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1 Main Results in Detail

Here, we express the results of the theorem in more details. We introduce complementary results
and change some expressions for convenience in the mathematical development. Especially, we
introduce a new set of more detailed results, which are connected to the results of the paper as we
shortly explain.

The main feature of our analysis is that it is universal. This precisely means that our expressions are
independent of the distribution (law) of the i.i.d sensing matrix as long as it belongs to the following
family of scaled-regular matrices:

Definition 1. We call a random matrix A regular if it consists of independent and identical distributed
entries with vanishing first, third and fifth moments, unit variance and finite fourth and sixth moments.
We call a m x n random matrix A scaled-regular if it can be written as A = A’ /s/m, where A’ is
regular.

We also present the analysis in terms of a general real-valued characteristic of the optimal solution X or
the error w. This characteristic is defined by a characteristic function g : R™ — R. Accordingly, we
are interested in calculating asymptotic values for g(w) and g(x), which we prove to be independent
of the law of the matrix A under mild conditions. We are able to calculate these values only when the
functions are separable, i.e. there exist (with an abuse of notation) real functions f(x),g(z) : R - R
such that

n

) =] i), g(x) = Z g(@i). (1

i=1

Finally, we assume that the true vector x is randomly generated and has i.i.d. entries with some
distribution £. Notice that £ represents the structure in xq. For example, sparse vectors can be
generated by a distribution ¢ that contains an atom at 0, i.e. £({0}) > 0.

Since we study the asymptotic behavior of the regularized least squares, we technically consider a
family of problems as in (1 in Paper) with a growing size n. Hence, we may use subscript n to clarify
the relation with size. For example the functions f, g are written as f,,, g,, respectively. We also
denote the optimal value in (1 in Pape) by ®,, = ®,,(A, v, Xo) and use the notations X = x(A, v, x)
and w = w(A, v, Xq) to emphasize the dependence of the estimate and the error on the realizations
of A v, xq.

We split our results into two groups: strongly convex regularizations and the original LASSO (/1
regularization). This is because the £; norm is not strongly convex and its analysis requires a different
treatment. Both results are based on the notion of essential optimization, which we explain first.
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1.1 Essential Optimization

For a case with separable functions f, g and independent £ —distributed x,, we observe that the
asymptotic behavior of the regularized least squares problems is reflected by the following two-
dimensional optimization that we call the essential optimization:

B . (pBy—1)  yo®B  AB? B
Cf(y,a)—rélgéu;l;(r)l{ 5 + o —2+5[Sf (p,pF+X>]}, 2

where X and I are two independent random variables, distributed by ¢ and standard Gaussian p.d.f,
respectively. Further, S;(.,.) denotes the proximity function of f, which is defined by

Si(q,y) = min 5 (z — y)? + (). Q)

with the minimum located at (g, y). If the solution (13 = p(v,0), B = B(’y, a)) of ) is unique,
AT+ X> )) |
4)

Our analysis assumes both differentiable and non-differentiable regularization functions f. For
differentiable functions, we consider strongly convex ones with absolutely bounded third derivative.
Referring to these functions as smooth-regular, we consider for non-differentiable functions the ones
that are obtained as a uniform limit of smooth-regular functions. We call them regular functions. In
other words, the set of regular regularization functions is the uniform closure of all strongly convex
functions with absolutely bounded third derivative. For simplicity, we only report the result for
smooth-regular functions here and postpone the more general case to Section

then we define
Lf,g(’}/,O') =& (g (‘ff (gaﬁr"i_X) _X>) ; Mf7g(770-) =& (g (i‘f (

1.2 Strongly Convex Regularization

| @

For the characteristic function g, we simply take the set of all convex functions with bounded second
and third derivatives. We do not consider the non-differentiable functions. Also, notice that once we
establish convergence results for these characteristic functions we may take any affine combination
of a finite number of them, which extends the result to a large family of non-convex functions. In
particular, we can establish the universality result for the characteristic function g(z) = X[z, «) (),
which is 1, if € [z o), and 0, otherwise. This choice corresponds to the empirical distribution
F,,(.) that counts the number of entries larger than a particular value z in its argument.

Theorem 1. Suppose that f is smooth-regular and g is a convex function with bounded second and
third derivatives. Assume that A is a scaled-regular random matrix, v is a centered i.i.d Gaussian
vector with variance o and X is i.i.d with distribution &, such that £((f'(X))?) is finite for a
&—distributed random variable X. Moreover n, m grow, such that m/n — . Then,

1. We have that
(I)n(Aa v, XO) —p Of(’Yv U) (5)

2. If the solutions of @) p = p(v,0),5 = B(’y, o) is unique, then

gn(W(A,V,XQ)) -, Lfg('}/yo'), gn()A((A,I/7x0))

n n —p Mf»g(’y? U) (6)

3. For every x € R, we have that
F.(w(A,v,xp))

n

F.(x(A,v,x0))

n —p Mf,X[z,‘x) (v,0) )

—p Lf;X[z,rr_‘) (77 0)7
provided L(z) = Ly, .., (v,0) and M (z) = My, ., (v, 0) are continuous at x.

Notice that the above Theorem implies some parts of Theorem 1 in the paper: The claim of first bullet
under assumption 1 is provided by part 1 of the above theorem. The claim of second bullet under
assumption 1 is provided by part 3, noticing that M and L values in (4) correspond to the distribution

of X and W in the paper, respectively.



1.3 The Original LASSO

The error of the original LASSO cannot be characterized by Theorem|[I] This case requires further
restrictions on the choice of the random matrix. First, we remind the definition of the Restricted
Isometry Property (RIP):

Definition 2. Consider a m x n matrix A.

1. For any natural number k < n, the RIP constant §,(A) is defined as the smallest numbers
0, such that for any index subset I — {1,2,... ,n}with |I| <k

1 =0 < 0pin(A1) < 0pu(Ar) <140 ®)
2. We also define the admissible sparsity Moam(A) as follows:

Mu(A) = sup W

9

Then, we provide the following result:

Theorem 2. Take g, v and x¢ as in Theorem |[I| Assume that A is a scaled-regular matrix with
sub-Gaussian entries. Take f(x) = x|, which yields to f,(x) = \|x|1. Then,

1. The claim in Theorem [I|1 holds for f(x) = Ax|. Moreover, |%X(A,v,%q)|1/n —p
Mjal,fol-

My = Mf,XR\(o} = Pr ((ff (g,ﬁr + X> # 0) (10)

as the "effective sparsity” of the LASSO estimate. If My is strictly less than Mqm (A) with
high probabilir)ﬂp then the claims in Theorem 2 and|l|3 hold.

The above result gives the remaining claims in Theorem 1 of the paper. Th calim of first bullet under
assumption 2 is implied part 1 above, although the above holds under weaker assumptions. The claim
of second bullet under assumption 2 is given in part 2 above, where we provide a lower bound, p/2
for M,am by a standard argument given in [[1].

1.4 Generalized Results

In Section (3.3 in the paper), we mentioned that the expressions in Theorem [I]and [2]are special cases
of our more general discussion. Here, we mention these general results as an independent theorem:

Theorem 3.

1. Suppose that in (2), xo has i.i.d centered entries with distribution £ and A is m x n.
Moreover, {f,} and {g,} are regular and well-behaved sequences of functions, respectively,
both with respect to . Take v as an i.i.d Gaussian centered vector with distributions
N(0,02). Suppose that m and n grow such that n = O(m). Take two scaled-regular
random matrices Ay and As. If the sequence ®,,(A1,v,Xq) converges in probability to a
value C, then ®,,(As, v, X¢) also converges in probability to C.

2. Consider a sequence f*) : R — R of strongly convex functions with bounded third
derivatives uniformly converging to a function f. Then, the results of Theorem![I| holds for f.

