one must build a
series of hashing schemes with varying hashing parameters like Har-Peled et al. [18]. Under the fixed
budget setting T , we elaborate our construction that is simpler than [18] in SM.

5ConfidenceBall1 algorithm of Dani et al. [11] can solve the problem in polynomial time as well.
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Time and Space Complexity Our construction involves saving Gaussian projection vectors that
are used for determining hash keys and saving the buckets containing pointers to the actual arm
vectors. The time complexity for retrieving a cH-MIPS solution involves determining hash keys
and evaluating inner products with the arms in the retrieved buckets. Let ρ∗ < 1 be an opti-
mized value for the hashing (see [35] for detail). The time complexity for d′-dimensional vec-
tors is O

(
log
(

log(dT )

log(c−1
H )

)
Nρ∗ log(N)d′

)
, and the space complexity (except the original data) is

O
(

log(dT )

log(c−1
H )

Nρ∗(N + log(N)d′)
)

. While the time and space complexity grows with the time hori-

zon T , the dependence is mild; log log(T ) and log(T ), respectively. QGLOC uses d′ = d+ d2,6 and
GLOC-TS uses d′ = d′. While both achieve a time complexity sublinear in N , the time complexity
of GLOC-TS scales with d that is better than scaling with d2 of QGLOC. However, GLOC-TS has a
d1/4-factor worse regret bound than QGLOC.

Discussion While it is reasonable to incur small errors in solving the arm selection criteria like (10)
and sacrifice some regret in practice, the regret bounds of QGLOC and GLOC-TS do not hold
anymore. Though not the focus of our paper, we prove a regret bound under the presence of the
hashing error in the fixed budget setting for QGLOC; see SM. Although the result therein has an
inefficient space complexity that is linear in T , it provides the first low regret bound with time
sublinear in N , to our knowledge.

5 Approximate Inner Product Computations with L1 Sampling

L2 L1

-5

0

5

100 101 102 103

d

0.7

0.8

0.9

1

(a) (b)
Figure 1: (a) A box plot of estimators. L1 and L2
have the same variance, but L2 has thicker tails. (b)
The frequency of L1 inducing smaller variance than
L2 in 1000 trials. After 100 dimensions, L1 mostly
has smaller variance than L2.

While hashing allows a time complexity sub-
linear in N , it performs an additional com-
putation for determining the hash keys. Con-
sider a hashing with U tables and length-k hash
keys. Given a query q and projection vectors
a(1), . . . ,a(Uk), the hashing computes q>a(i),
∀i ∈ [Uk] to determine the hash key of q. To
reduce such an overhead, approximate inner
product methods like [22, 24] are attractive
since hash keys are determined by discretizing
the inner products; small inner product errors
often do not alter the hash keys.

In this section, we propose an improved approximate inner product method called L1 sampling which
we claim is more accurate than the sampling proposed by Jain et al. [22], which we call L2 sampling.
Consider an inner product q>a. The main idea is to construct an unbiased estimate of q>a. That is,
let p ∈ Rd be a probability vector. Let

ik
i.i.d.∼ Multinomial(p) and Gk := qikaik/pik , k ∈ [m] . (11)

It is easy to see that EGk = q>a. By taking 1
m

∑m
k=1Gk as an estimate of q>a, the time complexity

is now O(mUk) rather than O(d′Uk). The key is to choose the right p. L2 sampling uses p(L2) :=
[q2
i /||q||22]i. Departing from L2, we propose p(L1) that we call L1 sampling and define as follows:

p(L1) := [|q1|; · · · ; |qd′ |]/||q||1 . (12)
We compare L1 with L2 in two different point of view. Due to space constraints, we summarize the
key ideas and defer the details to SM.

The first is on their concentration of measure. Lemma 1 below shows an error bound of L1 whose
failure probability decays exponentially in m. This is in contrast to decaying polynomially of L2 [22],
which is inferior.7
Lemma 1. Define Gk as in (11) with p = p(L1). Then, given a target error ε > 0,

P
(∣∣ 1
m

∑m
k=1Gk − q>a

∣∣ ≥ ε) ≤ 2 exp
(
− mε2

2||q||21||a||2max

)
(13)

To illustrate such a difference, we fix q and a in 1000 dimension and apply L2 and L1 sampling 20K
times each with m = 5 where we scale down the L2 distribution so its variance matches that of L1.

6 Note that this does not mean we need to store vec(xx>) since an inner product with it is structured.
7 In fact, one can show a bound for L2 that fails with exponentially-decaying probability. However, the bound

introduces a constant that can be arbitrarily large, which makes the tails thick. We provide details on this in SM.
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Algorithm Cum. Regret
QGLOC 266.6 (±19.7)
QGLOC-Hash 285.0 (±30.3)
GLOC-TS 277.0 (±36.1)
GLOC-TS-Hash 289.1 (±28.1)

(a) (b) (c)
Figure 2: Cumulative regrets with confidence intervals under the (a) logit and (b) probit model. (c)
Cumulative regrets with confidence intervals of hash-amenable algorithms.

Figure 1(a) shows that L2 has thicker tails than L1. Note this is not a pathological case but a typical
case for Gaussian q and a. This confirms our claim that L1 is safer than L2.

Another point of comparison is the variance of L2 and L1. We show that the variance of L1 may or
may not be larger than L2 in SM; there is no absolute winner. However, if q and a follow a Gaussian
distribution, then L1 induces smaller variances than L2 for large enough d; see Lemma 9 in SM.
Figure 1(b) confirms such a result. The actual gap between the variance of L2 and L1 is also nontrivial
under the Gaussian assumption. For instance, with d = 200, the average variance of Gk induced by
L2 is 0.99 whereas that induced by L1 is 0.63 on average. Although a stochastic assumption on the
vectors being inner-producted is often unrealistic, in our work we deal with projection vectors a that
are truly normally distributed.

6 Experiments
We now show our experiment results comparing GLB algorithms and hash-amenable algorithms.

GLB Algorithms We compare GLOC with two different algorithms: UCB-GLM [28] and Online
Learning for Logit Model (OL2M) [41].8 For each trial, we draw θ∗ ∈ Rd andN arms (X ) uniformly
at random from the unit sphere. We set d = 10 and Xt = X , ∀t ≥ 1. Note it is a common practice to
scale the confidence set radius for bandits [8, 27]. Following Zhang et al. [41], for OL2M we set the
squared radius γt = c log(det(Zt)/det(Z1)), where c is a tuning parameter. For UCB-GLM, we set
the radius as α =

√
cd log t. For GLOC, we replace βONS

t with c
∑t
s=1 g

2
s ||xs||2A−1

s
. While parameter

tuning in practice is nontrivial, for the sake of comparison we tune c ∈ {101, 100.5, . . . , 10−3} and
report the best one. We perform 40 trials up to time T = 3000 for each method and compute
confidence bounds on the regret.

We consider two GLM rewards: (i) the logit model (the Bernoulli GLM) and (ii) the probit model
(non-canonical GLM) for 0/1 rewards that sets µ as the probit function. Since OL2M is for the
logit model only, we expect to see the consequences of model mismatch in the probit setting. For
GLOC and UCB-GLM, we specify the correct reward model. We plot the cumulative regret under the
logit model in Figure 2(a). All three methods perform similarly, and we do not find any statistically
significant difference based on paired t test. The result for the probit model in Figure 2(b) shows that
OL2M indeed has higher regret than both GLOC and UCB-GLM due to the model mismatch in the
probit setting. Specifically, we verify that at t = 3000 the difference between the regret of UCB-GLM
and OL2M is statistically significant. Furthermore, OL2M exhibits a significantly higher variance in
the regret, which is unattractive in practice. This shows the importance of being generalizable to any
GLM reward. Note we observe a big increase in running time for UCB-GLM compared to OL2M
and GLOC.

