
A Proof of Theorem 3.1
Let us first introduce a lemma that shows that the procedure TEST identifies the players who have a
small error with respect to a given classifier. The proof of this lemma follows from the VC theorem
(and Chernoff bound).

Lemma A.1. For any f , N , ✏, and �, with probability 1� �, G = TEST(f,N, ✏, �) is such that

1. for any i 2 G, err
Di(f)  ✏, and

2. for all i 2 N , if err
Di(f)  ✏

2 , then i 2 G.

We now use the above lemma to prove Theorem 3.1.

By Lemma A.1, at every iteration of Algorithm 2, G
r

 TEST(f (r), N
r

, ✏, �0) includes all players
i 2 N

r

for whom err

Di(f
(r)

)  ✏/2 and no players i 2 N
r

for whom err

Di(f
(r)

) > ✏. Therefore, it
is sufficient to prove that for every r = 1, . . . , dlog(k)e, |G

r

| � 1
2 |Nr

|, in which case the algorithm
ends after dlog(k)e iterations and every player has received a function with error at most ✏ on his
distribution.

In the remainder of the proof, we show that |G
r

| � 1
2 |Nr

| for any r with probability 1� �/ log(k).
Recall that f (r) is learned by taking a sample of size m

✏/4,�0 over distribution ˜D
r

=

1
|Nr|

P
i2Nr

D
i

.
Therefore, with probability 1 � �0, err

D̃r
(f (r)

)  ✏/4. By Markov’s inequality, with probability
1 � �0, f (r) has an error of ✏/2 for at least half of the players in N

r

. Using Lemma A.1, with
probability at most �0, one or more such players are not included in G

r

. Therefore, with overall
probability 1� 2�0 = 1� �/ log(k), |G

r

| � |N
r

|/2.

As for the sample complexity, TEST is called log(k) times, and requests

O

✓
k log(k)

✏
· ln

✓
k

✏�

◆◆
= O

✓
log(k)

✏

✓
k ln

✓
1

✏

◆
+ k ln

✓
k

�

◆◆◆

samples overall. Moreover, we learn a total of log(k) classifiers f (r), requesting

log(k) ·m
✏/4,�0 = O

✓
log(k)

✏

✓
d ln

✓
1

✏

◆
+ ln

✓
log(k)

�

◆◆◆
.

samples overall. The sample complexity follows from these two bounds.

B Omitted Proofs from Section 3.2
B.1 Proof of Lemma 3.3

Recall that for any r, c such that N (r�1)
c

is non-empty, f (r) is consistent with the m
✏

0
/16,�/(2t2)

samples drawn from eD(r�1)
c

. By the VC theorem, err e
D

(r�1)
c

(f (r)
)  ✏0/16 holds with probability at

least 1� �/(2t2). Also, by Lemma A.1, the second statement holds with probability 1� �/(2t) for
each r 2 [t]. It follows from the union bound that with probability at least

1� t2 · �/(2t2)� t · �/(2t) = 1� �,

the two statements holds for any r 2 [t] simultaneously.

B.2 Proof of Claim 3.5
We prove the claim by induction on r. Since n0,0 = k and n0,c = 0 for any c 2 [t], the inequality
holds for r = 0. Suppose that for some r 2 [t], the inequality

n
r

0
,c


✓
r0

c

◆
· k

8

c

holds for r0 = r � 1 and any c 2 {0, 1, . . . , t}. Then we have for any c 2 {0, 1, . . . , t},

n
r,c

 n
r�1,c + n

r�1,c�1/8 
✓
r � 1

c

◆
· k

8

c

+

✓
r � 1

c� 1

◆
· k

8

c�1 ⇥ 8

=

✓
r

c

◆
· k

8

c

.

Therefore, we conclude that the inequality holds for any r, c 2 {0, 1, . . . , t}.
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C Omitted Lower Bound Proofs
C.1 Proof of Lemma 4.2
Recall that in any instance in the support of D

✏

, the instance space is X = {1,?}, while the
hypothesis class is F = {f0, f1}, where f

i

(?) = 0 and f
i

(1) = i for i 2 {0, 1}.