2 Definitions

Definition 3. (conditions on f)

1. A sequence of three-times differentiable convex functions {f, : R™ — R} forn =1,2,...1is
called smooth-regular with respect to a probability measure £ on R, if there exist constants
C1, Cy, € satisfying

!This means than there exists a positive number € such that My < Madm — € holds with high probability.



e Foreveryn,

Vi (x)2)
[ (LY e )
R’Vl
e Foreveryne N, xeR" ands = (s1,52,...,5,)" € R",
a f'l'L
6’ma6x5 X)SaSg = GZS (12)
o Foreveryne N, xe R" ands = (s1, 82,...,5,)7 € R",
0 fn
2 (h“a&vﬁﬁx X)SaS8Sy < CQZ|SQ| (13)

a,B,y

2. A sequence {f, : R™ — R} of functions for n = 1,2,... is regular if there exists a
collection of functions fr(Lk) : R™ — Rsuch that

o For every k, the sequence { fT(Lk)} is smooth-regular.
e The sequence {* fy(Lk)} converges uniformly in x and n to {1 f,} as k — co. This

means that for every € > 0 and sufficiently large k, the relation | f,(Lk) (x) — fu(x)| < ne
holds for every n and x € R™.

Definition 4. (error risk function g)

1. A sequence of three-times differentiable convex function g : R — R is called well-behaved
if there exist constants C1, €, Cs, such that

e foreveryn,

1
~[Vgn(O)[3 < Cy (14)
e Foreveryne N, xe R" ands = (s1,52,...,5,)7 € R",
g 2
Z Frads (x)sass < eza: s2 (15)
e Foreveryne N, xe R" ands = (s1, 82,...,5,)" € R",
0°gn
Z m( S(XS[}S,Y 022|50z| (16)

2. For any vector x € R™ and x € R, we define the empirical distribution F,(x) as

1 n
=— Z Xe,0)(Tk) (17)
=
where xs(x) is the characteristic function of S, which is one, when x € S and zero,
otherwise.
3 Proofs

3.1 A Technical Theorem

We start by proving another result, which will be useful in proving the previous theorems. We
introduce

1 .1
P, p(A, v, x0) = - min §HV +AV[3 + fo(v +%0) + pgn(v) (18)

Then, we show the following Lemma:



Lemma 1. Suppose that in (1 in paper), xo has i.i.d centered entries with distribution & and A is
m x n. Assume that f, is a sooth-regular function with constants C1, €, Co and g, is well-behaved

with constants (C1,€,Cs). For p > —¢/& and any 5y > 6, > 0, if

liIr; Pr(|®, ,(A1,v,%x0) —C| > 61) = 0 (19)
n—w
then
lini Pr(|®,, ,(Ag,v,x0) —C| > 62) = 0 (20)
n—w

3.1.1 Proof of Lemmal[ll

The proof is based on the so-called Lindeberg’s argument, which can be explained in the following
steps:

Step 1: First, take any smooth function h : R — R with absolutely bounded derivatives of first and
second order. It suffices to show that for such a function,

lim & (A (Pn,p(A1,¥,%0))) = € (M (Pn,p(A2,¥,%0))) | = 0 2
since then, one may take a particular radially increasing smooth function ¢ with bounded first and

second order derivatives, such that ho(z) = 0 for |z] < 6; and 1 < ho(x) < 2 for |z| > d2. Note
that by the assumption,

0 < E(ho(Pr,p(A1,v,%x0) — C)) < 2Pr(|Py (A1, v,%0) —C| > 81) = 0 (22)
Then, from we have that

5(h0(@n’p(A2, I/7X0) - C)) -0 (23)
On the other hand,
Pr(|®, (A2, v,%0)=C| > 62) = Pr(h(Pn,,(A2,v,%x0)—C) > 1) < E(ho(Pn,p(A2,v,%x0)—C)) = 0
(24)

where the last inequality is obtained by the Markov inequality.
Step 2: To show (2I)), take the intermediate matrices for k = 1,...,m — 1

AR — [a11@12... 214 A2 ks1 A2 p2---A2m] (25)
where a; ;, € R™ are the transpose of the k™ row of A;. Define As = A(® and A; = A(™) and
R® = [a11 @1,2... 81,k A2 k42 B2 k43 - - - agﬂn]T (26)
fork =1,2,...,m — 1, with
RO =[azsas3 ... azm]” Q27)

It is now easy to see that defining

1 1 1
O, ,(R,a,v,v,x) = - min §||1/ +Rv|Z + §(u +a’v)2 + f(v + %) + pgn(Vv) (28)

and
vo=[vive . Uk Vkil o VUm]t (29)
we have that
@n,p(A(k),V,x) = @n’p(R(k),ag’k,V_(k+1),Vk+1,X) (30)
and
@nyp(A(kH),u,x) = @nyp(R(k),aLkH,V_(k+1),z/k+1,x) (31)

Now, we use the fact that
1€ (7 (P, p(A1,v,%))) = E (R (Pn,p(A2,v,X)))| =

" E (7 (@0 (AT, 1, 5))) — € ( (@, (AD), 1, x))) | <
k=0

SE (h (B0 p(AEHD, %)) = € (b (@0, (AD), 1, 5))] (32)
k=0



Furthermore,
[€ (B (Pnp (AT, 0,))) = € (1 (@n,p (AT, v,%)))| =
|€ (h (@n,p(R(k)aaQ,kvyf(kJrl) Vg+1,X )) (h'( np R( ) yAlk+1,V 7(k+1)al/k:+1vx)))| =
[€ (7 (©np(RM, 2z, v (141), Vh41,%))) = € (h (@ p(R¥ v (141),%))) —
& (h (971 p(R( ) yalk+1,V— (k+1)> Vgy1,X ))) ( ( ’np(R(k)vy—(k‘,+1)7X)))| (33)
For the sake of simplicity, let us define
oo = & (h(OnpRM, a0, (esn) vhs1,%)) = b (P y RY w30, %))) (34
and
Bz = & (1 (OnpRP, arpi1, v iy visn ) = b (P p RO v 41).00)) (35

Then, (33) can be written as
€ (1 (@0 oA, 0,))) =€ (h (@0, (A, 0,%)))| = A2k = Arpl  (36)

Now, note that since |h”(z)| < H> for a proper value of Hs, we have that

|h(x) — h(y) = B (2)(y — 2)| < Ha(y — x)? (37
which leads to
[Aik = & [ (P p RO, v iy, 00) AL ]| < Hae | (A1) (38)
where fori = 1,2
gyk = Gn,p(R(k)7 A 42—, V—(k+1)7 VkJrle) - (pn,p(R(k)7 V—(k+1)7 X) (39)
Thus,
|A27k — A17k| < ‘5 [h’ (@n,p(R(k),l/,(k+1);X)) ( /2,k - Il,k):H + Hy Z E [( ;’k)z:l 40)
i=1,2

Finally, note that
& [ (@np(RW), w11, %)) AL, | =
ER(k),U,(k+1),X [h’ ((I)n,p(R(k), Vf(kJrl)vX)) 5a'i,k+2—ivl’k+1 (A;,k | R(k)7 V*(kJrl)vX):I )

2 2
& [(A;,k> :| = gR(k),u_(k_,_l),x |:gai,k+2—1,al’lc+1 [(A;,k> | R(k)vl/—(k+1)7X:|:| (41)

We show in the sequel that there exists a constant () such that

alon

Aok — Ay | < Qm™ (42)

Then, due to (32)), we get that

€ (h (®1p(Ar,2,%))) = € (h (B p( Az v, )] < Y Az = Ar] <Qm=1 >0 @3)
k

which proves the result.

