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Abstract

The k-support and OWL norms generalize the `1 norm, providing better prediction
accuracy and better handling of correlated variables. We study the norms obtained
from extending the k-support norm and OWL norms to the setting in which there
are overlapping groups. The resulting norms are in general NP-hard to compute,
but they are tractable for certain collections of groups. To demonstrate this fact,
we develop a dynamic program for the problem of projecting onto the set of
vectors supported by a fixed number of groups. Our dynamic program utilizes tree
decompositions and its complexity scales with the treewidth. This program can
be converted to an extended formulation which, for the associated group structure,
models the k-group support norms and an overlapping group variant of the ordered
weighted `1 norm. Numerical results demonstrate the efficacy of the new penalties.

1 Introduction

The use of the `1-norm to induce sparse solutions is ubiquitous in machine learning, statistics, and
signal processing. When the variables can be grouped into sets corresponding to different explanatory
factors, group variants of the `1 penalty can be used to recover solutions supported on a small number
of groups. When the collection of groups G forms a partition of the variables (that is, the groups do
not overlap), the group lasso penalty [19]

ΩGL(x) :=
∑

G∈G
‖xG‖p (1)

is often used. In many cases, however, some variables may contribute to more than one explanatory
factor, which leads naturally to overlapping-group formulations. Such is the case in applications such
as finding relevant sets of genes in a biological process [10] or recovering coefficients in wavelet
trees [17]. In such contexts, the standard group lasso may introduce artifacts, since variables that are
contained in different numbers of groups are penalized differently. Another approach is to employ
the latent group lasso [10]:

ΩLGL(x) := min
x,v

∑
G∈G
‖vG‖p such that

∑
G∈G

vG = x, (2)

where each vG is a separate vector of latent variables supported only on the group G. The latent
group lasso (2) can be written in terms of atomic norms, where the atomic set is

{x : ‖x‖p≤ 1, supp(x) ⊆ G for some G ∈ G} .
This set allows vectors supported on any one group. The unit ball is the convex hull of this atomic set.

A different way of extending the `1-norm involves explicit use of a sparsity parameter k. Argyriou
et al. [1] introduce the k-support norm Ωk from the atomic norm perspective. The atoms are the set
of k-sparse vectors with unit norm, and the unit ball of the norm is thus

conv ({x : ‖x‖p≤ 1, |supp(x)|≤ k}) . (3)
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The k-support norm with p = 2 offers a tighter alternative to the elastic net, and like the elastic net, it
has better estimation performance than the `1 norm especially in the presence of correlated variables.
Another extension of the `1 norm is to the OSCAR/OWL/SLOPE norms [5, 20, 4], which order the
elements of x according to magnitude before weighing them:

ΩOWL(x) :=
∑

i∈[n]
wi|x↓i |. (4)

where the weights wi, i = 1, 2, . . . , n are nonnegative and decreasing and x↓ denotes the vector x
sorted by decreasing absolute value. This family of norms controls the false discovery rate and clusters
correlated variables. These norms correspond to applying the `∞ norm to a combinatorial penalty
function in the framework of Obozinski and Bach [11, 12], and can be generalized by considering
different `p-norms. For p = 2, we have the SOWL norm [18], whose variational form is

ΩSOWL(x) := 1
2 minη∈Rn

+

∑
i∈[n]

(
x2i /ηi + wi|η↓i |

)
.

We will refer to the generalized version of these norms as pOWL norms. The pOWL norms can be
viewed as extensions of the k-support norms from the atomic norm angle, which we will detail later.
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Figure 1: Some sparsity-inducing norms. Each arrow represents an extension of a previous norm. We study
the two shaded norms on the right.

In this paper, we study the norms obtained by combining the overlapping group formulations with
the k-sparse/OWL formulations, with the aim of obtaining the benefits of both worlds. When the
groups do not overlap, the combination is fairly straightforward; see the GrOWL norm introduced
by Oswal et al. [13]. We consider two classes of norms for overlapping groups. The latent k-group
support (LG(k)) norm, very recently introduced by Rao et al. [15], is defined by the unit ball

conv
({
x : ‖x‖p≤ 1, supp(x) ⊆

⋃
G∈Gk

G for some subset Gk ⊆ G with k groups
})

, (5)

directly extending the k-support norm definition to unions of groups. We introduce the latent group
smooth OWL (LGS-OWL) norm, which similarly extends OWL/SOWL/GrOWL. These norms can
be applied in the same settings where the latent group lasso has proven to be useful, while adapting
better to correlations. We explain how the norms are derived from a combinatorial penalty perspective
using the work of Obozinski and Bach [11, 12], and also provide explicit atomic-norm formulations.
The LGS-OWL norm can be seen as a combination of k-support norms across different k.

The rest of this focuses on computational aspects of these norms. Both the LG(k) norm and
the LGS-OWL norm are in general NP-hard to compute. Despite this hardness result, we devise
a computational approach that utilizes tree decompositions of the underlying group intersection
graph. The key parameter affecting the efficiency of our algorithms is the treewidth tw of the group
intersection graph, which is small for certain graph structures such as chains, trees, and cycles.
Certain problems with hierarchical groups like image recovery can have a tree structure [17, 3].

