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1 Main Results in Detail

Here, we express the results of the theorem in more details. We introduce complementary results
and change some expressions for convenience in the mathematical development. Especially, we
introduce a new set of more detailed results, which are connected to the results of the paper as we
shortly explain.

The main feature of our analysis is that it is universal. This precisely means that our expressions are
independent of the distribution (law) of the i.i.d sensing matrix as long as it belongs to the following
family of scaled-regular matrices:

Definition 1. We call a random matrix A regular if it consists of independent and identical distributed
entries with vanishing first, third and fifth moments, unit variance and finite fourth and sixth moments.
We call a m� n random matrix A scaled-regular if it can be written as A � A1{?m, where A1 is
regular.

We also present the analysis in terms of a general real-valued characteristic of the optimal solution x̂ or
the error w. This characteristic is defined by a characteristic function g : Rn Ñ R. Accordingly, we
are interested in calculating asymptotic values for gpwq and gpx̂q, which we prove to be independent
of the law of the matrix A under mild conditions. We are able to calculate these values only when the
functions are separable, i.e. there exist (with an abuse of notation) real functions fpxq, gpxq : RÑ R
such that

fpxq �
ņ

i�1

fpxiq, gpxq �
ņ

i�1

gpxiq. (1)

Finally, we assume that the true vector x0 is randomly generated and has i.i.d. entries with some
distribution ξ. Notice that ξ represents the structure in x0. For example, sparse vectors can be
generated by a distribution ξ that contains an atom at 0, i.e. ξpt0uq ¡ 0.

Since we study the asymptotic behavior of the regularized least squares, we technically consider a
family of problems as in (1 in Paper) with a growing size n. Hence, we may use subscript n to clarify
the relation with size. For example the functions f, g are written as fn, gn, respectively. We also
denote the optimal value in (1 in Pape) by Φn � ΦnpA,ν,x0q and use the notations x̂ � x̂pA,ν,x0q
and w � wpA,ν,x0q to emphasize the dependence of the estimate and the error on the realizations
of A,ν,x0.

We split our results into two groups: strongly convex regularizations and the original LASSO (`1
regularization). This is because the `1 norm is not strongly convex and its analysis requires a different
treatment. Both results are based on the notion of essential optimization, which we explain first.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



1.1 Essential Optimization

For a case with separable functions f, g and independent ξ�distributed x0, we observe that the
asymptotic behavior of the regularized least squares problems is reflected by the following two-
dimensional optimization that we call the essential optimization:

Cf pγ, σq � max
β¥0

min
p¡0

"
pβpγ � 1q

2
� γσ2β

2p
� γβ2

2
� E

�
Sf

�
β

p
, pΓ�X


�*
, (2)

where X and Γ are two independent random variables, distributed by ξ and standard Gaussian p.d.f,
respectively. Further, Sf p. , . q denotes the proximity function of f , which is defined by

Sf pq, yq � min
x

q

2
px� yq2 � fpxq. (3)

with the minimum located at x̂pq, yq. If the solution
�
p̂ � p̂pγ, σq, β̂ � β̂pγ, σq

	
of (2) is unique,

then we define

Lf,gpγ, σq � E
�
g

�
x̂f

�
β̂

p̂
, p̂Γ�X

�
�X

��
, Mf,gpγ, σq � E

�
g

�
x̂f

�
β̂

p̂
, p̂Γ�X

���
.

(4)

1.2 Strongly Convex Regularization

Our analysis assumes both differentiable and non-differentiable regularization functions f . For
differentiable functions, we consider strongly convex ones with absolutely bounded third derivative.
Referring to these functions as smooth-regular, we consider for non-differentiable functions the ones
that are obtained as a uniform limit of smooth-regular functions. We call them regular functions. In
other words, the set of regular regularization functions is the uniform closure of all strongly convex
functions with absolutely bounded third derivative. For simplicity, we only report the result for
smooth-regular functions here and postpone the more general case to Section 1.4.

For the characteristic function g, we simply take the set of all convex functions with bounded second
and third derivatives. We do not consider the non-differentiable functions. Also, notice that once we
establish convergence results for these characteristic functions we may take any affine combination
of a finite number of them, which extends the result to a large family of non-convex functions. In
particular, we can establish the universality result for the characteristic function gpxq � χrx0 8qpxq,
which is 1, if x P rx0 8q, and 0, otherwise. This choice corresponds to the empirical distribution
Fx0

p. q that counts the number of entries larger than a particular value x0 in its argument.
Theorem 1. Suppose that f is smooth-regular and g is a convex function with bounded second and
third derivatives. Assume that A is a scaled-regular random matrix, ν is a centered i.i.d Gaussian
vector with variance σ2 and x0 is i.i.d with distribution ξ, such that Eppf 1pXqq2q is finite for a
ξ�distributed random variable X . Moreover n,m grow, such that m{nÑ γ. Then,

1. We have that
ΦnpA,ν,x0q Ñp Cf pγ, σq (5)

2. If the solutions of (2) p̂ � p̂pγ, σq, β̂ � β̂pγ, σq is unique, then

gnpwpA,ν,x0qq
n

Ñp Lf,gpγ, σq, gnpx̂pA,ν,x0qq
n

Ñp Mf,gpγ, σq (6)

3. For every x P R, we have that

FxpwpA,ν,x0qq
n

Ñp Lf,χrx,8q
pγ, σq, Fxpx̂pA,ν,x0qq

n
Ñp Mf,χrx,8q

pγ, σq (7)

provided Lpxq � Lf,χrx,8q
pγ, σq and Mpxq �Mf,χrx,8q

pγ, σq are continuous at x.

Notice that the above Theorem implies some parts of Theorem 1 in the paper: The claim of first bullet
under assumption 1 is provided by part 1 of the above theorem. The claim of second bullet under
assumption 1 is provided by part 3, noticing that M and L values in (4) correspond to the distribution
of X̂ and W in the paper, respectively.
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1.3 The Original LASSO

The error of the original LASSO cannot be characterized by Theorem 1. This case requires further
restrictions on the choice of the random matrix. First, we remind the definition of the Restricted
Isometry Property (RIP):
Definition 2. Consider a m� n matrix A.

1. For any natural number k   n, the RIP constant δkpAq is defined as the smallest numbers
δ, such that for any index subset I � t1, 2, . . . , nu with |I| ¤ k

1� δ ¤ σ2
minpAIq ¤ σ2

maxpAIq ¤ 1� δ (8)

2. We also define the admissible sparsity MadmpAq as follows:

MadmpAq � sup
k

kr1� δkpAqs�
2n

(9)

Then, we provide the following result:
Theorem 2. Take g, ν and x0 as in Theorem 1. Assume that A is a scaled-regular matrix with
sub-Gaussian entries. Take fpxq � λ|x|, which yields to fnpxq � λ}x}1. Then,

1. The claim in Theorem 1.1 holds for fpxq � λ|x|. Moreover, }x̂pA,ν,x0q}1{n Ñp

Mλ|x|,|x|.