Step 3: To obtain ([@2), we analyze each term in (0} separately. This means that we nead to calculate
the leading terms of the statistics of A; - However, as suggests, R, V_(k41), X is assumed to
be deterministic and limits only for the inner expectations in (1)) are calculated, which automatically
leads to bounds for the outer expectations. Then, we denote R(%) = R, V_(x+1) = M as the analysis
is for a fixed k and assume that R, & are deterministic values. As the analysis for ¢ = 1,2 are
symmetric, we drop the index ¢ and do the analysis for an i.i.d random vector a with a regular



distribution, as well as a Gaussian random variable ~ which will be later replaced by a; 3 ;42 for
1 = 1,2 and vy, respectively. This means that we analyze the statistics of

A" =0, ,(R,a p,v,x)— 2, ,(R, p,x) (44)

Note that ®,, ,(R, pt,x) = O, ,(R,a = 0, u,v = 0,x). Thus, A’ is a perturbation in © and can
be calculated by standard perturbation theory. Denote by w, (A, v, x) the optimal point of (I8) and
take v = w,(R, p, x). Note that we also drop the indexes n, p for simplicity. Define

U(R,a,p,v) = 5min g+ Rv[3 + 5(v +a"v)? +
FE+%)+pg(¥) + T(V—V)+%(V—0)TH(V—‘A’) “43)

where

(v +x) %g(¥)

= V(v V(v H= 46
‘Y .f(‘/ +_}<) 4_ p g(‘/)ﬂ a)(a)(j* ﬁ)a)(a)(j* ( )
Defining Av = v — ¥, the expression in can be equivalently written as
U(R,a,p,g) =L mm Hz+RAv|3 + (v +aTAv)? +
JV+x)+ pg(v) +9TAv + $AVTHAvV 47)
where
y=v+aly, z=p+RV (48)
Also, note that since v is the optimal solution of (T8), it satisfies
Riz+~=0 (49)
Thus, defining Av as the optimal point of (47), we have that
S _ o1, 1 'a
AV——’Y(Q+aa ) a—m (50)
where
Q=R’'R+H (51)
and
OR,a,pu,v,x) — PR, pu,x) = 1(le_1 2a’(Q +aa’)'a) = i (52)
) 7”7 ) 7”"7 m 2,-)/ 27 1+aTQ_1a
we also define
- S y?
A=AR,a,v,v,x) =TY(R,a,v,v,x)— P(R,v,x) = ﬂ,ﬁ (53)
In Lemma 7] we will show that there exists a value 7; > 0, such that:
~ 1 5 €€1 -3
A= Al < oo X gioigzm) + IV IEX 13 <n) (54)

Then from Lemma[6] we conclude that
[Eaw (&) = Ea (D) < EaplA = Al < Eau(gmV X (polzsm)) +
s VPE(IVIE > m)€an (01 + SHEan(IV]F) <

11§ HVH
5 Lo+ K 2 Lo+ Ko 2
(L + K )\ VT e VE2T02 0T (55)

Sau(IVI3) <

ne3y/m m 53\/7
Combining this with (§9) in Lemma [6] results in

3 12\ %
<m-t <L, LK (nng )> +mi (L’ + K} ('ZJ)) <
> (56)

HVH2
ga,u(Al) _ oo (14 52)

1
1+ e




For proper choice of L, L}, L' and K}, K}, K. We also conclude from (TT16) that there exists
constants K and L” such that

1¥13 2 a2 2
Ear ((A)?) < L Ear (V) = A+t <m 2 <L” + K" (”Vnﬂ['?) ) (57)

= 4m?2 4m?2

Now, using the definition of Ag > we conclude that

~ 2
s V]2
|€a2,k;V—(k+1)( /2,19) - gal,k+17V—(k+1)( /l,lc)| < 2m 4 (Ll + K/ < m = (58)

where Vi, = W, (Ry, V_ (41, X). Using @0), @) and noting that 1/(x) < D; for a proper value of
D1, we have that

[Ag e — Ay g| <

2Dym~% (L’ +K'E (('V;JS)Q)> +2Dym ™2 <L” + K" ((lfrll%f)) S
o (e re((5))

for a proper choice of constants L, K. Note that by Lemma we have that

¢ (uvkn;f <€ (6<|\R£m<k+1>|\§+\|Vf<x>n§+p2|\Vg<o>||§>)2 <
m = e2m =
ey <(||Rfu7(:+1)||§))2> g ((Ivfg)l%f) 4 108" (nv%?)uéf 60)

Thus, due to LemmaEL there exists a constant () such that

Aok = Aui < Qm~E (61)
Then, due to (32), we get that

1€ (1 (D(A1,8))) — & (h (B(A2,8)))| < D A2k — Asi| SQm™1 >0 (62)
k

which completes the proof.

Lemma 2. For every o > 0, there exists numbers 01, €1 > 0, such that if 0 < x < ny, then there
exists 0 < r < €,z satisfying

4r? + 52 < ar (63)
Proof. Take § > 1 and
mo = max F(r) (64)
>

where F(r) = (ar — 4r2)/5 and denote by rq its optimal point. Define 7; = 70/5. Note that
1o, 7o > 0, since F'(0) = a/5 > 0. Moreover, F'(0) = 0. Thus, by the mean value theorem, for any
0 < z < there exists a point 0 < r < rg, such that F'(r) = dz > z, thus satisfying (63). Define

ma T 5 5 To > 0 (65)
€y = X = : = =
o<r<ro F(r) © min a—4yr — a =4y F(ro)
and ¢; = deg. Now,
é = F:r) < €Eg —> 7T < 60(51' = €T (66)
O



Lemma 3. Suppose that the m—dimensional vector n/mh has i.i.d regular entries. For any m x m
matrix S, vector zand d = 1,2,3

2d
(| Th|2d) df X)Qd ”ZTL 5(h2d) (67)
£(hTSh) = TrT(nS) (68)
21\ 2 4
E(Ih'Sh)?) < (Trfz)> +2%5(z4) (69)

Proof. For the first part, note that
(12" hY) =" E(2a, 20y - - - Zaghar has - - - hay) (70)

Note that only the well-paired terms contribute to the summation. Then, using the union bound and
noting that £(2%) < £(224)"? for any | < d, we obtain the results. For the next part, not that

Tr(S
£(hTSh) — Tr(SE(hhT)) = 1) (1)
m
and finally,
5(|hTSh|2) = Z g(hal hayhs, hg, )501,31 Saz,Bs (72)
The well-paired terms only contribute to the summation. Then, using the union bound and noting that
E(2*) = £(2%)?, we obtain the result O
Lemma 4. By the definitions and conditions above, we have that
1
—5& (IRgv—ss1]3) <D (73)
for a proper choice of D, independent of m and n.
Proof. Note that
(Riv_i)" =Y apm+ Y ag = ) by (74)
I<k >k I#k
where by, = a; 11 if | < k or by, = a; o1, otherwise. Thus,
E(IRfv_psil3) = € ( Y, bl bmbi;bm) (75)
a1,a2,B1,82
Note that b, and by, are centered and independent if a # b. Thus,
& (IRTv_rlf) <
< > bl balbgzb ) +2& ( > bglbﬂlbglbm) +& (2 bl balbglb > =
Q1,0 ar,p
2
(26 (ban%)) +2 30 (€ (babd) € (bFbs) ) + € (Ibal) (76)
(e a, aq

On the other hand, £(b,bZ) = I/m and £(|b,|3) = 1. Furthermore,

2 2
E(|ball3) = EW)E(lal3) < Di€ <2 ai) <Dy | ) Eap+2 (Z 56%3) < D1(D2+2)
N N

w
77
Thus,
1 n\ 2 2n? Dl(DQ + 2)
—& (IRf v 4<(—) —S+——><D 78
(IRFv_k41l2) m 3 + m (78)
For a proper choice of D. O



Lemma 5. The norm of w,(R, v, x) is bounded by
6(IRTv[3 + [VF)[5 + »*[Vg(0)])

[wo(R, v, x)[5 < = (79)
Proof. To see this, take an arbitrary point v and define
1/1
) = & (5l + Rl + Fvt )+ pa(n)) (50)
Note that
1/1
00 = % (G + 16+ p9(0)) 1)
and )
' (0) =~ (RTv + Vf(x) +pVyg(0))"v) (82)
Moreover,

n"(t) = e vIRTRv + Z 027]”” vg + pz 627911 vg | = ew (83)
m aﬁé’xaaxf; a®h aﬁaxaaxf; atB)Z
where we use the second property of f and convexity of g. Integrating the above, we obtain that
1
() = — (RTw + Vf(x) +pVg(0)"v + €| v]3t) (84)

and by integration again, we obtain that

2
00 - (GIW1E + £+ pa(0) + (RTw 4 9160) + Ty vi 4 v ) 69

Setting ¢ = 1, we obtain that

;(;v+Rﬂ@+ﬂv+w+wﬂW>>

v 2
% <;||V||§ + £(x) + pg(0) + (RTv + Vf(x) + pVg(0))Tv + 62”2> (86)