Our first main technical contribution is a dynamic program for the best k-group sparse approximation
problem, which has time complexity O(2O(tw) ·mk + n), where m is the total number of groups.
For group intersection graphs with a tree structure (tw = 2), this leads to a O(mk + n) algorithm,
significantly improving on the O(m2k + n) algorithm presented in [3]. Next, we build on the
principles behind the dynamic program to construct extended formulations of O(2O(tw) ·mk2 + n)
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size for LG(k) and O(2O(tw) ·m3 + n) for LGS-OWL, improving by a factor of k or m respectively
in the special case in which the tree decomposition is a chain. This approach also yields extended
formulations of size O(nk) and O(n2) for the k-support and pOWL norms, respectively. (Previously,
only a O(n2) linear program was known for OWL [5].) We thus facilitate incorporation of these
norms into standard convex programming solvers.

Related Work. Obozinski and Bach [11, 12] develop a framework for penalties derived by convex-
ifying the sum of a combinatorial function F and an `p term. They describe algorithms for computing
the proximal operators and norms for the case of submodular F . We use their framework, but note
that the algorithms they provide cannot be applied since our functions are not submodular.

Two other works focus directly on sparsity of unions of overlapping groups. Rao et al. [15] introduce
the LG(k) norm and approximates it via variable splitting. Baldassarre et al. [3] study the best
k-group sparse approximation problem, which they prove is NP-hard. For tree-structured intersection
graphs, they derive the aforementioned dynamic program with complexity O(m2k + n).

For the case of p = ∞, a linear programming relaxation for the unit ball of the latent k-group
support norm is provided by Halabi and Cevher [9, Section 5.4]. This linear program is tight if the
group-element incidence matrix augmented with an all-ones row is totally unimodular. This condition
can be violated by simple tree-structured intersection graphs with just four groups.

Notation and Preliminaries. GivenA ⊆ [n], the vector xA is the subvector of x ∈ Rn correspond-
ing to the index set A. For collections of groups G, we use m to denote the number of groups in G,
that is, m = |G|. We assume that

⋃
G∈G G = [n], so that every index i ∈ [n] appears in at least one

group G ∈ G. The discrete function CG(A) denotes the minimum number of groups from G needed
to cover A (the smallest set cover).

2 Overlapping Group Norms with Group Sparsity-Related Parameters

We now describe the LG(k) and LGS-OWL norms from the combinatorial penalty perspective by
Obozinski and Bach [11, 12], providing an alternative theoretical motivation for the LG(k) norm
and formally motivating and defining LGS-OWL. Given a combinatorial function F : {A ⊆ [n]} →
R ∪ {+∞} and an `p norm, a norm can be derived by taking the tightest positively homogeneous
convex lower bound of the combined penalty function F (supp(x)) + ν‖x‖pp. Defining q to satisfy
1/p+ 1/q = 1 (so that `p and `q are dual), this procedure results in the norm ΩFp , which is given by
the convex envelope of the function ΘF

p (x) := q1/q(pν)1/pF (supp(x))1/q‖x‖p, whose unit ball is

conv
({
x ∈ Rn : ‖x‖p≤ F (supp(x))−1/q

})
. (6)

The norms discussed in this paper can be cast in this framework. Recall that the definition of OWL (4)
includes nonnegative weights w1 ≥ w2 ≥ . . . wn ≥ 0. Defining h : [n]→ R to be the monotonically
increasing concave function h(k) =

∑k
i=1 wi, we obtain

k-support : F (A) =


0, A = ∅,
1, |A|≤ k,
∞, otherwise,

LG(k) : F (A) =


0, A = ∅,
1, CG(A) ≤ k,
∞, otherwise,

pOWL : F (A) = h(|A|), LGS-OWL : F (A) = h(CG(A)).

The definitions of the k-support and LG(k) balls from (3) and (5), respectively, match (6). As for the
OWL norms, we can express their unit ball by

conv

(
m⋃
i=1

{
x ∈ Rn : ‖x‖p≤ h(i)−1/q, CG(supp(x)) = i

})
. (7)

This can be seen as taking all of the k-support or LG(k) atoms for each value of k, scaling them
according to the value of k, then taking the convex hull of the resulting set. Hence, the OWL norms
can be viewed as a way of interpolating the k-support norms across all values of k. We take advantage
of this interpretation in constructing extended formulations.
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Hardness Results. Optimizing with the cardinality or non-overlapping group based penalties is
straightforward, since the well-known PAV algorithm [2] allows us to exactly compute the proximal
operator in O(n log n) time [12]. However, the picture is different when we allow overlapping groups.
There are no fast exact algorithms for overlapping group lasso, and iterative algorithms are typically
used. Introducing the group sparsity parameters makes the problem even harder.

Theorem 2.1. The following problems are NP-hard for both ΩLG(k) and ΩLGS-OWL when p > 1:

Compute Ω(y), (norm computation)

arg minx∈Rn
1
2‖x− y‖

2
2 such that Ω(x) ≤ µ, (projection operator)

arg minx∈Rn
1
2‖x− y‖

2
2+λΩ(x). (proximal operator)

Therefore, other problems that incorporate these norm are also hard. Note that even if we only allow
each element to be in at most two groups, the problem is already hard. We will show in the next two
sections that these problems are tractable if the treewidth of the group intersection graph is small.

3 A Dynamic Program for Best k-Group Approximation

The best k-group approximation problem is the discrete optimization problem

arg min
x

‖y − x‖22 such that CG(supp(x)) ≤ k, (8)

where the goal is to compute the projection of a vector y onto a union of subspaces each defined by a
subcollection of k groups. The solution to (8) has the form

x′i =

{
yi i in chosen support,
0 otherwise.