2. Define

M0 �Mf,χRzt0u � Pr

�
x̂f

�
β̂

p̂
, p̂Γ�X

�
� 0

�
(10)

as the "effective sparsity" of the LASSO estimate. If M0 is strictly less than MadmpAq with
high probability1, then the claims in Theorem 1.2 and 1.3 hold.

The above result gives the remaining claims in Theorem 1 of the paper. Th calim of first bullet under
assumption 2 is implied part 1 above, although the above holds under weaker assumptions. The claim
of second bullet under assumption 2 is given in part 2 above, where we provide a lower bound, ρ{2
for Madm by a standard argument given in [1].

1.4 Generalized Results

In Section (3.3 in the paper), we mentioned that the expressions in Theorem 1 and 2 are special cases
of our more general discussion. Here, we mention these general results as an independent theorem:
Theorem 3.

1. Suppose that in (2), x0 has i.i.d centered entries with distribution ξ and A is m � n.
Moreover, tfnu and tgnu are regular and well-behaved sequences of functions, respectively,
both with respect to ξ. Take ν as an i.i.d Gaussian centered vector with distributions
N p0, σ2q. Suppose that m and n grow such that n � Opmq. Take two scaled-regular
random matrices A1 and A2. If the sequence ΦnpA1,ν,x0q converges in probability to a
value C, then ΦnpA2,ν,x0q also converges in probability to C.

2. Consider a sequence f pkq : R Ñ R of strongly convex functions with bounded third
derivatives uniformly converging to a function f . Then, the results of Theorem 1 holds for f .

2 Definitions

Definition 3. (conditions on f )

1. A sequence of three-times differentiable convex functions tfn : Rn Ñ Ru for n � 1, 2, . . . is
called smooth-regular with respect to a probability measure ξ on R, if there exist constants
C1, C2, ε satisfying

1This means than there exists a positive number ε such that M0  Madm � ε holds with high probability.
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• For every n, »
Rn

�}∇fnpxq}22
n


2

dnξ ¤ C1 (11)

• For every n P N, x P Rn and s � ps1, s2, . . . , snqT P Rn,

¸
α,β

B2fn
BxαBxβ pxqsαsβ ¥ ε

¸
α

s2
α (12)

• For every n P N, x P Rn and s � ps1, s2, . . . , snqT P Rn,

¸
α,β,γ

B3fn
BxαBxβBxγ pxqsαsβsγ ¤ C2

¸
α

|sα|3 (13)

2. A sequence tfn : Rn Ñ Ru of functions for n � 1, 2, . . . is regular if there exists a
collection of functions f pkqn : Rn Ñ Rsuch that

• For every k, the sequence tf pkqn u is smooth-regular.

• The sequence t 1
nf

pkq
n u converges uniformly in x and n to t 1

nfnu as k Ñ 8. This

means that for every ε ¡ 0 and sufficiently large k, the relation |f pkqn pxq�fnpxq|   nε
holds for every n and x P Rn.

Definition 4. (error risk function g)

1. A sequence of three-times differentiable convex function g : Rd Ñ R is called well-behaved
if there exist constants C1, ε, C2, such that

• For every n,
1

n
}∇gnp0q}22 ¤ C1 (14)

• For every n P N, x P Rn and s � ps1, s2, . . . , snqT P Rn,

¸
α,β

B2gn
BxαBxβ pxqsαsβ ¤ ε

¸
α

s2
α (15)

• For every n P N, x P Rn and s � ps1, s2, . . . , snqT P Rn,

¸
α,β,γ

B3gn
BxαBxβBxγ pxqsαsβsγ ¤ C2

¸
α

|sα|3 (16)

2. For any vector x P Rn and x P R, we define the empirical distribution Fxpxq as

Fxpxq � 1

n

ņ

k�1

χrx,8qpxkq (17)

where χSpxq is the characteristic function of S, which is one, when x P S and zero,
otherwise.

3 Proofs

3.1 A Technical Theorem

We start by proving another result, which will be useful in proving the previous theorems. We
introduce

Φn,ρpA,ν,x0q � 1

n
min

v

1

2
}ν �Av}22 � fnpv � x0q � ρgnpvq (18)

Then, we show the following Lemma:
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Lemma 1. Suppose that in (1 in paper), x0 has i.i.d centered entries with distribution ξ and A is
m� n. Assume that fn is a sooth-regular function with constants C1, ε, C2 and gn is well-behaved
with constants pC̃1, ε̃, C̃2q. For ρ ¡ �ε{ε̃ and any δ2 ¡ δ1 ¡ 0, if

lim
nÑ8Prp|Φn,ρpA1,ν,x0q � C| ¡ δ1q Ñ 0 (19)

then
lim
nÑ8Prp|Φn,ρpA2,ν,x0q � C| ¡ δ2q Ñ 0 (20)

3.1.1 Proof of Lemma 1

The proof is based on the so-called Lindeberg’s argument, which can be explained in the following
steps:

Step 1: First, take any smooth function h : RÑ R with absolutely bounded derivatives of first and
second order. It suffices to show that for such a function,

lim
nÑ8 |E ph pΦn,ρpA1,ν,x0qqq � E ph pΦn,ρpA2,ν,x0qqq | Ñ 0 (21)

since then, one may take a particular radially increasing smooth function h0 with bounded first and
second order derivatives, such that h0pxq � 0 for |x| ¤ δ1 and 1   h0pxq   2 for |x| ¡ δ2. Note
that by the assumption,

0 ¤ Eph0pΦn,ρpA1,ν,x0q � Cqq ¤ 2 Prp|Φn,ρpA1,ν,x0q � C| ¡ δ1q Ñ 0 (22)

Then, from (21) we have that

Eph0pΦn,ρpA2,ν,x0q � Cqq Ñ 0 (23)

On the other hand,

Prp|Φn,ρpA2,ν,x0q�C| ¡ δ2q � PrphpΦn,ρpA2,ν,x0q�Cq ¡ 1q ¤ Eph0pΦn,ρpA2,ν,x0q�Cqq Ñ 0
(24)

where the last inequality is obtained by the Markov inequality.