Hash-Amenable GLBs To compare hash-amenable GLBs, we use the logit model as above but now
with N=100,000 and T=5000. We run QGLOC, QGLOC with hashing (QGLOC-Hash), GLOC-TS,
and GLOC-TS with hashing (GLOC-TS-Hash), where we use the hashing to compute the objective
function (e.g., (10)) on just 1% of the data points and save a significant amount of computation.
Details on our hashing implementation is found in SM. Figure 2(c) summarizes the result. We observe
that QGLOC-Hash and GLOC-TS-Hash increase regret from QGLOC and GLOC-TS, respectively,
but only moderately, which shows the efficacy of hashing.

7 Future Work
In this paper, we have proposed scalable algorithms for the GLB problem: (i) for large time horizon
T and (ii) for large number N of arms. There exists a number of interesting future work. First,

8We have chosen UCB-GLM over GLM-UCB of Filippi et al. [15] as UCB-GLM has a lower regret bound.
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we would like to extend the GLM rewards to the single index models [23] so one does not need to
know the function µ ahead of time under mild assumptions. Second, closing the regret bound gap
between QGLOC and GLOC without loosing hash-amenability would be interesting: i.e., develop
a hash-amenable GLB algorithm with O(d

√
T ) regret. In this direction, a first attempt could be to

design a hashing scheme that can directly solve (7) approximately.
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Supplementary Material (Appendix)

A Proof of Theorem 1
We first describe the sketch of the proof. We perform a generalized version of the online-to-confidence-
set conversion of Abbasi-Yadkori et al. [2, Theorem 1] that was strictly for linear rewards. Unlike
that work, which deals with the squared loss, we now work with the negative log likelihood loss. The
key is to use the strong-convexity of the loss function to turn the OL regret bound (4) into a quadratic
equation in θ∗. Then, it remains to bound random quantities with a Martingale concentration bound.

Proof. Let `′(z, y) and `′′(z, y) be the first and second derivative of the loss ` w.r.t. z. We lower
bound the LHS of (4) using Taylor’s theorem with some ξs between x>s θ

∗ and x>s θs:

Bt ≥
t∑

s=1

`s(θs)− `s(θ∗) =

t∑
s=1

`′(x>s θ
∗, ys)x

>
s (θs − θ∗) +

`′′(ξs, ys)

2
(x>s (θs − θ∗))2

(Assumption 1)
≥

t∑
s=1

`′(x>s θ
∗, ys)x

>
s (θs − θ∗) +

κ

2
(x>s (θs − θ∗))2 .

Since `′(x>s θ
∗, ys) = −ys + µ(x>s θ

∗) = −ηs,
t∑

s=1

(x>s (θs − θ∗))2 ≤ 2

κ
Bt +

2

κ

t∑
s=1

ηs
(
x>s (θs − θ∗)

)
.

Note that the second term in the RHS involves ηt that is unknown and random, which we bound
using Abbasi-Yadkori et al. [2, Corollary 8]. That is, w.p. at least 1− δ, for all t ≥ 1,

t∑
s=1

ηs
(
x>s (θs − θ∗)

)
≤ R

√√√√√(2 + 2

t∑
s=1

(x>s (θs − θ∗))2

)
· log

1

δ

√√√√1 +

t∑
s=1

(x>s (θs − θ∗))2

.
Then,

t∑
s=1

(
x>s (θs − θ∗)

)2 ≤ 2

κ
Bt +

2R

κ

√√√√√(2 + 2

t∑
s=1

(x>s (θs − θ∗))2

)
· log

1

δ

√√√√1 +

t∑
s=1

(x>s (θs − θ∗))2

.
Define q :=

√
1 +

∑t
s=1(x>s (θs − θ∗))2. Then, the inequality above can be written as q2 ≤

1 + 2
κBt + 2

√
2R
κ q

√
log(q/δ). The following Lemma is useful. See Section A.1 for a proof.

Lemma 2. Let δ ∈ (0, 1), a ≥ 0, f ≥ 0, q ≥ 1. Then,

q2 ≤ a+ fq

√
log
(q
δ

)
=⇒ q2 ≤ 2a+ f2 log

(√
4a+ f4/(4δ2)

δ

)

Applying Lemma 2 with a := 1 + 2
κBt and f := 2

√
2R/κ, we have

t∑
s=1

(x>s (θs − θ∗))2 ≤ 1 +
4

κ
Bt +

8R2

κ2
log

(
1

δ

√
4 +

8

κ
Bt +

64R4

κ4 · 4δ2

)
= β′t

Then, one can rewrite the above as

||zt −Xtθ
∗||22 ≤ β′t .

Let λ > 0. We add λ||θ∗|| to the both sides.

λ||θ∗||22 + ||zt −Xtθ
∗||22 ≤ λ||θ

∗||22 + β′t ≤ λS2 + β′t .

Hereafter, we omit t from Xt and zt for brevity. Since the LHS is quadratic in θ∗, we can rewrite it
as an ellipsoid centered at θ̂t := arg minθ λ||θ||22 + ||z−Xθ||22 = V

−1

t X>z as follows:

||θ∗ − θ̂t||2Vt
+ λ||θ̂t||22 + ||z−Xθ̂t||22︸ ︷︷ ︸

=||z||22−θ̂
>
t X>z

≤ λS2 + β′t ,

which concludes the proof.
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A.1 Proof of Lemma 2

Proof. Let c := f
√

log(q/δ). Then, q2 ≤ a + cq =⇒ q2 − cq − a ≤ 0. Solving it for q, we get
q ≤ c+

√
c2+4a
2 . Then, using (u+ v)2 ≤ 2(u2 + v2),

q2 ≤

(
c+
√
c2 + 4a

2

)2

≤ 2(c2 + c2 + 4a)

4
= c2 + 2a

⇐⇒ q2 ≤ 2a+ f2 log(q/δ)

(14)

One might suspect that c has q in it, which might cause a problem. To be assured, one can prove
the contrapositive: q > c+

√
c2+4a
2 =⇒ q2 − cq − a > 0. To see this, q2 − cq − a = (q −

c+
√
c2+4a
2 )(q − c−

√
c2+4a
2 ) and since q > c+

√
c2+4a
2 it suffices to show that q − c−

√
c2+4a
2 > 0.

Then, since q − c−
√
c2+4a
2 ≥ q − c+

√
c2+4a
2 > 0.

Using log u ≤ 1
2u,

q2 ≤ 2a+ f2 log(q/δ) ≤ 2a+
f2

2δ
q ⇐⇒ q2 − f2

2δ
q − 2a ≤ 0 .

Solving the quadratic inequality for q, we have q ≤ f2/(2δ)+
√

(f4/(4δ2))+8a

2 . This implies that

q2 ≤ 2(f4/(4δ2) + f4/(4δ2) + 8a)

4
=

f4

4δ2
+ 4a .

Now, applying this inequality on q in the RHS of (14),

q2 ≤ 2a+ f2 log

(√
4a+ f4/(4δ2)

δ

)

B Proof of Theorem 2
Proof. Our proof closely follow a standard technique (cf. Abbasi-Yadkori et al. [1]). Define
xt,∗ = arg maxx∈Xt

〈x,θ∗〉. Let rt := µ(x>t,∗θ
∗) − µ(x>t θ

∗) be the instantaneous regret. Us-
ing µ(x>t,∗θ

∗)− µ(x>t θ
∗) ≤ L(x>t,∗θ

∗ − x>t θ
∗),

rt
L
≤ x>t,∗θ

∗ − x>t θ
∗

≤ x>t θ̃t − x>t θ
∗

= x>t (θ̃t − θ̂t−1) + x>t (θ̂t−1 − θ∗)

≤ ||xt||V−1
t−1
||θ̃t − θ̂t−1||Vt−1

+ ||xt||V−1
t−1
||θ∗ − θ̂t−1||Vt−1

≤ 2

√
β̄t||xt||V−1

t−1
.