It is now clear that
1 1
wo(Rowx) € {v | I+ RyIE + £(v-+) + pals) < 5wl + 760+ p0(0) |

elvi3

c {v | (RTv + Vf(x) + pVg(0)Tv + 5

< 0} (87)

which after straightforward calculations leads to (79). O

Lemma 6. By the definitions above, there exists finite constants K, K1, Ko and L, L1, Lo, only
depending on the common distribution of the entries of a, such that

112
Eva(v) <Ly + K, H:}BQ (88)
Moreover,
e+ I %13
E,a(A) — 2m m 2| < L+ K2 89
o8- g ) < — (nekBE) (59)
and
/ T
Lg + KQ%
Pr Z |A6k|3 > 77) < 3—m (90)
<k ne3y/m

10



Proof. Recall that
1.2

A= _ m ¥
A—W(R7H,V7V7X)—¢(R,V7X) = m (91)
where due to the second property of f, we have that
1
Q=R'R+H>d->Q <"1 (92)

)

Note that the function 7(z) = 1/(1 + z) is 1—Lipshitz, which means that

1.2 1,2 2 -1
am Y 2m7 < a7t 0 93
1+alQla 1 + 21 2m a- m ©3)
Thus,
1 1 .2 2 -1
fon (r53F8) - o (1%@_1)\ (i hrarta- )
1 ()1 a-1|? 4
< oy [Eva (far@ta— 22 60 () ©4)
By Lemma[3] we get that
1.2 1,2
om / om Y 0
Eva _2m /! —&a _2m < 95
’ <1+aTQ—1a> ’ <1+Qm_1> em/m ©3)

where K is a finite constant, only depending on the distribution a. On the other hand,
Eva (V") =&a ((V+a" )Y =Ea (%) + 680 (V7) Eva ((@7T9)?) + Ea ((@TV)Y)  (96)

Using Lemma[3|and after straightforward calculations, it is easy to see that there exists finite constants
K and L1, only depending on a such that

é‘y,a()<L+K’H”2 97)
m
Combining this with (93), we obtain that there exists constants K = KK and L = KyL; such that

Y2\ 1+ aTQ-1la 1+ 220 |7 emym

m

which can also be written as

A2
zr(L+ )
1+ 2

m

<112
EvalA) — 1 (L + K”V”2> (99)

<
em+/m m

Finally, defining wy, as the k™ colum of 2! we observe that |wy||2 < 1/e, since 271 < I/e. Now,
using Lemma 3]

£,a(D 1A% = 3 Evallf o al’) < D y/Ear)Ena(lof ) < /e 5
k k k

(100)

On the other hand,

115

\/&,a(w) < \/325V,a(u6 + [97al%) < A/Ls + Kg% (101)

Using the Markov’s inequality, we obtain that

\/ Lo + K, Y2
Pr <Z 1AL > 77) < V2T 2wt (102)
k

neim
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Lemma 7. We have that

1
A7 = Al € =X geigen) + ¥ BX otz <m) (103)

Proof. Denote by ¥(v,R,a, u,v,x) and ©(v,R,a, i, v,x) the cost functions in @3] and (28).
Note that (R, a, u, v,x) and O(R, a, p, v, x) are the minimum values of U(v, R, a, i, v) and
O(v, R, a, u, V) over v. Applying the mean value theorem, we conclude that for any point v, it holds
that

3
U(v,R,a,p,v) — O(v,R,a, p,v) = — Z s ‘a/;a);ﬁ;xpg( )AUQAWA% (104)
@ v

For a proper point v'. Due to the third property of f and g, we conclude that

[¥(v,R,a,p,v) —O(v,R,a,p,v)| < %Z |Avg|? (105)
m

where Cy = Cs + pég and we remind that Av = v — v. On the other hand,
1
U(v,R,a, pu,v,x) —O(R,a,u,v,x) = —(Av — AV)T(Q + aa”)(Av — AV) (106)
m
which yields to

U(v,R,a,p,v,x) — ¥ (R,a,pu,v,x) > —HAV — AV (107)

For @ = €/C5, take 11, €1 as in Lemmal 2l Now, we consider two cases:

Case 1: If ||Av|3 < 7y, one can choose r < €1 |AV|3 such that
4r% 4 5|AV]E < = (108)
Cs

Note that if |Av — Av]|3 < r, we have that
Ca(Javld + ATV < S (A — AV + AV + AT <
Ca(4r2 +5|A¥]3) < r (109)
Thus,
[Av — Av|3 =r - O(F + Av,R,a, u,v,x) — O(V + AV, R, a, p,v,x) >
l:[J({’ + AV,R,a,/J,,l/,X) - \II(Rv avH»MX) - %Z |A/Uk|3 + |A1~}k|3 =
SIAV — AV|3 = €2 3 [Av [ + AT > > 0 (110)

This means that, ® has a local minimum in the ball B, = {¥ + Av | |Av — Av|%2 < r} which due
to convexity, is also the global minimal point. We also conclude that

OR,a, pu,v,x) = AI‘IIIEHB}T OV + Av,R,a,pu,g) (111)
But for any Av € B,
[¥(v,R,a,u,v,x)— ®(v,R,a, pu,v,x) Z |AD,|* + |Av,|?® < i (112)
Thus,
[AV[3 < m — [U(R, 2, p,v.x) — (R a,p,v0)| < = (113)

which, recalling that A’ = O(R, a, p1, v,x) —®(R, p, v, x) and A = U(R, a, p1, v, x) — D(R, i, X),
can be written as o e
1895 < m - [a = A < S < LY AR (114)
moom
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Case 2: If |V]3 > 71, we may use the following simpler bound:

1
@(Ra K, X) < @(Rv v, X) < @(‘77 Ra a, M, v, X) = CD(Rv K, X) + 2772 (115)
m
Thus, )
1.2 12,71,
_ am ) < A/— < 2m (116)
1+aTQ 1la 1+aTQla
which yields to
~ 1
A" = Al < —+? (117)
2m
This gives the result. O

3.2 Proof of Theorem[3
3.21 Partl

Note that Lemma [T]implies the first part of Theorem[3] To see this, set p = 0, and note that by the

definition of a regular function f,, there exists a family of smooth-regular sequences fék) (x) such

that fék) (x)/n converges uniformly in n, x to f,(z)/n. Define ‘I?%’fz,(A, v,Xp) as the optimal cost

in (1 in Paper), when f,, is substituted by fy(bk). Now assume that ®,,(A1,v,%x¢) —, C. Take § > 0
and note that
lim Pr(|®,(A1,v,x0) —C|>0) >0 (118)

n—xL

Take k large enough such that | f,(lk) (x) — fn(x)|] < md holds for every k,n. Then, we have that
12 — ®,| < 5 and

Pr(|®%™ (A1, v,x¢) — C| > 20) < Pr(|®, (A1, v,%x0) — C| > 0) (119)
letting n — oo, we get that
lim Pr(|®%) (A1, v,x0) — C| > 20) - 0 (120)
n—w

Now, from Lemmal[I} we get that
lim Pr(|®®) (As,v,x0) — C| > 35) - 0 (121)

n—oo

On the other hand, from the fact that |<I>7(1k) - ®,| < 0, we get that

Pr(|®,(As, v,%x¢) — C| > 40) < Pr(|®) (A1, v,x0) — C| > 36) (122)
letting n — 00, we obtain that
lim Pr(|®,(As,v,x0) — C| > 40) > 0 (123)
n—oC

Since 0 is arbitrary, we conclude that ®,,(As, v, %) =, C.