As mentioned above, Baldassarre et al. [3] show that this problem is NP-hard. They provide a
dynamic program that acts on the group intersection graph and focus specifically on the case where
this graph is a tree, obtaining a O(m2k + n) dynamic programming algorithm. In this section, we
also start by using group intersection graphs, but instead focus on the tree decomposition of this
graph, which yields a more general approach.

3.1 Group Intersection Graphs and Tree Decompositions

We can represent the interactions between the different groups using an intersection graph,
which is an undirected graph IG = (G, EG) in which each vertex denotes a group and two
groups are connected if and only if they overlap. For example, if the collection of groups is
{{1, 2, 3}, {3, 4, 5}, {5, 6, 7}, . . . }, then the intersection graph is simply a chain. If each group
corresponds to a parent and all its children in a rooted tree, the intersection graph is also a tree.

The group intersection graph highlights the dependencies between different groups. Algorithms for
this problem need to be aware of how picking one group may affect the choice of another, connnected
group. (If the groups do not overlap, then no groups are connected and a simple greedy approach
suffices.) A tree decomposition of IG is a more precise way of representing these dependencies.

We provide the definition of tree decompositions and treewidth below and illustrate the core ideas in
Figure 2. Tree decompositions are a fundamental tool in parametrized complexity, leading to efficient
algorithms if the parameter in question is small. See [7, 8] for a a more comprehensive overview

Figure 2: From groups to a group intersection graph to a tree decomposition of width 2.
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A tree decomposition of (V,E) is a tree T with vertices X = {X1, X2, . . . , XN}, satisfying the
following conditions: (1) Each Xi is a subset of V , and the union of all sets Xi gives V . (2) For every
edge (v, w) in E, there is a vertex Xi that contains both v and w. (3) For each v ∈ V , the vertices
that contain v form a connected subtree of T . The width of a tree decomposition is maxi|Xi|−1, and
the treewidth of a graph (denoted by tw) is the smallest width among all tree decompositions. The
tree decomposition is not unique, and there is always a tree width with number of nodes |X |≤ |V |
(see for example Lemma 10.5.2 in [7]). Henceforth, we will assume that |X |≤ m.

The treewidth tw is modest for many types of graphs. For example, the treewidth is bounded
for the tree (tw = 1), the cycle (tw = 2), and series-parallel graphs (tw = 2). Computing tree
decompositions with optimal width for these graphs can be done in linear time. On the other hand,
the grid graph has large treewidth (tw ≈

√
n) and checking if a graph has tw ≤ k is NP-complete1.

3.2 A Dynamic Program for Tree Decompositions

Given a collection of groups G, a corresponding tree decomposition T (G) of the group intersection
graph, and a vector y ∈ Rn, we provide a dynamic program for problem (8), the best k-group
approximation of y.

The tree decomposition has several features that we can exploit. The tree structure provides a natural
order for processing the vertices, which are subcollections of groups. Properties (1) and (2) yield a
natural way to map elements i ∈ [n] onto vertices in the tree, indicating when to include yi in the
process. Finally, the connected subtree corresponding to each group G as a result of property (3)
means that we only need to keep explicit information about G for that part of the computation.

The high-level view of our approach is described below. Details appear in the supplementary material.

Preprocessing: For each i ∈ [n], let G(i) denote the set of all groups that contain i. We have three
data structures: A and V, which are both indexed by (X,Y ), with X ∈ X and Y ⊆ X; and T, which
is indexed by (X,Y, s), with s ∈ {0, 1 . . . , k}.

1. Root the tree decomposition and process the nodes from root to leaves: At each node X ,
add an index i ∈ [n] to A(X,G(i)) if i is unassigned and G(i) ⊆ X .

2. Set V(X,Y )←
∑{

y2i : i ∈ A(X,G(i)), Y ∩ G(i) 6= 0
}

.

Main Process: At each vertex X in the tree decomposition, we are allowed to pick groups Y to
include in the support of the solution. The s term in T(X,Y, s) indicates the current group sparsity
“budget” that has been used. Proposition 3.2 below gives the semantic meaning behind each entry in
T . We process the nodes from the leaves to the root to fill T . At each step, the entries for node Xp

will be updated with information from its children.

The update for a leaf Xp is simply T(Xp, Yp, s) ← V(Xp, Yp) if |Yp|= s. If |Yp|6= s, we mark
T(Xp, Yp, s) as invalid. For non-leaf Xp, we need to ensure that the groups chosen by the parent and
the child are compatible. We ensure this property via constraints of the form Yc ∩Xp = Yp ∩Xc.
For a single child Xc we have

T(Xp, Yp, s)← max
Y :Y ∩Xp=Yp∩Xc

{
T(Xc, Y, s− s0) : |Yp ∩Xc|= s0

}
+ V(Xp, Yp), (9)

and finally for Xp multiple children Xc(1), . . . , Xc(d) of Xp, we set T(Xp, Yp, s) as

max
Yi:Yi∩Xp=Yp∩Xc(i)

for each i

 ∑
∑d

i=1 si=s−s0

T(Xc(i), Yi, si) :

∣∣∣∣∣∣Yp ∩
⋃
i∈[d]

Xc(i)

∣∣∣∣∣∣ = s0

+ V(Xp, Yp). (10)

After making each update, we keep track of which Yi was used for each of the children for
T (Xp, Yp, s). This allows us to backtrack to recover the solution after T has been filled.