Fix an (✏, �)-learning algorithm A for distribution D
✏

. Suppose A runs on an instance drawn from
D

✏

with a degenerate distribution D. For i 2 {0, 1}, let E
i

denote the event that A outputs f
i

.
Define random variable T as the number of samples drawn by A before it terminates, and let
p
n

= Pr[T = n|E0].
Now we consider the situation that A runs on the instance with D0

(1) = 2✏, D0
(?) = 1� 2✏, and

the target function is f1. On this instance, with probability at least p
n

· (1 � 2✏)n, A outputs f0
after drawing exactly n samples, all of which are ?. Since D0

(1) = 2✏ and the target function is
f1, err

D

0
(f0) = 2✏ > ✏, i.e., A outputs a function with error greater than ✏ on D0. Since A is an

(✏, �)-learning algorithm for D
✏

,

� �
1X

n=0

p
n

· (1� 2✏)n = E
⇥
(1� 2✏)T

�� E0
⇤
.

By Jensen’s inequality and the convexity of the function log1�2✏ x for ✏ 2 (0, 0.1), we have

E [T |E0] � log1�2✏ E
⇥
(1� 2✏)T |E0

⇤ � log1�2✏ � =

ln(1/�)

ln[1/(1� 2✏)]
� ln(1/�)

3✏
.

Here the last step holds since ln[1/(1� 2✏)]  3✏ for any ✏ 2 (0, 0.1). A similar argument (using the
same distribution D0, but the target function f0 instead of f1) gives E [T |E1] � ln(1/�)/(3✏).

Therefore, A takes at least ln(1/�)/(3✏) samples in expectation when the distribution D is degenerate,
which happens with probability 1/2 for an instance drawn from D

✏

. Therefore, the expected sample
complexity of A on a random instance sampled from D

✏

is lower bounded by

1

2

· ln(1/�)
3✏

=

ln(1/�)

6✏
.

C.2 Claims in the Proof of Theorem 4.1
Proof of Claim 4.3. Let p

i

be the probability that, on a random instance drawn from D
k,✏

, the
function f returned by A satisfies err

Di(f) > ✏ and err

Dj (f)  ✏ for any j 6= i. By assumption,
P

k

i=1 pi  �.

Let random variable T denote the number of times that A0 repeats the simulation process (it repeats
the process every time the condition 8j 6= l, err

Dj (f) < ✏ is violated). Let E
i

denote the event that
A0 returns a function with error greater than ✏ and T = i. Clearly, E

i

implies:

1. The simulated algorithm A fails to return a function with an error smaller than ✏ on every
distribution in each of the first i� 1 simulations, which happens with probability at most �i�1.

2. In the i-th iteration, A returns a function f such that err
Dj (f)  ✏ for j 6= l, yet err

Dl(f) > ✏.
This happens with probability p

l

.

Recall that l is drawn uniformly at random from [k]. Thus,

Pr[E
i

]  �i�1 · 1
k

kX

i=1

p
i

 �i/k.

Overall, the probability that A0 returns a function with error greater than ✏ is bounded by
1X

i=1

Pr[E
i

] 
1X

i=1

�i/k =

�

k(1� �)
 10�

9k
.

which proves that A0 is an (✏, 10�/(9k))-learning algorithm for D
✏

.
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Proof of Claim 4.4. Let random variable T denote the number of times that A0 repeats the simulation
process. Let X1, X2, . . . be the number of samples drawn from distribution D in each simulation.
Note that these random variables are independently and identically distributed, so by Wald’s equation,

E
"

TX

i=1

X
i

#
= E [T ] · E [X1] .

For any positve integer i, T � i holds only if the simulated algorithm A fails to return a function
with an error smaller than ✏ on every distribution in each of the first i� 1 simulations. By assumption,
this happens with probability at most �i�1. Therefore,

E [T ] =

1X

i=1

Pr[T � i] 
1X

i=0

�i  1

1� �
 10

9

.

Note that conditioning on the value of l in the first iteration of A0, A0 draws m
l

samples from D in
expectation. Since l is uniformly distributed in [k],

E [X1] =
1

k

kX

i=1

m
i

,

and the expected number of samples taken by A0 in total is at most

E [T ] · E [X1]  10

9k

kX

i=1

m
i

.

C.3 Proof of Theorem 4.5

Fix k, d 2 N and ✏, � 2 (0, 0.1). We define instance (F , f⇤, {D
i

}k
i=1) as follows:

• Instance space: X = ([k]⇥ [d]) [ {?}.
• Hypothesis class: F is the collection of all binary functions on X that map ? to 0 and take value 1

on at most d points.
• Target function: f⇤ maps every element in X to 0.
• Players’ distributions: for each player i 2 [k], D

i

((i, j)) = 2✏/d for any j 2 [d] and D
i

(?) =
1� 2✏.