Step 2: To show (21), take the intermediate matrices for k � 1, . . . ,m� 1

Apkq � ra1,1 a1,2 . . .a1,k a2,k�1 a2,k�2 . . .a2,msT (25)

where ai,k P Rn are the transpose of the kth row of Ai. Define A2 � Ap0q and A1 � Apmq and

Rpkq � ra1,1 a1,2 . . .a1,k a2,k�2 a2,k�3 . . .a2,msT (26)

for k � 1, 2, . . . ,m� 1, with

Rp0q � ra2,2 a2,3 . . . a2,msT (27)

It is now easy to see that defining

Θn,ρpR,a,ν, ν,xq � 1

n
min

v

1

2
}ν �Rv}22 �

1

2
pν � aTvq2 � fnpv � xq � ρgnpvq (28)

and
ν�k � rν1 ν2 . . . νk�1 νk�1 . . . νmsT (29)

we have that
Φn,ρpApkq,ν,xq � Θn,ρpRpkq,a2,k,ν�pk�1q, νk�1,xq (30)

and
Φn,ρpApk�1q,ν,xq � Θn,ρpRpkq,a1,k�1,ν�pk�1q, νk�1,xq (31)

Now, we use the fact that

|E ph pΦn,ρpA1,ν,xqqq � E ph pΦn,ρpA2,ν,xqqq| �����m�1°
k�0

E
�
h
�
Φn,ρpApk�1q,ν,xq��� E �h �Φn,ρpApkq,ν,xq������ ¤

m�1°
k�0

��E �h �Φn,ρpApk�1q,ν,xq��� E �h �Φn,ρpApkq,ν,xq���� (32)
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Furthermore, ��E �h �Φn,ρpApk�1q,ν,xq��� E �h �Φn,ρpApkq,ν,xq���� ���E �h �Θn,ρpRpkq,a2,k,ν�pk�1q, νk�1,xq
��� E �h �Θn,ρpRpkq,a1,k�1,ν�pk�1q, νk�1,xq

���� ���E �h �Θn,ρpRpkq,a2,k,ν�pk�1q, νk�1,xq
��� E �h �Φn,ρpRpkq,ν�pk�1q,xq

�� �
E
�
h
�
Θn,ρpRpkq,a1,k�1,ν�pk�1q, νk�1,xq

��� E �h �Φn,ρpRpkq,ν�pk�1q,xq
���� (33)

For the sake of simplicity, let us define

∆2,k � E
�
h
�

Θn,ρpRpkq,a2,k,ν�pk�1q, νk�1,xq
	
� h

�
Φn,ρpRpkq,ν�pk�1q,xq

		
(34)

and

∆2,k � E
�
h
�

Θn,ρpRpkq,a1,k�1,ν�pk�1q, νk�1,xq
	
� h

�
Φn,ρpRpkq,ν�pk�1q,xq

		
(35)

Then, (33) can be written as���E �h�Φn,ρpApk�1q,ν,xq
		

� E
�
h
�

Φn,ρpApkq,ν,xq
		��� � |∆2,k �∆1,k| (36)

Now, note that since |h2pxq| ¤ H2 for a proper value of H2, we have that

|hpxq � hpyq � h1pxqpy � xq| ¤ H2py � xq2 (37)

which leads to ���∆i,k � E
�
h1
�

Φn,ρpRpkq,ν�pk�1q,xq
	

∆1
i,k

���� ¤ H2E
��

∆1
i,k

�2
�

(38)

where for i � 1, 2

∆1
i,k � Θn,ρpRpkq,ai,k�2�i,ν�pk�1q, νk�1,xq � Φn,ρpRpkq,ν�pk�1q,xq (39)

Thus,

|∆2,k �∆1,k| ¤
���E �h1 �Φn,ρpRpkq,ν�pk�1q,xq

	 �
∆1

2,k �∆1
1,k

������H2

¸
i�1,2

E
��

∆1
i,k

�2
�

(40)

Finally, note that

E
�
h1
�
Φn,ρpRpkq,ν�pk�1q,xq

�
∆1
i,k

�
�

ERpkq,ν�pk�1q,x

�
h1
�
Φn,ρpRpkq,ν�pk�1q,xq

�
Eai,k�2�i,νk�1

�
∆1
i,k | Rpkq,ν�pk�1q,x

	�
,

E
��

∆1
i,k

	2
�
� ERpkq,ν�pk�1q,x

�
Eai,k�2�i,νk�1

��
∆1
i,k

	2

| Rpkq,ν�pk�1q,x
��

(41)

We show in the sequel that there exists a constant Q such that

|∆2,k �∆1,k| ¤ Qm� 5
4 (42)

Then, due to (32), we get that

|E ph pΦn,ρpA1,ν,xqqq � E ph pΦn,ρpA2,ν,xqqq| ¤
¸
k

|∆2,k �∆1,k| ¤ Qm� 1
4 Ñ 0 (43)

which proves the result.

Step 3: To obtain (42), we analyze each term in (40) separately. This means that we nead to calculate
the leading terms of the statistics of ∆1

i,k. However, as (41) suggests, Rpkq,ν�pk�1q,x is assumed to
be deterministic and limits only for the inner expectations in (41) are calculated, which automatically
leads to bounds for the outer expectations. Then, we denote Rpkq � R,ν�pk�1q � µ as the analysis
is for a fixed k and assume that R,µ are deterministic values. As the analysis for i � 1, 2 are
symmetric, we drop the index i and do the analysis for an i.i.d random vector a with a regular
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distribution, as well as a Gaussian random variable ν which will be later replaced by ai,k�i�2 for
i � 1, 2 and νk, respectively. This means that we analyze the statistics of

∆1 � Θn,ρpR,a,µ, ν,xq � Φn,ρpR,µ,xq (44)

Note that Φn,ρpR,µ,xq � Θn,ρpR,a � 0,µ, ν � 0,xq. Thus, ∆1 is a perturbation in Θ and can
be calculated by standard perturbation theory. Denote by wρpA,ν,xq the optimal point of (18) and
take v̂ � wρpR,µ,xq. Note that we also drop the indexes n, ρ for simplicity. Define

ΨpR,a,µ, νq � 1
m min

v

1
2}µ�Rv}22 � 1

2 pν � aTvq2 �
fpv̂ � xq � ρgpv̂q � γT pv � v̂q � 1

2 pv � v̂qTHpv � v̂q (45)

where

γ � ∇fpv̂ � xq � ρ∇gpv̂q, H � B2fpv̂ � xq
BxBxT � ρ

B2gpv̂q
BxBxT (46)

Defining ∆v � v � v̂, the expression in (45) can be equivalently written as

ΨpR,a,µ, gq � 1
m min

∆v

1
2}z�R∆v}22 � 1

2 pγ � aT∆vq2 �
fpv̂ � xq � ρgpv̂q � γT∆v � 1

2∆vTH∆v (47)

where
γ � ν � aT v̂, z � µ�Rv̂ (48)

Also, note that since v̂ is the optimal solution of (18), it satisfies

RT z� γ � 0 (49)