The next lemma and proposition prove the correctness of this dynamic program. The lemma follows
from the fact that every clique in a graph is contained in some node in any tree decomposition, while
the proposition from induction from the leaf nodes.

1Nonetheless, there is significant research on developing exact and heuristic tree decomposition algorithms.
There are regular competitions for better implementations [6, pacechallenge.wordpress.com].
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Lemma 3.1. Every index in [n] is assigned in the first preprocessing step.
Proposition 3.2. For a node X , let yX be the y vector restricted to just the indices i assigned to
nodes below and including X . Each entry T(X,Y, s) is the squared `2-norm of the best projection of
yX , subject to the fact that besides the groups in Y , at most s− |Y | are allowed to be used.

We now prove the time complexity of this algorithm. Proposition 3.4 describes the time complexity of
the update when there are many children. It uses the following simple lemma about max-convolutions.
Computing the other updates is straightforward.
Lemma 3.3. The max-convolution f between two concave functions g1, g2 : {0, 1, . . . , k} → R,
defined by f(i) := maxj {g1(j) + g2(i− j)}, can be computed in O(k) time.
Proposition 3.4. The update (10) for a fixed Xp, Yp across all values s ∈ {0, 1, . . . , k} can be
implemented in O(2O(tw) · dk) time.

Combining timing and correctness results gives us the desired algorithmic result. This approach
significantly improves on the results of Baldassarre et al. [3]. Their approach is specific to groups
whose intersection graph is a tree and uses O(m2k + n) time.
Theorem 3.5. Given G and a corresponding tree decomposition TG with treewidth tw, projection
onto the corresponding k-group model can be done in O(2O(tw) · (mk + n)) time. When the group
intersection graph is a tree, the projection takes O(mk + n) time.

4 Extended Formulations from Tree Decompositions

Here we model explicitly the unit ball of LG(k) (5) and LGS-OWL (7). The principles behind this
formulation are very similar to the dynamic program in the previous section.

We first consider the latent k-group support norm, whose atoms are{
x : ‖x‖p≤ 1, supp(x) ⊆

⋃
G∈Gk

G for some subset Gk ⊆ G with k groups
}
.

The following process describes a way of selecting an atom; our extended formulation encodes this
process mathematically. We introduce variables b, which represent the `p budget at a given node,
choice of groups, and group sparsity budget. We start at the root Xr, with `p budget of µ and group
sparsity budget of k: ∑

b(Xr,Y,k−|Y |) ≤ µ. (11)

We then start moving towards the leaves, as follows.

1. Suppose we have picked some the groups at a node. Assign some of the `p budget to the xi
terms, where the index i is compatible with the node and the choice of groups.

2. Move on to the child and pick the groups we want to use, considering only groups that
are compatible with the parent. Debit the group budget accordingly. If there are multiple
children, spread the `p and group budgets among them before picking the groups.

The first step is represented by the following relations. Intermediate variables z and a are required to
ensure that we spread the `p budget correctly among the valid xi.

b(X,Y,s) ≥ ‖(z(X,Y,s), u(X,Y,s))‖p, (12)

z(X,Y,s) ≥ ‖{a(X,(Y,Y
′),s) : Y ′ ∩ Y 6= ∅}‖p, (13)

a(X,Y
′,s) ≤

∑
Y⊆X

a(X,(Y,Y
′),s), (14)

‖xA(X,Y )‖2 ≤
∑

A(X,Y )=A(X,Y ′)

∑k

s=0
a(X,Y

′,s). (15)

The second step is represented by the following inequality in the case of a single child.

u(Xp,Yp,s) ≥
∑{

b(Xc,(Yp,Y ),s−s0) : Y ∩Xp = Yp ∩Xc, |Yp ∩Xc|= s0

}
. (16)
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When there are multiple children, we need to introduce more intermediate variables to spread the
group budget correctly. The technique here is similar to the one used in the proof of Proposition 3.4;
we defer details to the supplementary material. In both cases, we need to collect the budgets that have
been sent from each Yp:

b(Xc,Y,s) ≤
∑

Yp

b(Xc,(Yp,Y ),s). (17)

Those b variables unreachable by the budget transfer process are set to 0. Our main theorem about the
correctness of the construction in this section follows from the fact that when µ = 1, every extreme
point with nonzero x in our extended formulation is an atom of the corresponding LG(k).
Theorem 4.1. We can model the set ΩLG(k)(x) ≤ µ using O(2O(tw) · (mk2 + n)) variables and
inequalities in general. When the tree decomposition is a chain, O(2O(tw) · (mk + n)) suffices.

For the unit ball of ΩLGS-OWL, we can exploit the fact that the atoms of ΩLGS-OWL are obtained from
ΩLG(k) across different k at different scales. Instead of using the inequality (11) at the node, we have∑

Y⊆Xr

h(k)1/qb(Xr,Y,k−|Y |) ≤ µ,

which leads to a program of size O(2O(tw) · (m2 +n)) for chains and O(2O(tw) · (m3 +n)) for trees.