Note that
T∑
t=1

log

(
1 + ||xt||2V−1

t−1

)
= log

(
det(VT )

det(λI)

)
≤ d log (1 + T/(dλ)) , (15)

which is due to Abbasi-Yadkori et al. [1, Lemma 11].

The following lemmas become useful.

Lemma 3. For any q, x ≥ 0,

min{q, x} ≤ max{2, q} log(1 + x)

Proof. It is not hard to see that

x ∈ [0, a] =⇒ x ≤ a

log(1 + a)
log(1 + x) (16)

We consider the following two cases.
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Case 1. q ≤ 2
If x ≤ 2, by (16), min{2, x} = x ≤ 2

log(3) log(1 + x) ≤ 2 log(1 + x). If x > 2, min{2, x} = 2 ≤
2 log(1 + 2) ≤ 2 log(1 + x). Thus, for any x, min{q, x} ≤ min{2, x} ≤ 2 log(1 + x).

Case 2. q > 2
If x ≤ q, by (16), min{q, x} = x ≤ q

log(1+q) log(1 + x) < q log(1 + x). If x > q, min{q, x} =

q ≤ q log(1 + 2) ≤ q log(1 + x).

Combining both cases to complete the proof.

Lemma 4. If A is a value independent of t,

T∑
t=1

min{A, ||xt||2V−1
t−1

} ≤ max{2, A}d log(1 + T/(dλ)) .

Proof. Combine Lemma 3 and (15).

Since rt cannot be bigger than 2LS,

T∑
t=1

rt ≤
T∑
t=1

min{2LS, 2L
√
βt||xt||V−1

t
}

≤ 2L

√
βT

T∑
t=1

min{S/
√
βT , ||xt||V−1

t
}

(C.-S.)
≤ 2L

√
βT

√√√√T

T∑
t=1

min

{
S2

βT
, ||xt||2

V
−1
t

}
(Lem. 4)

≤ 2L

√
βT

√
T max{2, S2/βT }d log(1 + T/(dλ))

= O

(
L

√
βT
√
T ·
√
d log T

)
where C.-S. stands for the Cauchy-Schwartz inequality.

C Proof of Theorem 3
Proof. We closely follow the proof of Hazan et al. [20]. Since `(z, y) is κ-strongly convex w.r.t.
z ∈ B1(S),

`(x>s θs, ys)− `(x>s θ
∗, ys) ≤ `′(x>s θs, ys) · x>s (θs − θ∗)− κ

2
(x>s (θs − θ∗))2 . (17)

Define gs := `′(x>s θs, ys). Note that by the update rule of Algorithm 2,

θ′s+1 − θ∗ = θs − θ∗ − gs
κ
A−1
s xs

=⇒ ||θ′s+1 − θ∗||2As
= ||θs − θ∗||2As

− 2gs
κ

x>s (θs − θ∗) +
g2
s

κ2
||xs||2A−1

s
(18)

By the property of the generalized projection (see Hazan et al. [20, Lemma 8])

||θ′s+1 − θ∗||2As
≥ ||θs+1 − θ∗||2As

.
Now, together with (18),

||θs+1 − θ∗||2As
≤ ||θs − θ∗||2As

− 2gs
κ

x>s (θs − θ∗) +
g2
s

κ2
||xs||2A−1

s

=⇒
t∑

s=1

gsx
>
s (θs − θ∗) ≤

t∑
s=1

g2
s

2κ
||xs||2A−1

s
+
κ

2

t∑
s=1

||θs − θ∗||2As
− ||θs+1 − θ∗||2As︸ ︷︷ ︸

=:D1

.
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Note

D1 = ||θ1 − θ∗||2A1
+

(
t∑

s=2

||θs − θ∗||2As
−

t∑
s=2

||θs − θ∗||2As−1

)
− ||θt+1 − θ∗||2At

≤ ||θ1 − θ∗||2A1
+

(
t∑

s=2

||θs − θ∗||2As
−

t∑
s=2

||θs − θ∗||2As−1

)
(a)
= ||θ1 − θ∗||2A1

+

(
−||θ1 − θ∗||2x1x>1

+

t∑
s=1

||θs − θ∗||2xsx>s

)

= ||θ1 − θ∗||2εI +

t∑
s=1

||θs − θ∗||2xsx>s
≤ 4εS2 +

t∑
s=1

||θs − θ∗||2xsx>s

where (a) is due to As −As−1 = xsx
>
s . Therefore,

t∑
s=1

gsx
>
s (θs − θ∗) ≤

t∑
s=1

g2
s

2κ
||xs||2A−1

s
+ 2εκS2 +

κ

2

t∑
s=1

||θs − θ∗||2xsx>s
.

Move the rightmost sum in the RHS to the LHS to see that the LHS now coincide with the RHS
of (17). This leads to

t∑
s=1

`(x>s θs, ys)− `(x>s θ
∗, ys) ≤

1

2κ

t∑
s=1

g2
s ||xs||2A−1

s
+ 2εκS2 = BONS

t .

This yields the statement of the theorem.

For characterizing the order of BONS
t , notice that gs is a random variable:

g2
s = (−ys + µ(x>s θs))

2 = (−µ(x>s θ
∗)− ηs + µ(x>s θs))

2

≤ 2(µ(x>s θs)− µ(x>s θ
∗))2 + 2η2

s

≤ 2(L · x>s (θs − θ∗))2 + 2η2
s

≤ 2L2 · 4S2 + 2η2
s

Let δ < 1 be the target failure rate. By the sub-Gaussianity of ηs,

P
(
∀s ≥ 1, |ηs|2 ≥ 2R2 log(4s2/δ)

)
≤
∑
s≥1

P
(
|ηs|2 ≥ 2R2 log(4s2/δ)

)
≤
∑
s≥1

δ/(2s2) ≤ δ .

Thus, w.p. at least 1− δ, maxs≤t g
2
s ≤ 8L2S2 + 4R2 log(4t2/δ) = O(L2 +R2 log(t/δ)). Further-

more,
∑t
s=1 ||xs||2A−1

s
≤ d log(1 + (t/ε)) by Hazan et al. [20, Lemma 11]. Thus, w.p. at least 1− δ,

∀t ≥ 1, BONS
t = O

(
L2+R2 log(t/δ)

κ d log t
)

.

For the case where |ηs| is bounded by R̄ w.p. 1 (e.g., R̄ = 1
2 for Bernoulli), maxs≤t g

2
s ≤ 8L2S2 +

2R̄2, which leads to BONS
t = O

(
L2+R̄2

κ d log t
)

.

D Proof of Corollaries 1 and 2
The proof of Corollary 1 a trivial consequence of combining Theorem 1 and Theorem 3.

Corollary 2 is simply a combination of Theorem 2 and Corollary 1. Note that β
ONS
t = α(BONS

t ) +

λS2 ≥ βONS
t by noticing that ||zt||22 − θ̂

>
t X
>
t zt is nonnegative (from the proof of Theorem 2). This

concludes the proof.