Thus, defining ∆ṽ as the optimal point of (47), we have that

∆ṽ � �γpΩ� aaT q�1a � �γΩ�1a

1� aTΩ�1a
(50)

where
Ω � RTR�H (51)

and

ΘpR,a,µ, ν,xq � ΦpR,µ,xq � 1

m

�
1

2
γ2 � 1

2
γ2aT pΩ� aaT q�1a



�

1
2mγ

2

1� aTΩ�1a
(52)

we also define

∆̃ � ∆̃pR,a,ν, ν,xq � ΨpR,a,ν, ν,xq � ΦpR,ν,xq �
1

2mγ
2

1� aTΩ�1a
(53)

In Lemma 7, we will show that there exists a value η1 ¡ 0, such that:

|∆1 � ∆̃| ¤ 1

2m
γ2χt}ṽ}33¡η1u �

εε1
m
}ṽ}33χt}ṽ}33 η1u (54)

Then from Lemma 6, we conclude that

|Ea,νp∆1q � Ea,νp∆̃q| ¤ Ea,ν |∆1 � ∆̃| ¤ Ea,νp 1
2mγ

2χt}ṽ}33¡η1uq � εε1
m Ea,νp}ṽ}33q ¤

1
2m

a
Prp}ṽ}33 ¡ η1qEa,νpγ4q � εε1

m Ea,νp}ṽ}33q ¤

1
2m pL1 �K1

}v̂}22
m q

dc
L2�K2

}v̂}62
m3

ηε3
?
m

� εε1
m

c
L2�K2

}v̂}62
m3

ε3
?
m

(55)

Combining this with (89) in Lemma 6, results in����Ea,νp∆1q � 1
2m p1� }v̂}22

m q
1� TrpΩ�1q

m

���� ¤ m� 3
2

�
L11 �K 1

1

�
}v̂}22
m

	 3
2



�m� 5

4

�
L12 �K 1

2

�
}v̂}22
m

	 7
4



¤

m� 5
4

�
L1 �K 1

�
}v̂}22
m

	2



(56)
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For proper choice of L11, L
1
2, L

1 and K 1
1,K

1
2,K

1. We also conclude from (116) that there exists
constants K2 and L2 such that

Ea,ν
�p∆1q2� ¤ 1

4m2
Ea,νpγ4q � p1� }v̂}22

m q2
4m2

¤ m�2

�
L2 �K2

�}v̂}22
m


2
�

(57)

Now, using the definition of ∆1
i,k, we conclude that

��Ea2,k,ν�pk�1q
p∆1

2,kq � Ea1,k�1,ν�pk�1q
p∆1

1,kq
�� ¤ 2m� 5

4

�
L1 �K 1

�}v̂k}22
m


2
�

(58)

where v̂k � wρpRk,ν�pk�1q,xq. Using (40), (41) and noting that h1pxq ¤ D1 for a proper value of
D1, we have that

|∆2,k �∆1,k| ¤
2D1m

� 5
4

�
L1 �K 1E

��
}v̂k}22
m

	2




� 2D2m
�2

�
L2 �K2E

��
}v̂}22
m

	2




¤

m� 5
4

�
L̄� K̄E

��
}v̂k}22
m

	2




(59)

for a proper choice of constants L̄, K̄. Note that by Lemma 5 we have that

E
��

}v̂k}22
m

	2


¤ E

��
6p}RT

k ν�pk�1q}22�}∇fpxq}22�ρ2}∇gp0q}22q
ε2m

	2


¤

108
ε4 E

�� }RT
k ν�pk�1q}22q

m

	2


� 108

ε4 E
��

}∇fpxq}22
m

	2


� 108ρ4

ε4

�
}∇gp0q}22

m

	2

(60)

Thus, due to Lemma 4, there exists a constant Q such that

|∆2,k �∆1,k| ¤ Qm� 5
4 (61)

Then, due to (32), we get that

|E ph pΦpA1,gqqq � E ph pΦpA2,gqqq| ¤
¸
k

|∆2,k �∆1,k| ¤ Qm� 1
4 Ñ 0 (62)

which completes the proof.

Lemma 2. For every α ¡ 0, there exists numbers η1, ε1 ¡ 0, such that if 0   x   η1, then there
exists 0   r ¤ ε1x satisfying

4r
3
2 � 5x   αr (63)

Proof. Take δ ¡ 1 and
η0 � max

r¡0
F prq (64)

where F prq � pαr � 4r
3
2 q{5 and denote by r0 its optimal point. Define η1 � η0{δ. Note that

η0, r0 ¡ 0, since F 1p0q � α{5 ¡ 0. Moreover, F p0q � 0. Thus, by the mean value theorem, for any
0   x   η1 there exists a point 0   r   r0, such that F prq � δx ¡ x, thus satisfying (63). Define

ε0 � max
0 r r0

r

F prq �
5

min
0 r r0

α� 4
?
r
� 5

α� 4
?
r0
� r0

F pr0q ¡ 0 (65)

and ε1 � δε0. Now,
r

δx
� r

F prq ¤ ε0 Ñ r ¤ ε0δx � ε1x (66)
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Lemma 3. Suppose that the m�dimensional vector
?
mh has i.i.d regular entries. For any m�m

matrix S, vector z and d � 1, 2, 3

Ep|zTh|2dq ¤ p2dq!
d!� 2d

}z}2d
m
Eph2d

1 q (67)

EphTShq � TrpSq
m

(68)

Ep|hTSh|2q ¤
�

TrpS2q
m2


2

� 2
TrpS4q
m4

Epz4q (69)

Proof. For the first part, note that

Ep|zTh|2dq �
¸
Epzα1

zα2
. . . zαdhα1

hα2
. . . hαdq (70)

Note that only the well-paired terms contribute to the summation. Then, using the union bound and
noting that Epz2lq ¤ Epz2dql{d for any l ¤ d, we obtain the results. For the next part, not that

EphTShq � TrpSEphhT qq � TrpSq
m

(71)

and finally,
Ep|hTSh|2q �

¸
Ephα1hα2hβ1hβ2qSα1,β1Sα2,β2 (72)

The well-paired terms only contribute to the summation. Then, using the union bound and noting that
Epz4q ¥ Epz2q2, we obtain the result

Lemma 4. By the definitions and conditions above, we have that

1

m2
E
�}RT

k ν�k�1}42
� ¤ D (73)

for a proper choice of D, independent of m and n.