5 Empirical Observations and Results

The extended formulations above can be implemented in modeling software such as CVX. This
may incur a large processing overhead, and it is often faster to implement these directly in a convex
optimization solver such as Gurobi or MOSEK. Use of the `∞-norm leads to a linear program which
can be significantly faster than the second-order conic program that results from the `2-norm.

We evaluated the performance of LG(k) and LGS-OWL on linear regression problems minx
1
2‖y −

Ax‖2+λΩ(x). In the scenarios considered, we use the latent group lasso as a baseline. We test both
the `2 and `∞ variants of the various norms. Following [13] (which descrbes GrOWL), we consider
two different types of weights for LGS-OWL. The linear variant sets wi = 1− (i− 1)/n for i ∈ [n],
whereas in the spike version, we set w1 = 1 and wi = 0.25 for i = 2, 3, . . . , n. The regularization
term λ was chosen by grid search over {10−2, 10−1.95, . . . , 104} for each experiment.

The metrics we use are support recovery and estimation quality. For the support recovery experiments,
we count the number of times the correct support was identified. We also compute the root mean
square (RMSE) of ‖x− x∗‖2 (estimation error).2

We had also tested the standard lasso, elastic net, and k-support and OWL norms, but these norms
performed poorly. In our experiments they were not able to recover the exact correct support in
any run. The estimation performance for the k-support norms and elastic net were worse than the
corresponding latent group lasso, and likewise for OWL vs. LGS-OWL.

Experiments. We used 20 groups of variables where each successive group overlaps by two ele-
ments with the next [10, 14]. The groups are given by {1, . . . , 10}, {9, . . . , 18}, . . . , {153, . . . , 162}.
For the first set of experiments, the support of the true input x∗ are a cluster of five groups in the
middle of x, with xi = 1 on the support. For the second set of experiments, the original x is supported
by the two disjoint clusters of five overlapping groups each, with xi = 2 on one cluster and xi = 3
on the other.

Each entry of the A matrix is chosen initially to be i.i.d. N (0, 1). We then introduce correlations
between groups in the same cluster in A. Within each cluster of groups, we replicate the same set of
columns for each group in the non-overlapping portions of the group (that is, every pair of groups in
a cluster shares at least 6 columns, and adjacent groups share 8 columns). We then introduce noise by
adding i.i.d. elements from N (0, 0.05) so that the replications are not exact. Finally, we generate y
by adding i.i.d. noise from N (0, 0.3) to each component of Ax∗.

We present support recovery results in Figure 3 for the `2 variants of the norms which perform better
than the`∞ versions, though the relative results between the different norms hold. In the appendix we
provide the graphs for support recovery and estimation quality as well as other observations.

2It is standard in the literature to compute the RMSE of the prediction or estimation quality. RMSE metrics
are not ideal in practice since we should “debias” x to offset shrinkage due to the regularization term.
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Figure 3: Support recovery performance as number of measurements (height of A) increases. The vertical
axis indicates the number of trials (out of 100) for which the correct support was identified. The two left graphs
correspond to the first configuration of group supports (five groups), while the others to the second configuration
(ten groups). Each line represents a different method. In the first and third graphs, we plot LG(k) for different
values of k, increasing from 1 to the “ground truth” value. Note that k = 1 is exactly the latent group lasso. In
the second and fourth graphs, we plot LGS-OWL for the different choices of weights wi discussed in the text.

Our methods can significantly outperform latent group lasso in both support recovery and estimation
quality. We provide a summary below and more details are provided in the supplementary.

We first focus on support recovery. There is a significant jump in performance when k is the size
of the true support. Note that exceeding the ground-truth value makes recovery of the true support
impossible in the presence of noise. For smaller values of k, the results range from slight improvement
(especially when k = 4 or k = 8 in the first and second experiments respectively) to mixed results (for
large number of rows in A and small k). The LGS-OWL norms can provide performance almost as
good as the best settings of k for LG(k), and can be used when the number of groups is unknown. We
expect to see better performance for well-tuned OWL weights. We see similar results for estimation
performance. Smaller values of k provide little to no advantage, while larger values of k and the
LGS-OWL norms can offer significant improvement.

6 Discussion and Extensions

We introduce a variant of the OWL norm for overlapping groups and provide the first tractable
approaches for this and the latent k-group support norm (via extended formulations) under a bounded
treewidth condition. The projection algorithm for the best k-group sparse approximation problem
generalizes and improves on the algorithm by Baldassarre et al. [3]. Numerical results demonstrate
that the norms can provide significant improvement in support recovery and estimation.

A family of graphs with many applications and large treewidth is the set of grid graphs. Groups over
collections of adjacent pixels/voxels lead naturally to such group intersection graphs, and it remains
an open question whether polynomial time algorithms exist for this set of graphs. Another venue for
research is to derive and evaluate efficient approximations to these new norms.

It is tempting to apply recovery results on the latent group lasso here, since LG(k) can be cast as a
latent group lasso instance with groups {G′ : G′ is a union of up to k groups of G}. The consistency
results of [10] only applies under the strict condition that the target vector is supported exactly by a
unique set of k groups. The Gaussian width results of [16] do not give meaningful bounds even when
the groups are disjoint and k = 2. Developing theoretical guarantees on the performance of these
methods requires a much better understanding of the geometry of unions of overlapping groups.