3.2.2 Part2

Suppose that 0 < g” < C and f is e—strongly convex. Note that the functions f,, (v +xg) + pg(v) of
v are convex for p > —¢/C. Take p > —¢/C. Define X and I as two independent random variables
with £ and standard normal distributions, respectively. For a fixed value of k, take the following
modified Key optimizations

2 T
®n,p(8,%0) = max min ms o2+ Ivlz + ﬁig v ﬁﬂQ + In(v +X0) + pgn(v) (124)
8>0 veR® n m n 2n n
and
2 T
¢ »(8,%0) = max min mp o2+ Ivlz +57g v —EBQ—F In(v £ X0) + Pgn(V + Xo) (125)
’ B>0 veR™ n m n 2n n

13



Furthermore, define the optimization
1 1
<I>§l,p(A, V,Xg) = - min iHV + AV|2 + fu(v +x0) + pgn(v + X0) (126)

where f, and g, are given by (I). In fact, (126) is in the same form as (I8), where f and g are
replaced by f + pg and 0, respectively.

step 1: First take a Gaussian scaled-regular matrix A. Similar to [2]], applying the Gordon’s Theorem
to the primal and dual optimizations provides that if converges to a value C, so does (I8). A
similar result hods for (125) and (126)). In this case, denote the optimal values in (I8) and (126) by
@, (A, v,%0) and @], ,(A,v,xq), respectively. Then by the method in [3], it is simple to see that

2
On.0(8%0) —p C = maxmin {p? + 75; - % +H (,@,p)} (127)
and )
G p(0) o € =g {20+ 02 0% sk o)
where )
H,(5.p) = € [min T207 4 00+ 10420 + o) (129)
and )
H)(3,p) = ér,x [miﬂg %02 + BTv + fv+ X) + pg(v + X)] (130)

This guarantees that ®,, ,(A,v,xq) —, C, and ®;, (A,v,x%q) —, O}, for p > —¢/C. According

to Lemma D, (A, v, %0) —p Cp and @;L’p(A v,%xo) = C}, holds for p > —¢/C and any
scaled regular matrix A.

Step 2: Note that ®,, ,(A, v, %¢) and @}, (A, v, ) are concave functions of p. Further,

In(W(A,v,x0)) _ 0P, ,(A, v, %) (131)
n op p=0
and R ,
gn(X(A, v, x0)) _ 6¢)n,p(A’VvXO) (132)
n op p=0
Hence,
(I)n,p(Aa v, XO) - (I)7I,,O(A7 v, XO) < 971,(W(A7 v, XO)) < (I)n,O(Aa v, XO) - (I)n,—p(A7 v, XO)
P n P
(133)
and
¢’/ﬂ,p(A‘7 va()) - (I);z,O(A7 v, XO) < gn(f((A7 v, XO)) < (I)In,O(A7 v, XO) - (b:l}fp(A7 v, XO)
P n P
(134)
Thus, for sufficiently small values of p,§ > 0, we have that
Pr (gn(W(A’”’XO)) <%= 5) -0 (135)
n p 2
and A Co—0C 0
Pr (g"(w( v:x0) L Go=Coyp ) —0 (136)
n p 2
Also,
Pr (9”(X(A’"’XO)) <G 5) -0 (137)
n 2
and .
pe (B0 0) G +g> N -
n
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Note that for the values of p with sufficiently small absolute value, we have that

(146)

Co—C, 0C, )
S = 139
; A (139)
and
o/ Cl
0 _ 9, | J (140)
p ﬁp 2
The uniqueness of the values p and B guarantees that the derivatives exist. In this case,
py [ [fnWA L X0) 0G5 (141)
n op p=0
and
n(X(A oC!
pr (| XA Vx0) Gl 5 L (142)
n op |,=0
which yield to
gn(W(Av Vny)) -, % (143)
n op p=0
and X oc
In(X(A v, X0)) 0 (144)
n 6p
Finally, simple calculations show that if the solutions of @) p = (v, o B B ) is unique, then
2 2X
9C, _g( ( A ﬁﬂl“ 57 >> (145)
op =0
and
oc! )

243 B2
_r =& WAl Ap_ﬁ’VX
P |0 (g (xf( 2p’ﬁ p )

This proves part two of Theorem I}

Step 3: For the third part in Theorem |1} define g(2) = go,»(v) = X[2,22)(v) and g1 .(v) = (v — ).
Notice that there exists a sequence of convex functions with bounded second derivatives uniformly
converging to g; .. Since, part two of Theorem [T]holds for any function in this sequence, it also holds
for g1 . Now, take g2 » ¢ = (g1,0 — 1,2+ )/€. Note that

92,:1:,6 < gO,x X §2,2—¢,¢ (147)
For any § > 0, take ¢ > 0 such that Ly, . (v,0) — Lyy,_. ., (v,0) > —0/2 and
MﬁX[m,L) (v,0) — vaX[wfe,\‘f)) (v,0) > _5/2' Then,

ZgQ,J—s,e(wi)

gn7(1W) ~ Lfxte.m (7,0) >0 — T = Lixpen) (v,0) >0
292,175,5(71%)
=~ Lfgg2,a:76,€ (77 U) >0+ Lf,X[mm) (77 U) - Lfyg2,zfe7e (’77 J) >0+ Lf,X[m,‘;o) (77 U) -
)
>3
With a similar approach,
g (5() ;g2.(t—€.€(‘ii) s
Ho = My (1,0) > 6 = = My, (7,0) > 3 (149)

The above results show that

Pr <9n(W) ~ L xpoy (750) > 5) < Pr

n

Z g2,w76,e(wi)
9

n

)
- Lf7!]2,x—e,e(’y7 U) > 5 -0

(150)
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and
Z 92,1—5,6(:2'2')
%

)
n - vag2,z—e,e(’}/70-) > 5 - 0

Pr (g”(x) — Mf,x[m ‘T)('y, o) > 5) < Pr
n 0

(151)
The other side of inequalities can be similarly shown, which yields to the desired result.

3.3 Proof of Theorem 2|
3.3.1 Partl

Take function f.(x) = A|z|+ S22 and notice that for any value of € > 0, f. satisfies the conditions of

theorem The idea is to show that removing the term %xz for a small value of € may not dramatically
change the optimal value. For that, we first introduce the following definition:

Definition 5. Consider a m x n matrix A. We define 0,(A) for any k < n/2 as the smallest number
0, such that for any disjoint index subsets I, I'  {1,2,... ,n} with |I|,|I'| <k,

Omax (AT AT) <0 (152)

It is well known that ), < dof. Furthermore, we have the following result:

Lemma 8. Suppose that the m x n matrix A is generated by a sub-Gaussian unit-variance random
variable and m,n grow to infinity such that m/n — ~ > 0. Then, there exist constants o, 3,¢ > 0,
such that

1in;Pr(5an(A) +0.(A)>1—¢)=0 (153)
lini Pr(oma(A) > 5) =0 (154)

Proof. Our proof is inspired by the method in []. We assume that A is o2 —subgaussian.

Step 1 First, take a vector x € S,,, where S, is the surface of the unit sphere in R". Note that
y = Ax s an i.i.d vector with o2 —subgaussian entries. We get that

. — = —r?
Vr >0, Pr(Y >r) < I/{ugé’(e)‘y)e g mine AT = 302 (155)
> >

where Y = \/my; and y; is the first element of y. Note that £(Y') = 0 and £(Y?) = 1. Applying
the same bound on —Y gives that

2
Vr >0, Pr(|Y|>r) < 2ez? (156)

Furthermore, using Tonelli’s theorem we obtain that

o8] vel
1 2\ 525 + A
VO <A< —, ) = 1+2)\J,teM2 Pr(|Y| > t)dt < 1+2Ajte(*ﬁ2>t2dt =1+— = 2=
20 37 TA gz A
0 0
(157)

Then,

A>0 0<A<

m m 1 m
Pr(|y|3 = 8) = Pr (Z v mﬂ) < min (5(6”3645) =HB)™ < min (W“eﬂ = K(8)"(158
k=1

- A

1
202
where {Y}, = «/mys} are i.i.d with the same distribution as Y and

1
=+ \
6)\

K(B)= min 2= 1
(B 0332/2 # - A (59
and )
H(B) = min &MY )e ™ (160)

A>0
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Note that K (8) < 1 for sufficiently large values of 5. Moreover the cost in (I60) at A = 0 is 1 and
has negative derivative if 8 > £(Y?) = 1, where H(3) < 1.

On the other hand
Pr(|y|2 <p) = Pr (Z Y2 < mp> < min (5(6*”2)&[3) —L(p™ (161
1 A>0
where )
L(p) = minE(e M e (162)
A>0

Note that at A = 0, the cost in (T62) is 1 and has negative derivative if p < £(Y?) = 1, in which case
L(p) < 1.