Proof. Note that
pRT

k ν�k�1qT �
¸
l k

a1,lνl �
¸
l¡k

a2,lνl �
¸
l�k

bk (74)

where bk � al,1νl if l   k or bk � al,2νl otherwise. Thus,

E
�}RT

k ν�k�1}42
� � E

� ¸
α1,α2,β1,β2

bTα1
bβ1

bTα2
bβ2

�
(75)

Note that ba and bb are centered and independent if a � b. Thus,

E
�}RT

k ν�k�1}42
� ¤

E

� °
α1,α2

bTα1
bα1

bTα2
bα2

�
� 2E

� °
α1,β1

bTα1
bβ1

bTα1
bβ1

�
� E

�°
α1

bTα1
bα1

bTα1
bα1



�

�°
α
E
�}bα}22�


2

� 2
°
α,β

Tr
�
E
�
bαbTα

�
E
�
bTβbβ

		
�°
α1

E
�}bα}42� (76)

On the other hand, EpbαbTαq � I{m and Ep}bα}22q � 1. Furthermore,

Ep}bα}42q � Epν4
αqEp}a}42q ¤ D1E

�
��¸

µ

a2
µ

�2
�

¤ D1

�
�¸

µ

Ea4
µ � 2

�¸
µ

Ea2
µ

�2
�

¤ D1pD2�2q

(77)
Thus,

1

m2
E
�}RT

k ν�k�1}42
� ¤ � n

m

	2

� 2n2

m3
� D1pD2 � 2q

m
¤ D (78)

For a proper choice of D.
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Lemma 5. The norm of wρpR,ν,xq is bounded by

}wρpR,ν,xq}22 ¤
6p}RTν}22 � }∇fpxq}22 � ρ2}∇gp0q}q

ε2
(79)

Proof. To see this, take an arbitrary point v and define

ηptq � 1

n

�
1

2
}ν �Rvt}22 � fpvt� xq � ρgpvtq



(80)

Note that

ηp0q � 1

n

�
1

2
}ν}22 � fpxq � ρgp0q



(81)

and
η1p0q � 1

n

�pRTν �∇fpxq � ρ∇gp0qqTv
�

(82)

Moreover,

η2ptq � 1

m

�
vTRTRv �

¸
α,β

B2f

BxαBxβ vαvβ � ρ
¸
α,β

B2g

BxαBxβ vαvβ
�
¥ ε

}v}22
m

(83)

where we use the second property of f and convexity of g. Integrating the above, we obtain that

η1ptq ¥ 1

m

�pRTν �∇fpxq � ρ∇gp0qqTv � ε}v}22t
�

(84)

and by integration again, we obtain that

ηptq ¥ 1

m

�
1

2
}ν}22 � fpxq � ρgp0q � pRTν �∇fpxq �∇gp0qqTvt� ε}v}22

t2

2



(85)

Setting t � 1, we obtain that

1

m

�
1

2
}ν �Rv}22 � fpv � xq � ρgpvq



¥

1

m

�
1

2
}ν}22 � fpxq � ρgp0q � pRTν �∇fpxq � ρ∇gp0qqTv � ε}v}22

2



(86)

It is now clear that

wρpR,ν,xq P
"

v | 1

2
}ν �Rv}22 � fpv � xq � ρgpvq ¤ 1

2
}ν}22 � fpxq � ρgp0q

*

�
"

v | pRTν �∇fpxq � ρ∇gp0qqTv � ε}v}22
2

¤ 0

*
(87)

which after straightforward calculations leads to (79).

Lemma 6. By the definitions above, there exists finite constants K,K1,K2 and L,L1, L2, only
depending on the common distribution of the entries of a, such thatb

Eν,a pγ4q ¤ L1 �K1
}v̂}22
m

(88)

Moreover, �����Eν,ap∆̃q �
1

2m p1� }v̂}22
m q

1� TrpΩ�1q
m

����� ¤ 1

εm
?
m

�
L�K

}v̂}22
m



(89)

and

Pr

�¸
k

|∆ṽk|3 ¡ η

�
¤

b
L2 �K2

}v̂}62
m3

ηε3
?
m

(90)
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Proof. Recall that

∆̃ � ΨpR,a,ν, ν,xq � ΦpR,ν,xq �
1

2mγ
2

1� aTΩ�1a
(91)

where due to the second property of f , we have that

Ω � RTR�H ¡ εI Ñ Ω�1
 

1

ε
I (92)

Note that the function rpxq � 1{p1� xq is 1�Lipshitz, which means that�����
1

2mγ
2

1� aTΩ�1a
�

1
2mγ

2

1� Ω�1

m

����� ¤ γ2

2m

����aTΩ�1a� Ω�1

m

���� (93)

Thus, ����Eν,a � 1
2mγ

2

1�aTΩ�1a

	
� Eν,a

�
1

2mγ
2

1�Ω�1

m


���� ¤ Eν,a � γ2

2m

���aTΩ�1a� Ω�1

m

���	

¤ 1
2m

d
Eν,a

����aTΩ�1a� Ω�1

m

���2
 Eν,a pγ4q (94)

By Lemma 3, we get that�����Eν,a
� 1

2mγ
2

1� aTΩ�1a



� Eν,a

�
1

2mγ
2

1� Ω�1

m

������ ¤ K0

εm
?
m

b
Eν,a pγ4q (95)

where K0 is a finite constant, only depending on the distribution a. On the other hand,

Eν,a
�
γ4
� � Eν,a �pν � aT v̂q4� � Eν,a �g4

�� 6Eν,a
�
ν2
�
Eν,a

�paT v̂q2�� Eν,a �paT v̂q4� (96)

Using Lemma 3 and after straightforward calculations, it is easy to see that there exists finite constants
K1 and L1, only depending on a such thatb

Eν,a pγ4q ¤ L1 �K1
}v̂}22
m

(97)

Combining this with (95), we obtain that there exists constants K � K0K1 and L � K0L1 such that�����Eν,a
� 1

2mγ
2

1� aTΩ�1a



� Eν,a

�
1

2mγ
2

1� Ω�1

m

������ ¤ 1

εm
?
m

�
L�K

}v̂}22
m



(98)

which can also be written as�����Eν,ap∆̃q �
1

2m p1� }v̂}22
m q

1� Ω�1

m

����� ¤ 1

εm
?
m

�
L�K

}v̂}22
m



(99)

Finally, defining ωk as the kth colum of Ω�1 we observe that }ωk}2 ¤ 1{ε, since Ω�1
  I{ε. Now,

using Lemma 3,

Eν,ap
¸
k

|∆ṽk|3q �
¸
k

Eν,ap|γ|3|ωTk a|3q ¤
¸
k

b
Eν,apγ6qEν,ap|ωTk a|6q ¤

b
Eν,apγ6q 1

ε3
?
m

(100)
On the other hand, b

Eν,apγ6q ¤
b

32Eν,apν6 � |v̂Ta|6q ¤
c
L2 �K2

}v̂}62
m3

(101)