We can easily extend the dynamic program to handle the case in which we want both k-group sparsity,
and overall sparsity of s. For tree-structured group intersection graphs, our dynamic program has
time complexity O(mks+ n log s) instead of the Õ(m2ks2 +mn) by [3]. This yields a variant of
the above norms that again has a similar extended formulations. These variants could be employed as
an alternative to the sparse overlapping set LASSO by Rao et al. [14]. We leave this to future work.
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A Hardness Results

To formally define NP-hardness, we need to be clear about what the inputs are. These are y ∈ Rn and
the collection of groups G for both norms, and in the case of the ΩLG(k) we include the k parameter.
For the pOWL norm, we assume that the function h in the definition of the norm is strictly concave.
Theorem 2.1. The following problems are NP-hard for both ΩLG(k) and ΩLGS-OWL when p > 1:

Compute Ω(y), (norm computation)

arg minx∈Rn1/2‖x− y‖22 such that Ω(x) ≤ µ, (projection operator)

arg minx∈Rn1/2‖x− y‖22+λΩ(x). (proximal operator)

Proof. We focus on the LG(k) case first, and will describe how to extend this argument to the
LGS-OWL norm after. We use a reduction from the NP-complete vertex cover problem to show this.
Given an undirected graph (V,E), a vertex cover W ⊂ V is a collection of vertices such that every
edge touches at least one point in W . The goal of the vertex cover problem is to determine if there
exists a vertex cover of size at most k.

We can map each graph (V,E) into a collection of groups G over the ground set E. Each vertex v
represents a group that contains all edges e that touch the node.

We will show that the unit ball of ΩLG(k) is unit `p ball if and only if there is a vertex cover of size
k, and if there is not then it is a strict subset of the `p ball. Note that we can include every single
index in some choice of k groups if and only if we can find a vertex cover of size k. This means that
the ΩLG(k) is the `p-norm if there is a vertex cover of size k. On the other hand, suppose there is no
k vertex cover. Then, there is no atom of unit norm 1 that has only nonzero indices, and any strict
convex combination of atoms necessarily leads to points with unit norm less than 1 for p > 1.

We will reduce the vertex cover problem to each of the three problems above for LG(k). Consider
the point y = c1, where c scales the all-ones vector 1 such that ‖y‖p= 1. There is a vertex cover of
size k if and only if the norm ΩLG(k)(y) is equal to one, or if and only if the vector y projects back
onto itself.

The proximal operator requires more care. Firstly, the minimizer in the case where the ΩLG(k) is the
`p norm is given by x∗ where

x∗i + λ(x∗i /‖x∗‖p)p−1 = c

so all the entries in x∗ are the same. If the returned x does not have homogeneous entries, then we
know that there is no vertex cover of size k. So we only need to focus on the homogeneous x case, a
one dimensional problem. The objective value is now a quadratic function given by

(1/2)n(z − c)2 + λΩ((z, z, . . . , z))

for z ∈ R and note that is ΩLG(k) is the `p norm the objective is 1/2n(z − c)2 + λ p
√
nz, a simple

quadratic form. If ΩLG(k) is not the `p norm, then Ω((z, z, . . . , z) = c′z < p
√
nz for some constant

c′ and hence the solution is different.

The size of the smallest vertex cover is CG([n]). Using the fact that h is monotonically increasing,
we can express the unit ball of LGS-OWL as

conv

CG([n])⋃
i=1

{
x ∈ Rn : ‖x‖p≤ h(i)−1/q, CG(supp(x)) = i

} ,

which ignores all the LG(k) balls corresponding to k > CG([n]). For the same point y as above, we
have ΩLGS-OWL(y) = h(k)1/q (follows from concavity of h). The proofs for the LGS-OWL norm
then follows from similar arguments.

B Dynamic Programming Examples

In the first example, we have four indices and three groups. All three groups share exactly one index –
G1 = {1, 2}, G2 = {2, 3}, and G1 = {2, 4}. The only valid tree decomposition has all three groups
in a single node, so X = {{1, 2, 3}}. Let X denote the set of groups {1, 2, 3}.
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Figure 4: Three groups on four indices forming a ‘star’.

We assign the indices to collections of groups as follows.
A(X, {1}) = {1}, A(X,X) = {2}, A(X, {2}) = {3}, A(X, {3}) = {4}.

We can now initialize the V table as follows
V(X, {1}) = v21 + v22 , V(X, {2}) = v22 + v23 , V(X, {3}) = v22 + v24

V(X, {1, 2}) = v21 + v22 + v23 , V(X, {1, 3}) = v21 + v22 + v24 , V(X, {2, 3}) = v22 + v23 + v24

V(X,X) = v21 + v22 + v23 + v24 .

To determine the T table, it suffices to note that T(X,Y, |Y |) = V(X,Y ).

We now consider the slightly less trivial case of a three group chain represented in Figure 5: The

Figure 5: Three groups on five indices forming a chain.

groups here are G1 = {1, 2}, G2 = {2, 3, 4}, and G3 = {4, 5}. There are two valid tree decomposi-
tions, but we consider the one where we have two nodes X1 = {1, 2} and X2 = {2, 3}. Let X1 be
the root node in the decomposition. The assignment table is

A(X1, {1}) = {1}, A(X1, {1, 2}) = {2}, A(X2, {2}) = {3}
A(X2, {2, 3}) = {4}, A(X2, {3}) = {5},

and the value table V is
V(X1, {1}) = v21 + v22 , V(X1, {2}) = v22 + v23 , V(X1, {1, 2}) = v21 + v22 + v23 ,

V(X2, {2}) = v24 , V(X2, {3}) = v24 + v25 , V(X2, {2, 3}) = v24 + v25 .