Step 2 With a simple volume packing argument, for every 6 > 0 and n = 1,2, ..., there exists

aset Gy, = S, of maximally (2)" points such that for any x € S,, there exists a pont x; € G,

|x — %12 < d. Denote B = max |Ax|2 and A = 0,0, (A) = max |Ax|2 with the maximum at
xeG,, XEOSn

Xg. Thus,
A= ||AXO||2 < HAX1H2 + HA(XO — x1)H2 < B+ 6A (163)

where x; is the closest point in G, to xg. If § < 1 we obtain that

max |Ax||a
xeGp,

Omaa(A) < = (164
repeating the same argument for the minimum singular value gives that
Omin(A) = Imax |Ax|2 — Omaz(A)d (165)
x€Gn

Step 3 Now, it is clear from (T64) that
3
Pr(0yac(A) > ) < Pr(max [Axs > A(1 - 8) < K(3(1 - )"y (l66)

Fix § < 1 and note that K(8) — 0 as 8 — 0. Thus, one can select 3 large enough such that the
right hand side tends to zero. This proves the second part.

Fix a value of e < 1 and take 8 = 1 + € and p = 1 — €. Take any submatrix A; of A with |I| =k
and note that the previous results also hold for A ;. This means that

Pr(oman(Ar) > 140 < H(1+ (1= 8)" () (167)
and
Pr(omin(As) < 1—e) < Pr (m%x [AX|2 — Omaz(A)d < 1 — e) < L(l—€+(1+6)5)m(§)k+H((1+6)(1—5))m(§)k
xelGy,
(168)
Take k = 2am and note that there are () = O(p™) combinations of |I| = k, where p = exp(1 —

2alog(2a) — (1 — 2a) log(1 — 2a)). We finally, obtain that
Pr(d2an >€) =0 ((L(l —e+(1+e)d)™+H((1+€)(1—-0)"™) (E)Q””‘p"> (169)

Fix < €/(1+¢€), which guarantees that L = L(1—e+(1+€)d) < land H = H((1+€)(1-9)) < 1.
Then note that (2)>*p(a) — 1 as a — 0. This means that we can select o small enough such that

H x (3)**p(a) < 1and L x (2)?**p(a) < 1. For this value of o, we get that
Pr(doan > €) (170)
The first result is obtained by noting that ., + Gan < 2620 O

Now, we show the following theorem. Then, from the above lemma the first part of Theorem E]
follows immediately.
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Theorem 4. Consider the conditions in the first part of Theorem[2|and f(x) = A|z|. Denote,

D, = %mjn%Hu—f—Ang + A|v + x| (171)
Further, assume that there exist constants o, 3, € > 0, such that
nh_{ri Pr(don(A) + 0on(A) >1—¢€) =0 172)
lim Pr(0(A) > 8) = 0 (173)
Then,
X —p Cronfal(750) (174)

Proof. Take v(°) as the minimal point of the optimization
1 1
@, = —min v+ Av]3 + Alv +x]1 + SlvI3 (175)

From Theorem 2, there exists a real number L, such that for every x < 1, ||¥(?)|2/m < L? with high
probability (i.e. Pr(||¥(?|3/m > L?) — 0 as dimensions grow). Define

1
6(v) = 5 lv + AV[S + Alv +x|x (176)
The KKT condition, implies that
—uv® € 9p(v() (177)
Define ¢(0) = —uv(®). Set k = amn, select k entries of v(*) with largest absolute values and collect

their indexes in Iy. Set pg = 0 € R¥ and ¢t = 0. Now, perform the following iterative algorithm.
1. Define Py = Aj, andh; = v + AI;VYC), and solve
1
miniHht +Pwl|2 + Axr, + w| —piw (178)
Denote its cost function and minimum by ¢;(w) and wy, respectively.

2. Find k elements in I7 with largest absolute value in A{aA 1, (W — vg)). Denote their
indexes by Iy 1. Set py11 = C}Zl.

and {;41, such that vgﬂ) = wy, vgfl) = vg?, Cgﬂ) = py, and

= Y+ AT A=)

3. Construct v(t+1

4. Sett <t + 1 and go to step 1.

In the sequel, we show that the above process leads to a point v(*) with a sub-gradient ¢(*) €
d¢p(v(™)). Such that,

T v —v Oy < (179)
0 m %)
16 < ik (v + =) (180

We denote C; = L («/% + 1_6(17{%) and Cy = TL_%.
Once this is established, notice that v(*) is the minimum point of the optimization
1 5
pux = min v + AV[3 + AV +x[1 + v ¢ (181)

The subscripts ), 1 emphasize that ¢(*), v(*) are computed for a given ), u. Note that since
V¢ < V1€ < pCilv i, we get that

Pur < Patcop (182)
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which can also be written as

®x = Pur—Ci (183)
On the other hand,
mpu = 3|V + AV 3 + AV +XH1 + (vENT ¢ (=)
> my + A =) = A — v Oy 4 (v0)T ¢
> m®y, — (|fTA]2 + A/m) [v*) — v( H2 N CTNIRE: H2

m®y = (Oma (A)|[£]2 + Ay/m) pCaon/m — /mpuCh|[v™) 2
= m®y ; — (Omax(A)r + A) puCom — muCy (L + Cop) (184)

where f = v + Av(9, r is a proper bound, independent of all parameters, such that |[v/|s < r/m
with high probability (which exists by the law of large numbers) and we use the fact that |f]2 < ||v]s.
Thus,
Pux = (I))\’# (Jmax(A)T + /\) /JCQ — /JCl (L + Czu) (185)
We conclude that
(I)/\M Py =D, _ Crpp — (amax(A)r—i-)\—C'l,u) MCQ—M01(L+CQM) (186)

Noting that @ ;, =, Cx ;i = Cp=x|z|+p/2||?> lven in Theorem 2, and due to continuity of C'y ,, at
w =0, for any € > 0, one can select 1 small enough such that Pr(|®y — C ,—¢| > €) —, 0. This
completes the proof as C ;=0 = Cy_x|q|-

Now, we show and (T80):
Step 1:

First note that ¢; € d¢(v(™). To see this, use induction:

e Clearly ¢ € 0p(v(®).

e Suppose that ¢; € dp(v?)). From the KKT condition for (T78), we have that (¢;11)7, =

pt € Af(g+ Av(tJrl ) + Olxr, + vgnH |1. Moreover, noting that (¢;)se € Af{ (g +

Av®D) +0xe + vlc |11, we get that (Cerr)re € —AZE(g + AvIFD) 4 0xre + v tH N
This shows that ¢;.; € dp(v(t+1).
Step 2:
Now we show by induction that
t
v+ — v0 ], < L (1%) (187)
¢t =¢iY (188)
(e+1) @ <u ()" ym 189
”C (IUligr)e _C(ItUIt+1)C o I M 1o, & ( )
The argument is as follows:
(t—1) (t+1)
e First, note that (I88) holds, since by definition, {;, " = ¢;," ' = p;. Then,
0
ﬁnci,)ug < ﬁnc@uz = L (190)

Thus, min ¢} < p1Ly/™, which leads to

[m
||C]r oo < m1n|C10 | < pL T (191)

Note that C}g) € Opo(w = vg )) Hence, by Lemma 4, we get that

1 (0) IIC§§) (P o ML

L — < < 192
v 0TV S G (R S T (2
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e Start induction by ¢ = 0: From the construction, we get

¢V =0
{c“’ ¢+ AT AL (wo — Vi) (199

and p; = Cg)). Note that

st (o),

11— Or
which leads to

Ol |m
[0 (=), < minfaT A (v i) < 25 199

proving (T89) for t = 0. Note that the relation in (I92) proves fort = 0 as |[v(t) —
O]y = [wo — v |l2.

e Now, suppose that the relations (I87),(I88) and (I89) hold for all ¢’ < ¢ an let us prove
them for ¢ + 1. Consider the optimization (T78) for ¢ and note that {*) € dg(v(®). Tt is

simple to see that this leads to (7, ) _ Pt € 0y (Vgt)), which subsequently leads to

(0) < O L

Io

/N

(194)

Ox
v ™

AT AL (wimr = vy ) € 00i(vi) (196)
By lemma(9] we obtain that

lwe = vl < s | AT AL (w1 = VD)

t—1
< W\\Wt 1 Vgt 1)||2

= aomiv® Dy
t—1 t
0 _pL [ Ok _ _BL 05
<o d (o) =% (%) (197)

This proves as [vOHD — vy = |w, — vg) 2. We also get that

1 Ol [ 0 '
AT A vl < vl < P22 (L) as
Thus,
t+1 t t
”C(IfUIf+1 C((IzuIH_l)CH/ ” I,UI,_H)CAH(W _Vgt))”oo
<min|AT | Ar,(wp = vi0)| < y/HIAT, A (we = v
t+1
< VEuL () (199)
which proves (T89).