Using the Markov’s inequality, we obtain that

Pr

�¸
k

|∆ṽk|3 ¡ η

�
¤

b
L2 �K2

}v̂}62
m3

ηε3
?
m

(102)
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Lemma 7. We have that

|∆1 � ∆̃| ¤ 1

2m
γ2χt}ṽ}33¡η1u �

εε1
m
}ṽ}33χt}ṽ}33 η1u (103)

Proof. Denote by Ψpv,R,a,µ, ν,xq and Θpv,R,a,µ, ν,xq the cost functions in (45) and (28).
Note that ΨpR,a,µ, ν,xq and ΘpR,a,µ, ν,xq are the minimum values of Ψpv,R,a,µ, νq and
Θpv,R,a,µ, νq over v. Applying the mean value theorem, we conclude that for any point v, it holds
that

Ψpv,R,a,µ, νq �Θpv,R,a,µ, νq � 1

m

¸
α,β,γ

B3fpv1 � xq � ρgpv1q
BxαBxβBxγ ∆vα∆vβ∆vγ (104)

For a proper point v1. Due to the third property of f and g, we conclude that

|Ψpv,R,a,µ, νq �Θpv,R,a,µ, νq| ¤ C̄2

m

¸
α

|∆vα|3 (105)

where C̄2 � C2 � ρC̃2 and we remind that ∆v � v � v̂. On the other hand,

Ψpv,R,a,µ, ν,xq �ΘpR,a,µ, ν,xq � 1

m
p∆v �∆ṽqT pΩ� aaT qp∆v �∆ṽq (106)

which yields to

Ψpv,R,a,µ, ν,xq �ΨpR,a,µ, ν,xq ¥ ε

m
}∆v �∆ṽ}22 (107)

For α � ε{C2, take η1, ε1 as in Lemma 2. Now, we consider two cases:

Case 1: If }∆ṽ}33 ¤ η1, one can choose r ¤ ε1}∆ṽ}33 such that

4r
3
2 � 5}∆ṽ}33  

ε

C̄2
r (108)

Note that if }∆v �∆ṽ}22 ¤ r, we have that

C̄2

ε p}∆v}33 � }∆ṽ}33q ¤ C̄2

ε p4}∆v �∆ṽ}33 � 4}∆ṽ}33 � }∆ṽ}33q ¤
C̄2

ε p4r
3
2 � 5}∆ṽ}33q   r (109)

Thus,

}∆v �∆ṽ}22 � r Ñ Θpv̂ �∆v,R,a,µ, ν,xq �Θpv̂ �∆ṽ,R,a,µ, ν,xq ¥
Ψpv̂ �∆v,R,a,µ, ν,xq �ΨpR,a,µ, ν,xq � C2

m

°
α
|∆vk|3 � |∆ṽk|3 ¥

ε
m}∆v �∆ṽ}22 � C2

m

°
α
|∆vk|3 � |∆ṽk|3 ¡ 0 (110)

This means that, Φ has a local minimum in the ball Br � tv̂ �∆v | }∆v �∆ṽ}22 ¤ ru which due
to convexity, is also the global minimal point. We also conclude that

ΘpR,a,µ, ν,xq � min
∆vPBr

Θpv̂ �∆v,R,a,µ, gq (111)

But for any ∆v P Br,

|Ψpv,R,a,µ, ν,xq � Φpv,R,a,µ, ν,xq| ¤ C2

m

¸
α

|∆ṽα|3 � |∆vα|3 ¤ εr

m
(112)

Thus,
}∆ṽ}33 ¤ η1 Ñ |ΨpR,a,µ, ν,xq � ΦpR,a,µ, ν,xq| ¤ εr

m
(113)

which, recalling that ∆1 � ΘpR,a,µ, ν,xq�ΦpR,µ,ν,xq and ∆̃ � ΨpR,a,µ, ν,xq�ΦpR,µ,xq,
can be written as

}∆ṽ}33 ¤ η1 Ñ
���∆1 � ∆̃

��� ¤ εr

m
¤ εε1

m

¸
α

|∆ṽk|3 (114)
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Case 2: If }ṽ}33 ¡ η1, we may use the following simpler bound:

ΦpR,µ,xq ¤ ΘpR,a,µ, ν,xq ¤ Θpv̂,R,a,µ, ν,xq � ΦpR,µ,xq � 1

2m
γ2 (115)

Thus,

�
1

2mγ
2

1� aTΩ�1a
  ∆1 � ∆̃ ¤

1
2mγ

2aTΩ�1a

1� aTΩ�1a
(116)

which yields to

|∆1 � ∆̃| ¤ 1

2m
γ2 (117)

This gives the result.

3.2 Proof of Theorem 3

3.2.1 Part 1

Note that Lemma 1 implies the first part of Theorem 3. To see this, set ρ � 0, and note that by the
definition of a regular function fn there exists a family of smooth-regular sequences f pkqn pxq such
that f pkqn pxq{n converges uniformly in n, x to fnpxq{n. Define Φ

pkq
n,ρpA,ν,x0q as the optimal cost

in (1 in Paper), when fn is substituted by f pkqn . Now assume that ΦnpA1,ν,x0q Ñp C. Take δ ¡ 0
and note that

lim
nÑ8Prp|ΦnpA1,ν,x0q � C| ¡ δq Ñ 0 (118)

Take k large enough such that |f pkqn pxq � fnpxq|   nδ holds for every k, n. Then, we have that
|Φpkq
n � Φn|   δ and

Prp|Φpkq
n pA1,ν,x0q � C| ¡ 2δq ¤ Prp|ΦnpA1,ν,x0q � C| ¡ δq (119)

letting nÑ8, we get that

lim
nÑ8Prp|Φpkq

n pA1,ν,x0q � C| ¡ 2δq Ñ 0 (120)

Now, from Lemma 1, we get that

lim
nÑ8Prp|Φpkq

n pA2,ν,x0q � C| ¡ 3δq Ñ 0 (121)

On the other hand, from the fact that |Φpkq
n � Φn|   δ, we get that

Prp|ΦnpA2,ν,x0q � C| ¡ 4δq ¤ Prp|Φpkq
n pA1,ν,x0q � C| ¡ 3δq (122)

letting nÑ8, we obtain that

lim
nÑ8Prp|ΦnpA2,ν,x0q � C| ¡ 4δq Ñ 0 (123)

Since δ is arbitrary, we conclude that ΦnpA2,ν,x0q Ñp C.