We now start forming the main table T. The leaf node is X2, and we have
T(X2, {2}, 1) = v24 , T(X2, {3}, 1) = v24 + v25 , T(X2, {2, 3}, 2) = v24 + v25 .

Computing the main table values at the root node requires us to use the update rule (9), and we have
T(X1, {1}, 1)← V(X1, {1}) = v21 + v22 ,

T(X1, {1}, 2)← T(X2, {3}, 1) + V(X1, {1}) = v21 + v22 + v24 + v25 ,

T(X1, {2}, 1)← T(X2, {2}, 1) + V(X1, {2}) = v22 + v23 + v24 ,

T(X1, {1, 2}, 2)← T(X2, {2}, 1) + V(X1, {1, 2}) = v21 + v22 + v23 + v24 ,

T(X1, {1, 2}, 3)← T(X2, {2, 3}, 2) + V(X1, {1, 2}) == v21 + v22 + v23 + v24 + v25 .

C Dynamic Programming Proofs

Lemma 3.1. Every index in [n] gets assigned in the first preprocessing step.

Proof. Let G(i) denote the groups that index i is contained in. To prove this claim, it suffices to show
that there is a vertex X in the tree decomposition that contains G(i) for each i ∈ [n].

A classic result in tree decompositions is that every clique in the original graph is contained in some
vertex of the tree decomposition (see for example Lemma 10.1.1 in Downey and Fellows [8]). Since
the groups in G(i) form a clique in the intersection graph, our result immediately follows.
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Proposition 3.2. For a node X , let yX be the y vector restricted to just the indices i assigned to
nodes below and including X . Each entry T(X,Y, s) is the squared `2-norm of the best projection of
yX , subject to the fact that besides the groups in Y , at most s− |Y | are allowed to be used.

Proof. We prove this by induction from the leaves up. The claim holds for the leaves since we use
the right group sparsity budget depending on the number of groups we choose to be active, and the V
table ensures that we add all the squared yi values that we can add according to the groups chosen.

Consider the single child update (9). Suppose we have decided to pick the set of groups Yp at node
Xp, and we are allowed to have spent a group sparsity budget of s. We are allowed to add all the yi
values corresponding to our choice of Yp. We now consider the choices we can make for the vertices
below Yp. We need to ensure that the choices of groups between Xp and its immediate child Xc are
compatible, hence the Yc ∩Xp = Yp ∩Xc restriction. We also need to make sure that we have the
right sparsity level. Once we have picked subset for the child Yc, then the choices of subsequent
groups below is obvious: we pick the choice of groups that maximize the `2-norm of the indices we
have seen so far that are compatible with Yc. The corresponding sum of squared yi values is exactly
T(Xc, Yc, s − s0) by the induction hypothesis. Hence, the choice now is to maximize over all the
possible compatible collections of groups Yc for the child.

For the update where we have multiple children (10), the same logic applies, except now over multiple
vertices. We need to ensure that the group sparsity budget is correctly tallied up among all the children.
We also need to make sure that the choices of all the groups are compatible not just between the
single parent and their children, but also between the different children. For the latter problem, we
exploit the third property of tree decompositions – any group G that is contained in two different
children must also be contained in the parent. This ensures that it is sufficient to check compatibility
between the parent and each child without having to worrying about interactions across children
(which could exponentially increase complexity).

Lemma 3.3. The max-convolution f between two concave functions g1, g2 : {0, 1, . . . , k} → R
defined as f(i) := maxj {g1(j) + g2(i− j)} can be computed in O(k) time.

Proof. We first compute functions g′1, g
′
2 where g′k(0) = gk(0) and g′k(i) = gk(i)− gk(i− 1). Since

the g functions are concave, this means that g′k functions are decreasing. If g′1(a) is larger than g′2(b),
then f(a+ b− 1) ≥ g1(a) + g2(b− 1) > g1(a− 1) + g2(b). This swapping argument implies that
an algorithm that greedily picks g′1 or g′2 depending on which is larger gives us the optimal solution.

More formally, we start with f(0) = g1(0) + g2(0) and repeat the following process. Let i indicate
the current index of f and indices j, k indicate the solution f(i) = g1(j) + g2(k). We then consider
g′1(j + 1) and g′2(k + 1). If the first term is larger, then f(i + 1) = g1(j) + g2(k), otherwise
f(i+ 1) = g1(j) + g2(k + 1).

Proposition 3.4. The update (10) for a fixed Xp, Yp across all values s ∈ {0, 1, . . . , k} can be
implemented in O(2O(tw) · dk) time.

Proof. It actually suffices to show that this can be done for d = 2 in time O(2O(tw) · k) for the
following reason: Suppose a parent Xp has multiple children Xc(1), Xc(2), . . . , Xc(d). Then we can
simply add a caretaker node Xp′ between Xp and all their children Xc(2), . . . , Xc(d) where Xp′ has
all the same groups as Xp. This is still a valid tree decomposition and we can repeat the process.

For d = 2, T(Xp, Yp, s) can be written as

max
Yi:Yi∩Xp=Yp∩Xc(i)∀i
|Yp∩

⋃
i∈[2]Xc(i)|=s0

s1+s2=s−s0

{
T(Xc(1), Y1, s1) + T(Xc(2), Y2, s2)

}
+ V(Xp, Yp).