E A Tighter Confidence Set
While the confidence set constructed by Theorem 2 is generic and allows us to rely on any online
learner with a known regret bound, one can find a tighter confidence set by analyzing the online learner
directly. We show one instance of such for ONS. A distinctive characteristic of our new confidence
set, denoted by CONS+

t , is that it now depends on yt (note that CONS
t depends on y1, . . . , yt−1 only).
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We deviate from the proof of Theorem 3. Recall that

D1 = ||θ1 − θ∗||2A1
+

(
t∑

s=2

||θs − θ∗||2As
−

t∑
s=2

||θs − θ∗||2As−1

)
− ||θt+1 − θ∗||2At

We previously dropped the term ||θt+1 − θ∗||2At
. We we now keep it, which leads to:

D1 ≤ 4εS2 +

t∑
s=1

||θs − θ∗||2xsx>s
− ||θt+1 − θ∗||2At

Following the same argument,(
t∑

s=1

`s(x
>
s θt)− `s(x>s θ

∗)

)
+
κ

2
||θt+1 − θ∗||2At

≤
t∑

s=1

g2
s

2κ
||xs||2A−1

s
+ 2εκS2 = BONS

t

=⇒

(
t∑

s=1

`s(x
>
s θt)− `s(x>s θ

∗)

)
≤ BONS

t − κ

2
||θt+1 − θ∗||2At

,

Combining the above with the proof of Theorem 1,
t∑

s=1

(x>s (θs − θ∗))2

≤ 1 +
4

κ
(BONS

t − κ

2
||θt+1 − θ∗||2At

) +
8R2

κ2
log

(
2

δ

√
1 +

2

κ
BONS
t +

4R4

κ4δ2

)

⇐⇒
t∑

s=1

(x>s (θs − θ∗))2 + 2||θt+1 − θ∗||2At
≤ 1 +

4

κ
BONS
t +

8R2

κ2
log

(
2

δ

√
1 +

2

κ
BONS
t +

4R4

κ4δ2

)
Define zt = [x>s θs]s∈[t], z∗t = [x>s θ

∗]s∈[t] and z′s = [x>s θt+1]s∈[t]. Then, the LHS above is

||zt − z∗t ||22 + 2||z′t − z∗t ||22 + 2||θt+1 − θ∗||2εI

= 3

∣∣∣∣∣∣∣∣zt + 2z′t
3

− z∗t

∣∣∣∣∣∣∣∣2
2

− 1

3
||zt + 2z′t||22 + ||zt||22 + 2||z′t||22 + 2||θt+1 − θ∗||2εI

= 3

∣∣∣∣∣∣∣∣zt + 2z′t
3

− z∗t

∣∣∣∣∣∣∣∣2
2

+
2

3
||zt − z′t||22 + 2||θt+1 − θ∗||2εI .

Let z̄s = (zs + 2z′s)/3. Then,

||z̄t − z∗t ||
2
2 + ||θt+1 − θ∗||2(2ε/3)I ≤ −

2

9
||zt − z′t||22 +

1

3
+

4

3κ
BONS
t

+
8R2

3κ2
log

(
2

δ

√
1 +

2

κ
BONS
t +

4R4

κ4δ2

)
We lower bound the LHS with ||z̄t − z∗t ||

2
2+ 2ε

3 ||θ
∗||22− 4ε

3 S
2 =: D2. Define Wt := X>t Xt+(2ε/3)I

and θ̂
+

t = W
−1

t X>t z̄t. Then,

D2 = ||θ∗ − θ̂
+

t ||2Wt
+ ||z̄t −Xtθ̂

+

t ||22 +
2ε

3
||θ̂

+

t ||22︸ ︷︷ ︸
=||z̄t||22−z̄>t Xtθ̂

+

t

−4ε

3
S2 .

Thus,

||θ∗ − θ̂
+

t ||2Wt
≤ −||z̄t||22 + z̄>t Xtθ̂

+

t +
4ε

3
S2 − 2

9
||zt − z′t||22 +

1

3
+

4

3κ
BONS
t

+
8R2

3κ2
log

(
2

δ

√
1 +

2

κ
BONS
t +

4R4

κ4δ2

)
=: β

ONS+

t .
This leads to the following confidence set:

C
ONS+

t = {θ ∈ Rd : ||θ − θ̂
+

t ||2Wt
≤ βONS+

t } .
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F Details on GLOC-TS
For simplicity, we present the algorithm and the analysis when GLOC-TS is combined with the
confidence set CONS

t . To present the algorithm, we use the definition βONS
t from Corollary 1. We use

the notation βONS
t (δ) to show the dependence on δ explicitly. We present the algorithm of GLOC-TS

in Algorithm 3.

Algorithm 3 GLOC-TS (GLOC - Thompson Sampling)
1: Input: time horizon T , δ ∈ (0, 1), λ > 0, S > 0 , κ > 0.
2: Let δ′ = δ/(8T ).
3: for t = 1, 2, . . . , T do
4: Sample ξt ∼ N (0, I).

5: Compute parameter θ̇t = θ̂t−1 +
√
βONS
t−1 (δ′) ·V−1/2

t−1 ξt

6: Solve xt = arg maxx∈X x>θ̇t.
7: Pull xt and then observe yt.
8: Feed into B the loss function `t(θ) = `(x>t θ, yt).
9: Update θ̂t and Vt.

10: end for

Define γt(δ) = βt(δ)2d log(2d/δ) and p = 1
4
√
eπ

. We present the full statement of Theorem 4 as
follows.

Theorem 4 Let δ′ = δ/(8T ). The cumulative regret of GLOC-TS over T steps is bounded as, w.p.
at least 1− δ,

RegretT ≤ L
(√

βT (δ′) +
√
γT (δ′)(1 + 2/p)

)√
2Td log(1 + T/λ) +

2L

p

√
γT (δ′)

√
8T

λ
log(4/δ)

= O

(
L(L+R)

κ
d3/2

√
log(d)T log3/2 T

)

Proof. Note that the proof is a matter of realizing that the proof of Abeille & Lazaric [3, Lemma
4] relies on a given confidence set Ct in a form of (6). To be specific, notice that the notations
kµ, cµ, and βt(δ′) used in Abeille & Lazaric [3] is equivalent to L, κ, and κ

√
βt(δ) in this paper,

respectively. Furthermore, our result stated in (8) can replace the result of Abeille & Lazaric [3, Prop.
11]. Finally, one can verify that the proof of Abeille & Lazaric [3, Lemma 4] leads to the proof of the
theorem above.

Although the theorem above is stated under the fixed-buget setting, one can easily change the failure
rate δ′ to O(t2/δ) and enjoy an anytime regret bound.

G QGLOC without r
We present an alternative definition of mt that does not rely on r:

m′t−1 = ||xGreedy||
V
−1
t−1

, where xGreedy := arg max
x∈Xt−1

〈θ̂t−1,x〉

We claim that m′t−1 ≤ ||x
QGLOC
t ||

V
−1
t−1

. To see this, suppose not: m′t−1 > ||x
QGLOC
t ||

V
−1
t−1

. Then,

xGreedy 6= xQGLOC. Furthermore, xGreedy must be the maximizer of the QGLOC objective function
while xGreedy 6= xQGLOC, which is a contradiction. The claim above allows all the proofs of our
theorems on QGLOC to go through with m′t−1 in place of mt−1.

However, computing m′t−1 requires another hashing for finding the greedy arm defined above.
Although this introduces a factor of 2 in the time complexity, it is quite cumbersome in practice,
which is why we stick to mt−1 defined in (9) in the main text.

17



H Proof of Theorem 5
Let us first present the background. Denote by xGLOC

t the solution of the optimization problem at line
3 of Algorithm 1. To find xGLOC

t , one can fix x and find the maximizer θ̃(x) := maxθ∈Ct−1
x>θ in

a closed form using the Lagrangian method:

θ̃(x) = θ̂t−1 +
√
βt−1 ·

V
−1

t−1x

||x||
V
−1
t−1

, (19)

which is how we obtained (7).

The following lemma shows that the objective function (10) plus c0β3/4mt−1 is an upper bound of
the GLOC’s objective function (7). Note that this holds for any sequence {βt}.
Lemma 5.

〈θ̂t−1,x〉+
√
βt−1||x||V−1

t−1

≤ 〈θ̂t−1,x〉+
β

1/4
t−1

4c0mt−1
· ||x||2

V
−1
t−1

+ c0β
3/4
t−1mt−1 .

Furthermore,

〈θ̂t−1,x
GLOC
t 〉+

√
βt−1||xGLOC

t ||
V
−1
t−1

≤ 〈θ̂t−1,x
QGLOC
t 〉+

β
1/4
t−1

4c0mt−1
||xQGLOC

t ||2
V
−1
t−1

+ c0β
3/4
t−1mt−1 .