3.2.2 Part 2

Suppose that 0 ¤ g2   C and f is ε�strongly convex. Note that the functions fnpv�x0q�ρgpvq of
v are convex for ρ ¥ �ε{C. Take ρ ¥ �ε{C. Define X and Γ as two independent random variables
with ξ and standard normal distributions, respectively. For a fixed value of k, take the following
modified Key optimizations

φn,ρpg,x0q � max
β¡0

min
vPRn

mβ

n

c
σ2 � }v}22

m
� β

gTv

n
� m

2n
β2 � fnpv � x0q � ρgnpvq

n
(124)

and

φ1n,ρpg,x0q � max
β¡0

min
vPRn

mβ

n

c
σ2 � }v}22

m
�β gTv

n
� m

2n
β2� fnpv � x0q � ρgnpv � x0q

n
(125)
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Furthermore, define the optimization

Φ1
n,ρpA,ν,x0q � 1

n
min

v

1

2
}ν �Av}22 � fnpv � x0q � ρgnpv � x0q (126)

where fn and gn are given by (1). In fact, (126) is in the same form as (18), where f and g are
replaced by f � ρg and 0, respectively.

step 1: First take a Gaussian scaled-regular matrix A. Similar to [2], applying the Gordon’s Theorem
to the primal and dual optimizations provides that if (124) converges to a value C, so does (18). A
similar result hods for (125) and (126). In this case, denote the optimal values in (18) and (126) by
Φn,ρpA,ν,x0q and Φ1

n,ρpA,ν,x0q, respectively. Then by the method in [3], it is simple to see that

φn,ρpg,x0q Ñp Cρ � max
β

min
p

"
pβγ

2
� γβσ2

2p
� γβ2

2
� H̄ρpβ, pq

*
(127)

and

φ1n,ρpg,x0q Ñp C
1
ρ � max

β
min
p

"
pβγ

2
� γβσ2

2p
� γβ2

2
� H̄ 1

ρpβ, pq
*

(128)

where

H̄ρpβ, pq � EΓ,X
�
min
vPR

γ2β

2p
v2 � βΓv � fpv �Xq � ρgpvq

�
(129)

and

H̄ 1
ρpβ, pq � EΓ,X

�
min
vPR

γ2β

2p
v2 � βΓv � fpv �Xq � ρgpv �Xq

�
(130)

This guarantees that Φn,ρpA,ν,x0q Ñp Cρ and Φ1
n,ρpA,ν,x0q Ñp C

1
ρ for ρ ¡ �ε{C. According

to Lemma 1, Φn,ρpA,ν,x0q Ñp Cρ and Φ1
n,ρpA,ν,x0q Ñp C

1
ρ holds for ρ ¡ �ε{C and any

scaled regular matrix A.

Step 2: Note that Φn,ρpA,ν,x0q and Φ1
n,ρpA,ν,x0q are concave functions of ρ. Further,

gnpwpA,ν,x0qq
n

� BΦn,ρpA,ν,x0q
Bρ

����
ρ�0

(131)

and
gnpx̂pA,ν,x0qq

n
� BΦ1

n,ρpA,ν,x0q
Bρ

����
ρ�0

(132)

Hence,

Φn,ρpA,ν,x0q � Φn,0pA,ν,x0q
ρ

¤ gnpwpA,ν,x0qq
n

¤ Φn,0pA,ν,x0q � Φn,�ρpA,ν,x0q
ρ

(133)
and

Φ1
n,ρpA,ν,x0q � Φ1

n,0pA,ν,x0q
ρ

¤ gnpx̂pA,ν,x0qq
n

¤ Φ1
n,0pA,ν,x0q � Φ1

n,�ρpA,ν,x0q
ρ

(134)

Thus, for sufficiently small values of ρ, δ ¡ 0, we have that

Pr

�
gnpwpA,ν,x0qq

n
  Cρ � C0

ρ
� δ

2



Ñ 0 (135)

and

Pr

�
gnpwpA,ν,x0qq

n
¡ C0 � C�ρ

ρ
� δ

2



Ñ 0 (136)

Also,

Pr

�
gnpx̂pA,ν,x0qq

n
  C 1

ρ � C 1
0

ρ
� δ

2



Ñ 0 (137)

and

Pr

�
gnpx̂pA,ν,x0qq

n
¡ C 1

0 � C 1
�ρ

ρ
� δ

2



Ñ 0 (138)
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Note that for the values of ρ with sufficiently small absolute value, we have that�����C0 � Cρ
ρ

� BCρ
Bρ

����
ρ�0

����� ¤ δ

2
(139)

and �����C
1
0 � C 1

ρ

ρ
� BCρ

Bρ
����
ρ�0

����� ¤ δ

2
(140)

The uniqueness of the values p̂ and β̂ guarantees that the derivatives exist. In this case,

Pr

������gnpwpA,ν,x0qq
n

� BCρ
Bρ

����
ρ�0

����� ¡ δ

�
Ñ 0 (141)

and

Pr

������gnpx̂pA,ν,x0qq
n

� BC 1
ρ

Bρ
����
ρ�0

����� ¡ δ

�
Ñ 0 (142)

which yield to
gnpwpA,ν,x0qq

n
Ñp

BCρ
Bρ

����
ρ�0

(143)

and
gnpx̂pA,ν,x0qq

n
Ñp

BC 1
ρ

Bρ
����
ρ�0

(144)

Finally, simple calculations show that if the solutions of (2) p̂ � p̂pγ, σq, β̂ � β̂pγ, σq is unique, then

BCρ
Bρ

����
ρ�0

� E
�
g

�
x̂f pγ

2β̂

2p
, β̂Γ� β̂γ2X

p̂
q �X

��
(145)

and
BC 1

ρ

Bρ
����
ρ�0

� E
�
g

�
x̂f pγ

2β̂

2p
, β̂Γ� β̂γ2X

p̂
q
��

(146)

This proves part two of Theorem 1.

Step 3: For the third part in Theorem 1, define gpxq � g0,xpvq � χrx,8qpvq and g1,xpνq � pν�xq�.
Notice that there exists a sequence of convex functions with bounded second derivatives uniformly
converging to g1,x. Since, part two of Theorem 1 holds for any function in this sequence, it also holds
for g1,x. Now, take g2,x,ε � pg1,x � g1,x�εq{ε. Note that

g2,x,ε ¤ g0,x ¤ g2,x�ε,ε (147)

For any δ ¡ 0, take ε ¡ 0 such that Lf,χrx,8q
pγ, σq � Lf,χrx�ε,8q

pγ, σq ¡ �δ{2 and
Mf,χrx,8q

pγ, σq �Mf,χrx�ε,8q
pγ, σq ¡ �δ{2. Then,

gnpwq
n � Lf,χrx,8q

pγ, σq ¡ δ Ñ
°
i
g2,x�ε,εpwiq

n � Lf,χrx,8q
pγ, σq ¡ δ

Ñ
°
i
g2,x�ε,εpwiq

n � Lf,g2,x�ε,εpγ, σq ¡ δ � Lf,χrx,8q
pγ, σq � Lf,g2,x�ε,εpγ, σq ¡ δ � Lf,χrx,8q

pγ, σq � Lf,χrx�ε,8q
pγ, σq

¡ δ
2 (148)

With a similar approach,

gnpx̂q
n �Mf,χrx,8q

pγ, σq ¡ δ Ñ
°
i
g2,x�ε,εpx̂iq

n �Mf,g2,x�ε,εpγ, σq ¡ δ
2 (149)

The above results show that

Pr

�
gnpwq
n

� Lf,χrx,8q
pγ, σq ¡ δ



¤ Pr

�
�
°
i

g2,x�ε,εpwiq
n

� Lf,g2,x�ε,εpγ, σq ¡
δ

2

�

Ñ 0

(150)
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and

Pr

�
gnpx̂q
n

�Mf,χrx,8q
pγ, σq ¡ δ



¤ Pr

�
�
°
i

g2,x�ε,εpx̂iq
n

�Mf,g2,x�ε,εpγ, σq ¡
δ

2

�

Ñ 0

(151)
The other side of inequalities can be similarly shown, which yields to the desired result.