Let m1,m2, . . . ,mk

be integers such that m1 +m2 + · · ·+m
k

= m
(k)
✏,�

, and when m
i

samples are
drawn from D

i

for each i 2 [k], with probability 1 � �, any consistent function in F has an error
at most ✏ on every D

i

. We consider the following algorithm A that proceeds in rounds: in each
round, A draws m

i

samples from D
i

for each i 2 [k]. A terminates if at the end of some round,
err

Di(f)  ✏ for all i 2 [k] and any function f 2 F that is consistent with the m
(k)
✏,�

samples. In
expectation, A terminates after at most 1/(1� �) rounds, and takes at most m(k)

✏,�

/(1� �) samples.

Note that if a sample set contains strictly less than d/2 elements in {(i⇤, 1), (i⇤, 2), . . . , (i⇤, d)} for
some i⇤, there is a consistent function in F with error strictly above ✏ on D

i

⇤ , namely, the function
that maps (i, j) to 1 if and only if i = i⇤ and (i⇤, j) is not in the sample set. Therefore, when A
terminates, at least d/2 elements from X \ {?} have been drawn from each distribution.

Note that the probability that each sample is different from ? is 2✏, so, in expectation, (d/2) ·
(1/(2✏)) = d/(4✏) samples from each distribution are required to draw d/2 samples from X \ {?}.
Therefore, we have m

(k)
✏,�

/(1� �) � dk/(4✏), which proves the theorem.

D Extension to the Non-realizable Setting
In this section, we generalize our sample complexity upper bounds in Section 3 to the non-realizable
setting, where we have a weaker assumption on the consistency between players’ distributions.
Instead of assuming a perfect target function in F with zero error on every distribution, we consider
the case that there exists f⇤ 2 F with err

Di(f
⇤
)  ✏/100 for all i 2 [k]. Our goal is still to output
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a single function or multiple functions, such that the function assigned to each player has an error
below ✏ on that player’s distribution. We call this the non-realizable collaborative PAC setting, and
prove analogues of Theorems 3.1 and 3.2.

Theorem D.1. There is an (✏, �)-learning algorithm in the non-realizable personalized collaborative
PAC setting using m samples, where

m = O

✓
log(k)

✏

✓
(d+ k) log

✓
1

✏

◆
+ k log

✓
k

�

◆◆◆
.

Theorem D.2. There is an (✏, �)-learning algorithm in the non-realizable centralized collaborative
PAC setting using m samples, where

m = O

✓
log

2
(k)

✏

✓
(d+ k) ln

✓
1

✏

◆
+ k ln

✓
1

�

◆◆◆
.

We prove Theorem D.2 by slightly adapting Algorithm 2; Theorem D.1 can be proved similarly.

Proof of Theorem D.2. Recall that in each round r of Algorithm 2, we draw

m
✏

0
/16,�/(2t2) = m

✏/96,�/(2t2)

samples from each mixture eD(r�1)
c

and query the oracle OF on the union of all the samples. Now
suppose that, instead, we draw from eD(r�1)

c

a dataset S(r)
c

of size

C · d ln(1/✏) + ln(2t2/�)

✏
.

By [1, Theorem 5.7], we can choose a sufficiently large constant C such that with probability
1� �/(2t2), for any function f 2 F :

1. err e
D

(r�1)
c

(f)  ✏/100 implies err
S

(r)
c

(f)  ✏/98.
2. err e

D

(r�1)
c

(f) > ✏/96 implies err
S

(r)
c

(f) > ✏/98.

Then we choose f (r) such that the empirical error of f (r) on every dataset S(r)
c

is upper bounded by
✏/98. Note that given that the two conditions above hold, such a function f (r) always exists, since
we assume that err e

D

(r�1)
c

(f⇤
)  ✏/100. Other parts of Algorithm 2 remain unchanged.

The modified algorithm indeed (✏, �)-learns in the non-realizable collaborative PAC setting. Since we
guarantee that with probability 1� �/(2t2), the error of f (r) on eD(r)

c

is bounded by ✏/96, Lemma 3.3
and the rest of the proof still holds. Furthermore, the (asymptotic) sample complexity of the algorithm
does not change, as the number of samples drawn from each mixture only increases by a constant
factor.
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