(18)

For each fixed Yp,Y1, and Y2, we just need to make sure that s1 + s2 = s − s0. To compute the
maximizer over all s, this is equivalent to computing the max-convolution of T(Xc(1), Y1, ·) and
T(Xc(2), Y2, ·). The concavity of these functions follows from the fact that the projection problem
can be cast as a submodular problem with a cardinality constraint [3].
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Theorem 3.5. Given G and a corresponding tree decomposition TG with treewidth tw, projection
onto the corresponding k-group model can be done in O(2O(tw) · (mk + n)) time. When the group
intersection graph is a tree, the projection takes O(mk + n) time.

Proof. The correctness of the approach follows from Proposition 3.2. The running time analysis from
Proposition 3.4 give us a running time of 3.2 O(2O(tw) ·mk), since there are up to m− 1 children in
the graph. This covers the complexity of filling the main table T .

We now analyze the running time for filling the tables V and A. For A, at each vertex we consider
groups we have not seen (O(tw)), and look at each element in these groups that have not been
assigned (O(tw · n) work across all vertices, since each vertex is contained in up to tw + 1 groups).
If the element can be assigned, we assign it. Once we assign an index i, we add y2i to all relevant
groups (O(2tw)) in the V table.

D Extended Formulation

Construction for Vertices with Multiple Children. As with the proof of Proposition 3.4, we can
assume that each node has at most two children. Then, the extended formulation analogue of (18) is
formed by the following set of inequalities. The first two decides how we are splitting the sparsity
budget of s among both children:

u(Xp,Yp,s) ≥
∑

Yi:Yi∩Xp=Yp∩Xc(i)∀i
|Yp∩

⋃
i∈[2]Xc(i)|=s0
s1≤s−s0

u(Xc(1),(Yp,Yc(1),Yc(2)),s−s0,s1),

u(Xc(1),(Yp,Yc(1),Yc(2)),s,s1) ≥
∥∥∥(b(Xc(1),(Yp,Yc(1),Yc(2)),s,s1), b(Xc(2),(Yp,Yc(2),Yc(1)),s,s−s1

)∥∥∥
p
.

We now need to accumulate all the different b variables

b(Xc(i),(Yp,Yc(i)),s) ≤
∑

Yc(3−i)⊆Xc(3−i)

b(Xc(1),(Yp,Yc(i),Yc(3−i)),s)

before applying the accumulation inequality 17 for the single child case.

Before we prove the main theorem in this section, we need the following lemma.
Lemma D.1. When µ = 1, every extreme point with nonzero x in our extended formulation is an
atom of the corresponding LG(k).

Proof. For each summation term in the extended formulation, at most one variable (or pair in the
case of (18)) will be active at any extreme point. In particular, this means that we pick exactly one set
Y for each vertex X in inequalities (16) and (18) for assigning `p budget to the children. Satisfying
each inequality with an `p term at equality ensures that the total `p budget that trickles down to each
x terms is precisely µ.

The main result Theorem 4.1 then follows from convexity of the formulation, and the fact that the
number of variables and inequalities are similar and on the order of |X|×2O(tw) × k2.

E Additional Empirical Results and Other Observations

Performance of `2 vs. `∞ norm. In terms of support recovery, the `2 norm does consistently better
than the `∞ norm and the difference is observed across all values of k and types of LGS-OWL norms.
However, when it comes to estimation performance the results depend a lot more on the choice of k
and the experiment. For the first experiment, `∞ ranges from slightly worse to much better than `2,
and the larger k is, the bigger the improvement `∞ offers. This is possibly due to fact that the solution
has constant values on the support, though this would not explain the support recovery results. On
the other hand, in the second experiment where the solution is different across different correlated
groups, we see that the `2 norm is also better for estimation.
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Figure 6: Experiment 1, Support Recovery. LG(k) and LGS-OWL with `2-norm and `∞-norm.

Figure 7: Experiment 2, Support Recovery. LG(k) and LGS-OWL with `2-norm and `∞-norm.
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Figure 8: Experiment 1, Estimation RMSE. LG(k) and LGS-OWL with `2-norm and `∞-norm.

Figure 9: Experiment 2, Estimation RMSE. LG(k) and LGS-OWL with `2-norm and `∞-norm.
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OWL Observations. Whether the linear or spike version of OWL performs better depends on a
large number of factors, including whether the `2 or `∞ norm is used, the number of rows in A, and
the particular experiment being used. There is no clear winner between the two.

The LGS-OWL results that we present in this work only consider two choices of weights. It is likely
that a properly tuned choice of weights could further improve the performance. For example, [13]
performed cross validation to pick the best parameters for the linear and spike variants of OWL.
Another choice of weights would be based on the inverse CDF of the Gaussian [4], which has been
shown to effectively control false discovery rate.

The extended formulation for LGS-OWL norms do not scale as well to the number of groups as the
LG(k) norms, since we need to introduce variables that correspond to all sparsity budgets from 1 to
m. As an alternative, we can ‘truncate’ the LGS-OWL norm by removing all variables corresponding
to sparsity budgets above a threshold T . This is equivalent to removing the atoms LG(k) for k ≥ T
in the atomic norm formulation (7). These new norms retain the empirical performance of LGS-OWL
in our experiments if T is sufficiently large.
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