Step 3:

It is now clear from (I87) that if 6, + ), < 1, the sequence v’ is absolutely convergent. Moreover,
(T88) and (T89), together with the fact that

1 9 t+1
¢ttt — ¢t e = |AT, A (we — v |2 S pL | (200)
Jm e 1— 0,

yield to

16+ = ¢l = JICET = € B+ ICEL = ¢h B+ 16T e -

— 1 1
= JIC = CLIBHICHA = S BHICE e = Slronn B

2L2 ek 2 27,2 Gk 22 2r2(m 1) O 2tz 201)
<A/m ) T TH k T-on (
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which shows that the sequence ¢® is also absolutely convergent. Denote the limits for ¢*) and v(*)
by ¢(*) and v{*), respectively.

We have that

0 - .
\/%HV(O) - V(ﬁ)”Q < tgo ”V(t+1) - V(t)HZ < tZO 1li§k (12%1«)
= (202)

Now, we show that [|¢(*)||.,. is bounded. To see this, consider any index i and denote by t; < to < ...
the iterations ¢, where i € I;. For i ¢ I due to (I88)), we have that

o8]
ERRTCLE YRR L R Y LIIC LIS YLy
t=0

t# b tA L+ 1 tlie(I,uliq1)e

which leads to

_ 0 t+1
<+ 8 gl = <uLyE+uL Y ()
tlie(I,ulig1)e t=0
—< uL (VE + =) (204)
Similarly, for any 7 € Iy, we have that

D Y A @05)

tzl\ie([tult_},l)c

Thus, noting that Cg;) = 0, we get that

(o) S0 0\ Lo
I¢; |<uLt=1<1_5k> = T 0 =55 (206)
Together, we get that
ko 1—06,—0k
Note that as () € dp(v(")), we obtain that ¢(*) € dp(v(*)). .

The second claim in part 1 can be easily proved by a similar approach as in the previous theorems:
Notice that for any sufficiently small value of § > 0,

Oy —DPy_s5 _ [IX]1 _ Prys — O
< <
~

1) o 0 (208)
This shows that I 2%
X A
n : —p N Mz )| (209)

Lemma 9. Consider the function p(v) = 1|h + Pv|3 + A|v + x||; + p”'v and suppose that it is

minimized at v*. Take an arbitrary point v and q € dp(v). Then,

v =v*2 < lall2 (210)

.
O'Zlm(P)

Proof. Notice that the function p can be written as p(v) = $|v||3 + g(v), where o« = 07,3, (P)? and
g(v) is convex. Now, we prove a more general result for any strongly convex function of the form
p(v) = §|v|3 + g(v)., where g is convex. For any point v any subgradient p of f, we have that
P = av + q, where q is a subgradient of g at v. Moreover at v*, g has the subgradient q* = —av*.

Since g is convex, we have that

(@a—a")"(v=v*")=>0 (211)

which can also be written as
(p+a(v* — v))T (v—v*)=0=pl(v-v*)=al|v-v*3 (212)
Using the Cauchy-Schwartz inequality, we obtain that |p|2/a = |v — v*|2. Specializing this result
for the given function and substituting & = 7,5, (P)?, we obtain the desired result. O
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3.3.2 Part2

Step 1: Denote by x*¢ the minimal solution of the optimization

)

1 .1 €
Dy = = min 3 |y — Ax[3 + Al + 53 @13)

We later prove that under the given conditions, for each > 0, there exist €, p such that0 < e <7

and |p| < 7. Moreover,
SA+pe _ 5A0(2
Pr (”XX? > n) 50 214)
n

Given this result, we may write that

n /\A) N
2 9(2; °) T

A,0 f
) M — K3 i=1
= Xzl T - +

g(x 1
= Myja)g = :

n

n

= — Mg jalten/ag | T

(Mt p)al 4enzjog — Majelg) — (215)

Define x** — h = %7€, Then from the Taylor expansion theorem, we have that

: i = (216)
n n n

w ~A,0 L ~A+p,e & 1 aAtps€E " 2
9(27™") 9@ """ X (@ )hi + g" (ni)hi/2
=1 =1 =1

Using the Cauchy-Schwartz inequality and the fact that ¢” < C; for some value of C7, we get that

g X g(@) ) D ARG I DWW Wi
i=1 _a=1 < i=1 i=1 + Y1 i=1 (217)
n n n n 2 n
Notice that since g” < C, we have that |¢'(z)| < Cy|z| + Cs. Then,
()& DGR
(e SR [0 § L) To) (218)
n n

S ey
From Theorem the term *=———— converges in probability to a finite value. Hence, the exists a
value R > 0, such that

il(g/)Q(i,f\-&-p,e)

Pr(= > R?) -0 (219)

n

Take an arbitrary value § > 0. Take 77 > 0 such that R./m; + ¢171/2 < §/3. Furthermore, it is easy
to verify that, one can choose 72 > 0 such that for any 0 < € < 72, |p| < 72, we have that

5
[Mxi pylatsenfo.g = Majalo < 3 (220)

Next, take 77 = min(n,72). Assume the result in (ZI4) with a proper choice of ¢, p for the given
value 7. This leads to that with high probability

> h?
i=1

n

<n<mn, (221)
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which further yields to

S @) 3 gt

=1 — =1 - < Ry + e /2 < 6/3 (222)

Notice that from Theorem[I] we have that

& A
> 9(531' +p,5)
i=1

n

J
Pr — M(A+p)|7;\+sw2/2,g > g -0 (223)
From 213)), (220), (222)) and (223)), we get that with high probability

g(xM?)
n

— My,| <6 (224)

which leads to the desired result.
Step 2: It remains to show (214). First, observe that with high probability we have that
I(1—d(A))

2n

where 6 > 0 is a fixed number and [ < n is a natural number, where §; < 1. This shows that
(1=08;) > 2(Mo+0) and l/n > 2(My+6). Take 0 < a < min(4My, 260). Define K = My+60—a/2
and k = # — 1. Notice that K > M and

l l

My +0 < (225)

= —1>————s—1>1 22
k n(Mo + 60 — a/2) >n(M0+9) > (226)
Further,
K:M+0_a<l(1—5z(A))<l[1—a—5z(A)+a/2]_Oé<l[1—04—51(A)
2 2n n 2- 2 n 2—«
227)
which leads to _ DA
e (228)

k

Denote M€ = Myjz|4 502 o2 and NMe = Mjz|+ 502 ,|o|- Take an arbitrary value § > 0. It is simple

to see that there exist values p, ¢, such that 0 < € < 4, |p| < § and 0 < N 7€ — NA0 < §, Then,
take p > 0, such that
2p < NATPe — NMO, (229)

For the above values of € and p, define h = %0 — %**7¢. Denote the objective function in Z13) by
®, ((x). Then we have

Dt (K10) = @3 (30) + 1 (5[FM3 + p|EM0 1) < @y o340 + L (5%
= Dy (BHP) L (SIRMOI3 4 50 — §JRM PR — pll e

+ & (1% = [%57)

1)