(20)

Proof. Recall the GLOC optimization problem defined at line 3 of Algorithm 1. For a fixed x, we
need to solve

θ̃(x) = arg min
θ

− 〈θ,x〉

s.t. ||θ − θ̂t−1||2Vt−1
− βt−1 ≤ 0

The Lagrangian is L(θ, τ) := −〈θ,x〉+ τ(||θ − θ̂t−1||2Vt−1
− βt−1), and thus we need to solve

max
τ≥0

min
θ

L(θ, τ) .

According to the first-order optimality condition,

−∂L(θ, τ)

∂θ
= x− τ(2Vt−1θ − 2Vt−1θ̂t−1) = 0

θ = θ̂t−1 + (2τ)−1V
−1

t−1x , (21)
which results in (minθ L(θ, τ)) = −〈θ̂t−1,x〉 − (4τ)−1||x||2

V
−1
t−1

− τβt−1. It remains to solve

max
τ≥0

−〈θ̂,x〉 − (4τ)−1||x||2
V
−1
t−1

− τβt−1,

whose first-order optimality says that the solution is τ∗ := (2
√
βt−1)−1||x||

V
−1 . Plugging τ ← τ∗

in (21) leads to the solution θ̃(x) defined in (19). Note that any choice of τ ≥ 0 leads to a lower
bound on the Lagrangian L(θ̃(x), τ) . Define

τ̃ := c0β
−1/4
t−1 mt−1 .

Then,

L(θ̃(x), τ̃) = −〈θ̂t−1,x〉 −
β

1/4
t−1

4c0mt−1
||x||2

V
−1
t−1

− c0β3/4
t−1mt−1

≤ L(θ̃(x), τ∗) = −〈θ̂t−1,x〉 −
√
βt−1||x||V−1

t−1
.

This concludes the first part of the lemma. The second part of the lemma trivially follows from the
first part by the definition (10).
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Proof. Assume θ∗ ∈ CONS
t for all t ≥ 1, which happens w.p. at least 1− δ. Suppose we pull xQGLOC

t
at every iteration. While we use the confidence set CONS

t , we omit the superscript ONS from βONS
t for

brevity. Recall that β̄t is an upper bound on βt that is nondecreasing in t. We bound the instantaneous
regret rt as follows:

rt
L

=
1

L

(
µ(〈θ∗,xt,∗〉)− µ(〈θ∗,xQGLOC

t 〉)
)

≤ (〈θ∗,xt,∗〉 − 〈θ∗,xQGLOC
t 〉)

≤ 〈θ̃(xGLOC
t ),xGLOC

t 〉 − 〈θ∗,xQGLOC
t 〉

= 〈θ̂t−1,x
GLOC
t 〉+

√
β̄t−1||xGLOC

t ||
V
−1
t−1
− 〈θ∗,xQGLOC

t 〉

(Lem. 5)
≤ 〈θ̂t−1,x

QGLOC
t 〉+

β̄
1/4
t−1

4c0mt−1
||xQGLOC

t ||2
V
−1
t−1

+ c0β̄
3/4
t−1mt−1 − 〈θ∗,xQGLOC

t 〉

= 〈θ̂t−1 − θ∗,xQGLOC
t 〉+

β̄
1/4
t−1

4c0mt−1
||xQGLOC

t ||2
V
−1
t−1

+ c0β̄
3/4
t−1mt−1

≤ ||θ̂t−1 − θ∗||Vt−1
||xQGLOC

t ||
V
−1
t−1︸ ︷︷ ︸

=:A1(t)

+
β̄

1/4
t−1

4c0mt−1
||xQGLOC

t ||2
V
−1
t−1︸ ︷︷ ︸

:=A2(t)

+ c0β̄
3/4
t−1mt−1︸ ︷︷ ︸

=:A3(t)

.

Note that 〈θ∗,x〉 ∈ [−S, S] implies that rt ≤ 2LS. Then,

rt ≤ min{2LS,L ·A1(t) + L ·A2(t) + L ·A3(t)}
≤ Lmin{2S,A1(t)}+ min{2S,A2(t)}+ min{2S,A3(t)} .

where the last inequality can be shown by a case-by-case analysis on each min operator.

Now, we consider computing
∑T
t=1 rt. Using the same argument as the proof of Theorem 2 and

Corollary 2,

L

T∑
t=1

min{2S,A1(t)} = O

(
L(L+R)

κ
d
√
T log3/2(T )

)
.

Then,

L

T∑
t=1

min

{
2S,

β̄
1/4
T−1

4c0mt−1
||xQGLOC

t ||2
V
−1
t−1

}

≤ L
T∑
t=1

min

{
2S,

β̄
1/4
T−1

4c0r

√
T + λ||xQGLOC

t ||2
V
−1
t−1

}

≤
Lβ̄

1/4
T−1

4c0r

√
T + λ

T∑
t=1

min

{
8c0rS

β̄
1/4
T−1

√
T + λ

, ||xQGLOC
t ||2

V
−1
t−1

}
(Lem. 3)

≤
Lβ̄

1/4
T−1

4c0r

√
T + λmax

{
2,

8c0rS

β̄
1/4
T−1

√
T + λ

}
T∑
t=1

log(1 + ||xQGLOC
t ||2

V
−1
t−1

)

(15)
= L

1

c0
·O

((
L2 +R2

κ2
d log2 T

)1/4
)
·O(
√
T ) ·O(d log T )

= O

(
1

c0
L

(
L+R

κ

)1/2

d5/4
√
T log3/2 T

)

and

L

T∑
t=1

min{2S, c0β̄3/4
t−1mt−1}
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(9)
≤ L

T∑
t=1

min{2S, c0β̄3/4
T−1||x

QGLOC
t ||

V
−1
t−1
}

≤ Lc0β̄3/4
T−1

T∑
t=1

min

{
2S

c0β̄
3/4
T−1

, ||xQGLOC
t ||

V
−1
t−1

}

(a)

≤ Lc0β̄
3/4
T−1

√√√√√T

T∑
t=1

min


(

2S

c0β̄
3/4
T−1

)2

, ||xQGLOC
t ||2

V
−1
t−1


(Lem. 3)

≤ Lc0β̄
3/4
T−1

√√√√√T max

2,

(
2S

c0β̄
3/4
T−1

)2


T∑
t=1

log(1 + ||xQGLOC
t ||2

V
−1
t−1

)

(15)
= c0L ·O

((
L2 +R2

κ2
d log2 T

)3/4
)
·O(

√
Td log T )

= O

(
c0L

(
L+R

κ

)3/2

d5/4
√
T log2 T

)
,

where (a) is due to the Cauchy-Schwartz inequality. Therefore, the regret is
O
(
L( 1

c0

(
L+R
κ

)1/2
+ c0

(
L+R
κ

)3/2
)d5/4

√
T log2(T )

)
. One can see that setting c0 =

c′0
(
L+R
κ

)−1/2
leads to the stated regret bound. Note that one can improve log2(T ) in the

regret bound to log7/4(T ) by making c0 scale with log−1/4(t), which is left as an exercise.

When the noise |ηt| is bounded, we have a tighter βt and thus we can replace log2(T ) in the regret
bound to log5/4(T ).

I On c0 of QGLOC
Observe that in (10) c0 is a free parameter that adjusts the balance between the exploitation (the first
term) and exploration (the second term). This is an interesting characteristic that is not available in
existing algorithms but is attractive to practitioners. Specifically, in practice existing bandit algorithms
like OFUL [1], LTS [5], and others [15, 41] usually perform exploration more than necessary, so one
often enforces more exploitation by multiplying a small constant less than 1 to

√
βt; e.g., see [40, 8].

Applying such a trick is theoretically not justified and foregoes the regret guarantee for existing
algorithms, so a practitioner must take a leap of faith. In contrast, adjusting c0 of QGLOC is exactly
the common heuristic but now does not break the regret guarantee, which can assure practitioners.