>\+p‘e”2

< Ty b3 + elble 724>
S Fhtpe T, Vi 4/n

Now, from Theorem [I]and the first part of Theorem [2] we have that

”5(/\+p,e % A+p,e >\,0||1

[ES |x

_)p M)‘+pv€7 1 _)p N>\+p75’ _)p N)\,O (231)
n n
Hence taking a constant value M > /M*+r:€, we obtain that
A0 ¢ [h3 Bl
Prgp,e(XM) <K Pagpe + 3t Me NG + pé (232)
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Define the following index sets
S={k||az" ) = pp L=1{k|0<|iy*"] < p} (233)

Define K ;}76 = Mj|z|+ex Notice that by Theorem we have that

2/2.XR\(—p 1) °
S
% —p K)tre (234)
On the other hand
lim K" = M, (235)
(1,p,€)—>0

Hence, for small enough values of §, we have that K ;\“’*E < K, which subsequently yields to the
fact that with high probability

18 _ g (236)
n
From (23T)), we know that with high probability,
SA+pLE SA,0
T o)
n n

Which can also be written as,

[ P o %3t +hsly | %377 +hrl | Ihsonels
TP —|h hy|l— &P h c
s % Hnl Ibs s + by anT Il + [ (sw) Il +2u (238)
A+p,e

Notice that by definition ||x7;

1 < u. Hence, we obtain that with high probability
|hsly = [hse| (239)

Now, define z = y — Ax(* 7<) Decompose with the following procedure the vector hge into the
blocks T4, T5, .. .: hy is the k|S| elements of hge with the largest absolute value. hy, is the k|5

elements of the remaining elements (i.e., the ones in hge 7, ) with the largest absolute, and so on.

Define U = S u T;. We have that

. 1 . € .
n®xip(KM7) = 5[z = Ah[3 + (A + p) 70 by + SO S (240)
Notice that 0 = £**7:¢ + h is the minimal point of the function ® o(x). Hence,
AT (z— Ah) = AT (y — AxM) € M|xM0) (241)
Hence,
|AZ. (z — Ah) |, < A= —h{.Al. (z— Ah) > —\|hy<|; (242)
which leads to
—hl.AL. (z — Ayhy) = —=A|hy<|, — ||Apchye|? (243)

Finally, we get that

1 1 1 1
§HZ—Ah||§ = §||Z—AUhU||§—thArTJC (z— Auhy)+5[Aychye 15 > §||Z—AUhU||§—/\HhU“
(244)

Hence, we have

@4 (3M0) = 3z — Avhy[3 — Alhge |1 = 5| Avehye |3 + (A + p) g™ +holl + (A + p) !

+ 5™+ ho |3+ §IxpE " + hoe 3
Notice that w = 0 is the minimum point of the function
1
Sz = Auwld + (A o) [xg ™ + ws + HX”’J w3 (246)

Hence, from lemma[I0} we get that
A A
slz = Avhu 3 + (A + p)|x5™ +holy + §lxg™ +ho3

o2 (A A € A €
> ZmnlAU) 1312 4 g2 (A + )l + S lxp 13 (247)
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Substituting this result in (243)) gives that
T@AH,E(’A‘)\’O) - nq’>x+p,e(5</\+p’e)

0'2 .
> Zmin B0 2 Ny |y — L [Avchye]d + A+ p)|x57¢ + hye |

—(A+ P)IxpEP = S0t €13 + §lxpEPC + hye3
> Zaan( AU b2 4 plge |1 — 2 Agehpe]3 — 200+ p) x| — 2577 2 by |
> Zaan( A0 12— 5 /nfhylls — L Auehue 3 — 200 + g — 2i/nplhye]s  (248)
where we used the fact that
plhyelly = =d[hye i = =dhy |1 = —dv/n|hy]2 (249)
In [4), Equation (11)] it is proved that
13 < il = £l (250

Also, in [Candes eq (12)] it is shown that

1+6
W Il IIhqu k‘S'( )HhU”2 251)

|Apehye|

Hence,

T@AH,E(’A‘)\’O) - nq’>x+p,e(5</\+p’e)

1-5 (A)— 1H2nIs| )
Z < elel - ) Ihu[3 = (1 + Z)dv/nlhyllz — (A + 8)nd (252)

Notice that |S| < Kn. Hence according to (228),

1+ 0p51(A) 1+ 0nrer (A 1+6(A
a1 = 1_6(1+k)|S\(A)_% = 1_6n(1+k)K(A)_%() = 1—51(A)—%
(253)
which gives that
n@)\+p7€()A(A’O) - n(I)M-p 6( Atpe )
> §huf3 — 1+ Z2)ov/nlbylz — (A +6)nd (254)
Combining (232) and (232)), we get that
o 1 )
ol — 1+ ﬁw\/ﬁ”hu\\z = (A +0)nd < S|h[3 + Mov/n|h]z + nd® (255)
Notice that )
Ihl3 < (1 + D)lholz (256)

Then, we get that

1
o NG ]
s/l — (A + 6)nd < Z[h|3 + Mov/nlhls +nd®  (257)

s |3 - :
2
2(1+ ) /1+%

Since k£ > 1, it is simple to see for any n > 0 that the value § can be made sufficiently small such
that (257) implies 214).

Lemma 10. Consider the function p(v) = 1|h + Pv|3 + A|v + x|1 + £[v|3 and suppose that it
is minimized at v*. Take an arbitrary point v. Then,

0.2

(P
o) = (v 2 Py gz os8)
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Proof. Define w = =517 V*”2 and f(v) = p(v* + vw). Notice that p(v) = f(|v — V*||2) and f
is minimized at 0. Moreover, direct calculations shows that f can be written as f = fozv + g(v),
where g is convex and & = [Pw|3 + €/2 > 045, (P)?2. Then, Lemma|[l 1]leads to

2. (P
o) = o) = [y =¥ 1) = 1) = Sy w3 > Zen Py e s
O

Lemma 11. Suppose that g(v) is a convex function on R and v* is a minimum point of the function
f(v) = §v* + g(v). Then, for any v € R,

f) = f(0*) = = (v—v*)? (260)

[\ J§e)

Proof. From the optimality of v*, we have that —av* € dg(v*). Hence,

9(0) > g(v%) = aw* (v~ ") @61)
Hence,

) = ") = av* (v =v*) + S0 =" +g0) = g(v") > G0 ="’ Q62

O

3.4 Proof of Theorem 2 in Paper

Let us first consider convexity over p: Since convexity is preserved by the linear action of expectation,
we only require to show that S (%, pl'+ X ) is a convex function of p for any realization of I, X
and 3. We have that

S (5 0+ X) = min (e =90 = X074 50 (263)

Now, notice that % (x — pI' — X)? is a jointly convex function of = and p (i.e., it is a convex function
of the 2 x 1 vector (x, p)). To see this, notice that its epigraph

{<x7p,A>|Qfg(x—pr—X)2<A,p>o} {(2.p, A) | Ble — T — X)? — Ap < 0,p > 0)

is a convex set (This is simply seen by introducing the linear transformation a = (A — p)/2,b =
(A+p)/2and ¢ = x — pI" — X, and checking that the condition p > 0 restricts the transformed set
to the upper part of a circular cone, which is convex). As a result, the objective function L(p, x) in
is jointly convex for x and p. Take two values p;, po > 0 and their corresponding minimum

solutions z§, 2% in (263). Also denote Sy (%, pI' + X ) by S(p) for simplicity. We have that
S(0p1+(1=0)p2) = min L(6p1+(1=0)pa, ©) < L(Op1+(1=0)ps, 027 +(1—-0)z5) < 05(p1)+(1-0)S(p2),

where 0 < 0 < 1 is arbitrary. This shows that .S is convex and completes the proof.

Now, we consider concavity of 1(3): Notice that we may write

. . pBy=1) d*B B> B
w(ﬂ)—n%}n5<g1>151 T "% 7+%(Y pl' = X)? +f(Y)>,

where Y ranges over all real-valued random variables. Notice that the inner optimization (over p)
is in the form A(p) + BB(p) — v8?/2 + f(Y) where A, B are convex functions of p. Hence, its
optimal value is a concave function of 3. Denoting this optimal value by Ly (3), we observe that
P = rr%}nE(Ly(ﬁ)). Notice that the minimum of a family of concave functions is concave and

E(Ly (p)) is a concave function of /3. Hence, 9 is concave.
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