J Details on Hashing
We first briefly introduce hashing methods for fast similarity search. Here, the similarity measure is
often Euclidean distance [12] or inner product [35]. For a comprehensive review, we refer to Wang
et al. [39]. The hashing methods build a hash table that consists of buckets where each bucket is
identified by a unique hash key that is a sequence of k integers. At the hashing construction time, for
each data point x in the database we compute its hash key h(x) using a function h (details shown
below). We then organize the hash table so that each bucket contains pointers to the actual data
points with the same hash key. The hash functions are decided at the construction time. Typically,
for d′-dimensional hashing one draws k independent normally-distributed d′-dimensional vectors,
which we call projection vectors. The hash function h(x) outputs a discretized version of the inner
product between these k vectors and the data point x. When processing a query q, we compute the
hash key h(q), retrieve the corresponding bucket, compute the similarities between the query and the
data points therein, and pick the most similar one. It is important that one uses the same projection
vectors for constructing the table and determining the hash key of the query. This means one needs to
store the projection vectors. Finally, one typically constructs U independent hash tables to reduce the
chance of missing very similar points (i.e., to increase the recall).
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We now turn to operating QGLOC with hashing. Note that one would like to use an accurate hashing
scheme since how accurately one solves (10) can impact the regret. However, a more accurate hashing
have a higher space and time complexity. We characterize such a tradeoff in this section.

Recall that we aim to guarantee the accuracy of a MIPS hashing by the cH-MIPS-ness. As we have
mentioned in the main text, however, existing MIPS algorithms do not directly offer a cH-MIPS
guarantee. Instead of the cH-MIPS guarantee, the standard MIPS algorithms provide a less convenient
guarantee for an input parameter c and M as follows:

Definition 2. Let X ⊆ Rd′ such that |X | < ∞. A data point x̃ ∈ X is called (c,M)-MIPS w.r.t.
a given query q if it satisfies 〈q, x̃〉 ≥ cM . An algorithm is called (c,M)-MIPS if, given a query
q ∈ Rd′ , it retrieves x ∈ X that is (c,M)-MIPS w.r.t. q whenever there exists x′ ∈ X such that
〈q,x′〉 ≥M .

Note that when there is no such x that 〈q,x〉 ≥M , retrieving any arbitrary vector in X is qualified
as being (c,M)-MIPS. This also means that, by its contrapositive, if the hashing returns a vector that
is not (c,M)-MIPS w.r.t. q, then there is no x such that 〈q,x〉 ≥M with high probability.

We emphasize that, to enjoy the (c,M)-MIPS-ness, a hashing must be built based on c and M . If
we know maxx∈Xt

〈qt,x〉 ahead of time, then we can just set M = maxx∈Xt
〈qt,x〉 and build a

hashing that is (c,M)-MIPS for some c, which gives a c-MIPS guarantee for the query qt. However,
one does not have such information, and each query qt has its own “useful” value M .

To overcome such a difficulty, it seems natural to construct a c-MIPS hashing using multiple (c,M)-
MIPS hashings with various M values covering a wide range. Indeed, such a construction is
described in [18] for locality-sensitive hashing based on the Euclidean distance, which is complicated
by multiple subroutines. We present here a streamlined construction of a cH-MIPS hashing thanks
to the existence of a high-probability upper and lower bound on the maximum of the QGLOC
objective (10) as we show below. Note that one can derive a similar result for GLOC-TS.

Hereafter, we omit ONS from βONS
t . Note that there exists a simple upper bound βt on βt (see the

proof of Corollary 2). Define E1(δ) to be the event that θ∗ belongs to Ct for all t ≥ 1.

Lemma 6. Assume E1(δ) and maxx∈Xt
〈θ∗,x〉 ≥ 1/2. Suppose the target time horizon T is given.

Then,

Mmin := 1/2 ≤ max
t∈[T ]

max
x∈Xt

〈θ̂t−1,x〉+
β

1/4
t−1

4c0mt−1
||x||2

V
−1
t−1

≤
√
dS + β

1/4

T−1 ·
√
T + λ

4c0rλ
=: Mmax .

Before presenting the proof, note that Lemma 6 assumes that maxx∈Xt
〈θ∗,x〉 ≥ 1/2. In practice,

this is not a restrictive assumption since it means that there exists at least one arm for which the
reward is decently large in expectation. In interactive retrieval systems with binary user feedback,
for example, it is reasonable to assume that there exists at least one item to which the user is likely
to give a positive reward since otherwise any algorithm would work almost equally badly. One can
change 1/2 to any reasonable number v for which the reward µ(v) is considered high.

Proof. To show the lowerbound, recall that the objective function (10) is derived as an upperbound
of the original GLOC objective function (7). Since the original GLOC objective function has θ∗ as
a feasible point by E1(δ), maxx∈Xt

〈θ∗,x〉 becomes a trivial lowerbound of the maximum of the
GLOC objective and also of the maximum of QGLOC objective (10). This proves the lowerbound of
the Lemma.

For the remaining part of the proof, we use notation X, η, z and V in place of Xt, ηt, zt, and Vt

respectively (recall that z is defined in Section 3).
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It is easy to see that the eigenvalues of XV
−2

X> are all less than 1 (use the SVD of X). Furthermore,
zs = x>s θs ∈ [−S, S], and so ||z||2 ≤

√
dS. Using these facts,

||θ̂t−1||2 = ||V−1
X>z||2

=

√
(z)>XV

−2
X>z

= ||(XV
−2

X>)1/2z||2
≤ ||z||2 ≤

√
dS .

Finally,

max
t∈[T ]

max
x∈Xt

〈θ̂t−1,x〉+
β

1/4
t−1

4c0mt−1
||x||2

V
−1
t−1

≤ max
t∈[T ]

max
x∈Xt

||θ̂t−1||2 +
β

1/4
t−1

4c0mt−1
||x||2

V
−1
t−1

≤ max
t∈[T ]

√
dS + β

1/4
t−1 ·

√
t+ λ

4c0r
· 1

λ

≤
√
dS + β

1/4

T−1 ·
√
T + λ

4c0r
· 1

λ
.

Given a target approximation level cH < 1, we construct a cH-MIPS as follows. Define

J :=

⌈
log1/

√
cH

Mmax

Mmin

⌉
= O(log(dT )/ log(c−1

H )) . (22)

We build a series of J MIPS hashing schemes that are

(c
1/2
H , c

j/2
H Mmax)-MIPS for j ∈ [J ] . (23)

We say that the MIPS hashing succeeds (fails) for a query q if the retrieved vector is (not) (c,M)-
MIPS w.r.t. q. Theorem 6 shows that one can perform a binary search to find a vector x ∈ X that is
cH-MIPS.
Theorem 6. Upon given a query q, perform a binary search over the J MIPS hashings (23) to find
the smallest j∗ ∈ [J ] for which the retrieved vector x(j∗) from the j∗-th hashing succeeds. Then,
x(j∗) is cH-MIPS w.r.t. q with high probability.

Proof. Assume the event that a retrieved vector x(j) from j-th MIPS satisfies (c
1/2
H , c

j/2
H Mmax)-MIPS

for j ∈ [J ], which happens with high probability.

Define the maximum M∗ := maxx∈Xt 〈q,x〉. The result of the binary search is that, for query q,
j∗-th MIPS succeeds but (j∗ − 1)-th MIPS fails. By the definition of (c

1/2
H , c

(j∗−1)/2
H Mmax)-MIPS,

the fact that (j∗ − 1)-th hashing fails implies M∗ < c
(j∗−1)/2
H Mmax. Then,

〈q,x(j∗)〉 ≥ c1/2H · cj
∗

H Mmax = cH · c(j
∗−1)/2

H Mmax > cHM
∗ .

Among various (c,M)-MIPS algorithms [35, 36, 30, 17], we adopt Shrivastava et al. [35]. Shrivastava
et al. propose a reduction of MIPS to locality-sensitive hashing and present a result that their
algorithm is (c,M)-MIPS with O(Nρ∗ logN) inner product computations and space O(N1+ρ∗) for
an optimized value ρ∗ that is guaranteed to be less than 1; see [35, Theorem 5] for detail.

Let d′ be the dimensionality of the projection vectors, where d′ = d2 + d for QGLOC and d′ = d for
GLOC-TS. One can recover the order of the space and time complexity stated in the main text by
O(log(J)Nρ∗ log(N)d′) and O(JNρ∗(N + log(N)d′)), respectively.

K The Regret Bound of QGLOC under Hashing Approximation Error
For most recommendation or interactive retrieval applications, it is reasonable to assume that the
total number of steps T is bounded by a known constant (“fixed budget” in bandit terminology) since
users do not interact with the system for too long. We present the regret of QGLOC combined with
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MIPS hashing in Theorem 7. The theorem states that in the fixed budget setting T , we can set the
target approximation level cH as a function of T and enjoy the same order of regret as exactly solving
the maximization problem (10). The proof is presented at the end of this section.

Theorem 7. Let T ≥ 2 and cH =
(

1 + log(T )√
T

)−1

. Suppose we run QGLOC for T iterations where
we invoke a cH-MIPS hashing algorithmH to approximately find the solution of (10) at each time
t ∈ [T ]. Denote this algorithm by QGLOC〈H〉. Assume that, w.p. at least 1 − δ, the hashing H
successfully retrieves a cH-MIPS solution for every T queries made by QGLOC〈H〉. Then, w.p. at
least 1− 3δ, RegretQGLOC〈H〉

T = Ô(κ−1L(L+R)d5/4
√
T log7/4(T )).

Note that we have made an assumption that, w.h.p., the hashing retrieves a cH-MIPS solution for
every T queries made by the algorithm. One naive way to construct such a hashing is to build T
independent hashing schemes as follows, which is the first low-regret GLB algorithm with time
sublinear in N , to our knowledge.

Corollary 3. Let T ≥ 2 and cH =
(

1 + log(T )√
T

)−1

. Suppose we build T independent hashings

where each hashing is cH-MIPS w.p. at least 1 − δ/T . Suppose we run QGLOC for T iterations
where at time t we use t-th MIPS hashing to solve (10). Then, w.p. at least 1− 3δ, the regret bound
is Ô(κ−1L(L+R)d5/4

√
T log7/4(T )).

Proof. The probability that at least one of T hashing schemes fails to output a cH-MIPS solution is at
most δ. Combining this with Theorem 7 completes the proof.

However, it is easy to see that its space complexity is Ω(T ), which is not space-efficient. Of course,
a better way would be to construct one hashing scheme that is, w.h.p., cH-MIPS for any sequence
of T queries. However, this is nontrivial for the following reason. In bandit algorithms, the second
query depends on the result of the first query. Here, the result of the query q1 is obtained based on
the hash keys computed using the projection vectors. Now, the second query q2 is based on the result
of querying q1, which means that q2 now correlates with the projection vectors. This breaks the
independence of the query with the projection vectors, thus breaking the hashing guarantee. One way
to get around the issue is the union bound. This is possible when there exists a finite set of possible
queries, which is indeed how [18] manage to show a guarantee on such ‘adaptive’ queries. In our
case, unfortunately, there are infinitely many possible queries, and thus the union bound does not
apply easily. Resolving the issue above is of theoretical interest and left as future work.

Meanwhile, it is hardly the case that the correlation between q2 and the projection vectors has an
malignant effect in practice. Indeed, many existing studies using hashing such as Jain et al. [22]
ignore the correlation issue and do not provide any guarantee on the adaptive queries.

K.1 Proof of Theorem 7

Proof. Assume that θ∗ belongs to CONS
t , which happens w.h.p. In this proof, we drop QGLOC from

xQGLOC
t and use xt. Denote by xHt the solution returned by the MIPS algorithm. We omit ONS from
βONS
t to avoid clutter. Then, being cH-MIPS guarantees that, ∀t ∈ [T ],

〈θ̂t−1,x
H
t 〉+

β
1/4
t−1

4c0mt−1
||xHt ||2V−1

t−1

≥ cH
(
〈θ̂t−1,xt〉+

β
1/4
t−1

4c0mt−1
||xt||2

V
−1
t−1

)
. (24)

To avoid clutter, we use X, y, and η in place of Xt−1, yt−1, and ηt−1, respectively, when it is clear
from the context. Note that, using the techniques in the proof of Theorem 2,

〈θ̂t−1,x
H
t 〉 = 〈θ∗,xHt 〉+ 〈θ̂t−1 − θ∗,xHt 〉 ≤ S +

√
βt−1||xHt ||V−1

t−1
. (25)

The instantaneous regret at time t divided by L is

rt
L
≤ 〈θ∗,xt,∗〉 − 〈θ∗,xHt 〉

≤ 〈θ̂t−1,xt〉+
β

1/4
t−1

4c0mt−1
||xt||2V−1

t−1

+ c0β
3/4
t−1mt−1 − 〈θ∗,xHt 〉
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(24)
≤ 1

cH

(
〈θ̂t−1,x

H
t 〉+

β
1/4
t−1

4c0mt−1
||xHt ||2V−1

t−1

)
+ c0β

3/4
t−1mt−1 − 〈θ∗,xHt 〉

=

(
1

cH
− 1

)
〈θ̂t−1,x

H
t 〉+ 〈θ̂t−1 − θ∗,xHt 〉+

1

cH

β
1/4
t−1

4c0mt−1
||xHt ||2V−1

t−1

+ c0β
3/4
t−1mt−1

(25)
≤ log T√

T
S︸ ︷︷ ︸

A1(t)

+
log T√
T

√
βt−1||xHt ||V−1

t−1︸ ︷︷ ︸
A2(t)

+ 〈θ̂t−1 − θ∗,xHt 〉+
1

cH

β
1/4
t−1

4c0mt−1
||xHt ||2V−1

t−1

+ c0β
3/4
t−1mt−1︸ ︷︷ ︸

A3(t)

.

Note that rt ≤ 2LS. Since 1/cH ≤ 2, it is not hard to see that
∑T
t=1 min{2LS,L ·A3(t)} is

O(κ−1L(L+R)d5/4
√
T log7/4(T ))

using the same technique as the proof of Theorem 5. It remains to bound
∑T
t=1 min{2LS,L ·A1(t)}

and
∑T
t=1 min{2S,L ·A2(t)}:

L

T∑
t=1

min{2S,A1(t)} ≤ L
T∑
t=1

min{2S, log T√
T

2S}

(log T<
√
T )

≤ L

T∑
t=1

log T√
T

2S

= O(L
√
T log T )

L

T∑
t=1

min{2S,A2(t)} = L

T∑
t=1

min

{
2S,

log T√
T

√
βt−1||xHt ||V−1

t−1

}

≤ L
T∑
t=1

min

{
2S,
√
βt−1||xHt ||V−1

t−1

}

Using the same argument as the proof of Theorem 2 and Corollary 2,
T∑
t=1

min{2S,L ·A2(t)} = O

(
L(L+R)

κ
d
√
T log3/2(T )

)
.

Altogether, we notice that
∑T
t=1 min{2S,L ·A3(t)} dominates the other terms. Notice that we have

spent δ probability to control the event θ∗ ∈ CONS
t , another δ for controlling the deviation of gt

which appears in the regret bound through βt as shown in the proof of Theorem 2, and another δ for
ensuring the hashing guarantee. This sums to 3δ and concludes the proof.

L Proof of Lemma 1
Proof. We first recall that for L1 sampling:

pi =
|qi|
‖q‖1

Note that:

|Gk| =
∣∣∣∣qikaikpik

∣∣∣∣
=
|qikaik |
|qik | / ‖q‖1

= ‖q‖1 |aik |
≤ ‖q‖1 ‖a‖max =: M

This means that Gk is a bounded random variable. Therefore, we can use Hoeffding’s inequality to
get a high-probability bound:

Xi = Gi − q>a

24



P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− mε

2

2M2

)

≤ 2 exp

(
− mε2

2 ‖q‖21 ‖a‖
2
max

)

M Comparison between L1 and L2 sampling
We first show the known high probability error bound of L2, which has a polynomially decaying
probability of failure.

Lemma 7. [22, Lemma 3.4] Define Gk as in (11) with p = p(L2). Then, given a target error ε > 0,

P
(∣∣ 1
m

∑m
k=1Gk − q>a

∣∣ ≥ ε) ≤ ||q||22||a||22mε2 . (26)

Proof. This proof is a streamlined version of the proof of Lemma 3.4 from [22]. Note that

VarGk ≤ ‖q‖2 ‖a‖2 .
Define

Xm :=

m∑
i=1

(
Gi − q>a

)
Now, since q>a is deterministic,

VarXm =

m∑
i=1

VarGi ≤ m ‖q‖2 ‖a‖2

and,
EXm = 0

Let us apply Chebyshev’s inequality to Xm:

P (|Xm − EXm| ≥ α) ≤ VarXm

α2

⇒ P (|Xm| ≥ mε) ≤
m ‖q‖2 ‖a‖2

m2ε2

⇒ P

(∣∣∣∣∣ 1

m

m∑
i=1

Gi − q>a

∣∣∣∣∣ ≥ ε
)
≤ ‖q‖

2 ‖a‖2

mε2

⇒ P

(∣∣∣∣∣ 1

m

m∑
i=1

Gi − q>a

∣∣∣∣∣ ≥ ε′ ‖q‖ ‖a‖
)
≤ ‖q‖2 ‖a‖2

mε′2 ‖q‖2 ‖a‖2
, where ε = ε′ ‖q‖ ‖a‖

⇒ P
(∣∣q̃>a− q>a

∣∣ ≥ ε′ ‖q‖ ‖a‖) ≤ 1

mε′2

⇒ P
(∣∣q̃>a− q>a

∣∣ ≥ ε′ ‖q‖ ‖a‖) ≤ 1

c
, where m = c/ε′2

⇒ P
(∣∣q̃>a− q>a

∣∣ ≥ ε′ ‖q‖ ‖a‖) ≥ 1− 1

c

To compare the concentration of measure of L1 and L2, we look at so-called “sample complexity”
of L1 and L2. Let δ′ be the target failure probability (set the RHS of (13) to δ′). Then, the sample
complexity of L2 and L1 is ||q||

2
2||a||

2
2

δ′ε2 and log(2/δ′)
2||q||21||a||

2
max

ε2 , respectively. Note L2 has a smaller
scaling with q since ||q||2 ≤ ||q||1, but L1 has a better scaling with a since ||a||max ≤ ||a||2. More
importantly, the concentration bound of L2 decays polynomially with m whereas that of L1 decays
exponentially. However, it is unclear whether or not the polynomial tail of L2 is just an artifact of
analysis. In fact, we find that L2 has an exponential tail bound, but its scaling with q can be very bad.
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While we state the result below in Lemma 8, the key here is that the magnitude of Gk induced by
L2 is at most ||q||22 maxi |ai|/|qi| while that induced by L1 is at most ||q||1||a||max. As qi goes to
zero, the support of the L2-based Gk can be arbitrarily large. Unless one knows that qi is sufficiently
bounded away from 0 (which is false in QGLOC), L2-based Gk raises a concern of having a “thick”
tail.9

Lemma 8. Use p = p(L2). Then,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− mε2

2 ‖q‖42 maxi |ai/qi|2

)

Proof. From the results in Lemma 3.4 of [22] (restated as Lemma 7 in our paper), it seems that L2
sampling has polynomial tails, which is considered as heavy-tailed. Here we show that the tail of L2
sampling does not decay polynomially but exponentially by using Hoeffding’s inequality instead of
Chebychev’s inequality. However, the scale that controls the tail thickness is quite bad, and the tail
can be arbitrarily thick regardless of the norm or variance of q.

We first recall that for L2 sampling:

pi =
q2
i

‖q‖22
Let us first show an upper bound for |Gk|:

|Gk| =
∣∣∣∣qikaikpik

∣∣∣∣
=
|qikaik |
q2
ik
/ ‖q‖22

= ‖q‖22

∣∣∣∣aikqik
∣∣∣∣

≤ ‖q‖22 max
i

∣∣∣∣aiqi
∣∣∣∣ =: M ′

Recall that EGk = 0 and from above, |Gk| ≤M ′. We can now apply Hoeffding’s inequlity:

Xi = Gi − q>a

P

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
− mε2

2M ′2

)

≤ 2 exp

− mε2

2 ‖q‖42 maxi

∣∣∣aiqi ∣∣∣2


This is an exponential tail bound compared to the polynomial tail bound in Lemma 3.4 in [22]. We
do note that the term maxi

∣∣∣aiqi ∣∣∣ could be very bad if mini qi is small and the corresponding ai is
non-zero.

The second comparison is on the variance of L1 and L2. The variance of Gk based on p(L2) can be
shown to be ||q||22||a||22− (q>a)2. With L1, the variance of Gk is now ||q||1(

∑d
i=1 |qi|a2

i )− (q>a)2

whose first term can be upper-bounded by ||q||1||q||2||a||24 using Cauchy-Schwartz. This means that
the variance induced by L1 scales larger with q than by L2 since ||q||2 ≤ ||q||1 and scales smaller
with a since ||a||24 ≤ ||a||22. Thus, neither is an absolute winner. However, if the vectors being
inner-producted are normally distributed, then L1 has a smaller variance than L2 in most cases, for
large enough d as we show in the lemma below. As mentioned in the main text, our projection vectors
are truly normally distributed.

9 Still, the distribution does not belong to so-called “heavy-tailed” distributions.
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Lemma 9. Suppose that q ∼ N (0, Id) and a ∼ N (0, Id) and that q and a are independent of each

other. Then E
(
‖q‖1

∑d
i=1 |qi| a2

i

)
≤ E

(
‖q‖22 ‖a‖

2
2

)
for large enough d.

Proof. First note that if x ∼ N (0, Id), then:

E ‖x‖22 = d .

Then, the RHS is

E ‖q‖22 ‖a‖
2
2 = E ‖q‖22 E ‖a‖

2
2

= d2 .

For the LHS:

E

(
‖q‖1

d∑
i=1

|qi| a2
i

)
= Eq

(
‖q‖1

d∑
i=1

|qi|Eaa
2
i

)

= Eq

(
‖q‖1

d∑
i=1

|qi|

)
= Eq ‖q‖21

= Eq

 d∑
i=1

|qi|2 + 2

d∑
i,j=1,i6=j

|qi| |qj |


= Eq

d∑
i=1

|qi|2 + 2

d∑
i,j=1,i6=j

Eq |qi| |qj |

= d+ 2
2

π

d(d− 1)

2

= d+
2

π
d(d− 1)

=
2

π
d2 +

π − 2

π
d .

where we used the fact that
∑d
i=1 |qi|

2 follows a Chi-squared distribution with d degrees of freedom
and that |qi| follows a half-normal distribution, whose mean is

√
2/π.

Since 2/π < 1, for large d, 2
πd

2 + π−2
π d < d2.

N Hashing Implementation

We implement hashing for QGLOC and GLOC-TS based on python package OptimalLSH10. In
practice, building a series of hashings with varying parameter shown in Section J can be burdensome.
Departing from the theory, we use so-called multi-probe technique [37] that achieves a similar effect
by probing nearby buckets. That is, upon determining a hash key and retrieving its corresponding
bucket, one can also look at other hash keys that are different on only one component. We use k = 12
keys and U = 24 tables.

10https://github.com/yahoo/Optimal-LSH
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