3.3 Proof of Theorem 2

3.3.1 Part 1

Take function fεpxq � λ|x|� ε
2x

2 and notice that for any value of ε ¡ 0, fε satisfies the conditions of
theorem 1. The idea is to show that removing the term ε

2x
2 for a small value of εmay not dramatically

change the optimal value. For that, we first introduce the following definition:

Definition 5. Consider a m�n matrix A. We define θkpAq for any k   n{2 as the smallest number
θ, such that for any disjoint index subsets I, I 1 � t1, 2, . . . , nu with |I|, |I 1| ¤ k,

σmax
�
AT
I1AI

� ¤ θ (152)

It is well known that θk ¤ δ2k. Furthermore, we have the following result:

Lemma 8. Suppose that the m� n matrix A is generated by a sub-Gaussian unit-variance random
variable and m,n grow to infinity such that m{nÑ γ ¡ 0. Then, there exist constants α, β, ε ¡ 0,
such that

lim
nÑ8PrpδαnpAq � θαnpAq ¡ 1� εq � 0 (153)

lim
nÑ8PrpσmaxpAq ¡ βq � 0 (154)

Proof. Our proof is inspired by the method in []. We assume that A is σ2�subgaussian.

Step 1 First, take a vector x P Sn, where Sn is the surface of the unit sphere in Rn. Note that
y � Ax is an i.i.d vector with σ2�subgaussian entries. We get that

@r ¡ 0, PrpY ¡ rq ¤ min
λ¡0
EpeλY qe�λr ¤ min

λ¡0
e
σ2λ2

2 �λr � e
�r2

2σ2 (155)

where Y � ?
my1 and y1 is the first element of y. Note that EpY q � 0 and EpY 2q � 1. Applying

the same bound on �Y gives that

@r ¡ 0, Prp|Y | ¡ rq ¤ 2e
�r2

2σ2 (156)

Furthermore, using Tonelli’s theorem we obtain that

@0   λ   1

2σ2
, EpeλY 2q � 1�2λ

8»
0

teλt
2

Prp|Y | ¡ tqdt ¤ 1�2λ

8»
0

tepλ�
1

2σ2
qt2dt � 1� 2λ

1
2σ2 � λ

�
1

2σ2 � λ
1

2σ2 � λ

(157)
Then,

Pr
�}y}22 ¥ β

� � Pr

�
m̧

k�1

Y 2
k ¥ mβ

�
¤ min

λ¡0

�
EpeλY 2qe�λβ

	m
� Hpβqm ¤ min

0 λ 1{2σ2

� 1
2σ2 � λ
1

2σ2 � λ
e�λβ


m
� Kpβqm(158)

where tYk �
?
myku are i.i.d with the same distribution as Y and

Kpβq � min
0 λ 1{2

1
2σ2 � λ
1

2σ2 � λ
e�λβ (159)

and
Hpβq � min

λ¡0
EpeλY 2qe�λβ (160)

16



Note that Kpβq   1 for sufficiently large values of β. Moreover the cost in (160) at λ � 0 is 1 and
has negative derivative if β ¡ EpY 2q � 1, where Hpβq   1.

On the other hand

Pr
�}y}22 ¤ ρ

� � Pr

�
m̧

k�1

Y 2
k ¤ mρ

�
¤ min

λ¡0

�
Epe�λY 2qeλβ

	m
� Lpρqm (161)

where
Lpρq � min

λ¡0
Epe�λY 2qeλρ (162)

Note that at λ � 0, the cost in (162) is 1 and has negative derivative if ρ   EpY 2q � 1, in which case
Lpρq   1.

Step 2 With a simple volume packing argument, for every δ ¡ 0 and n � 1, 2, . . ., there exists
a set Gn � Sn of maximally

�
3
δ

�n
points such that for any x P Sn, there exists a pont x1 P Gn

}x� x1}2   δ. Denote B � max
xPGn

}Ax}2 and A � σmaxpAq � max
xPSn

}Ax}2 with the maximum at

x0. Thus,
A � }Ax0}2 ¤ }Ax1}2 � }Apx0 � x1q}2 ¤ B � δA (163)

where x1 is the closest point in Gn to x0. If δ   1 we obtain that

σmaxpAq ¤
max
xPGn

}Ax}2
1� δ

(164)

repeating the same argument for the minimum singular value gives that

σminpAq ¥ max
xPGn

}Ax}2 � σmaxpAqδ (165)

Step 3 Now, it is clear from (164) that

PrpσmaxpAq ¡ βq ¤ Prpmax
xPGn

}Ax}2 ¡ βp1� δqq ¤ Kpβp1� δqqmp3
δ
qn (166)

Fix δ   1 and note that Kpβq Ñ 0 as β Ñ 8. Thus, one can select β large enough such that the
right hand side tends to zero. This proves the second part.

Fix a value of ε   1 and take β � 1� ε and ρ � 1� ε. Take any submatrix AI of A with |I| � k
and note that the previous results also hold for AI . This means that

PrpσmaxpAIq ¡ 1� εq ¤ Hpp1� εqp1� δqqmp3
δ
qk (167)

and

PrpσminpAIq   1�εq ¤ Pr

�
max
xPGn

}Ax}2 � σmaxpAqδ   1� ε



¤ Lp1�ε�p1�εqδqmp3

δ
qk�Hpp1�εqp1�δqqmp3

δ
qk

(168)
Take k � 2αn and note that there are

�
n
k

� � Opρnq combinations of |I| � k, where ρ � expp1�
2α logp2αq � p1� 2αq logp1� 2αqq. We finally, obtain that

Prpδ2αn ¡ εq � O

�
pLp1� ε� p1� εqδqγn �Hpp1� εqp1� δqqγnq p3

δ
q2nαρn



(169)

Fix δ   ε{p1�εq, which guarantees that L � Lp1�ε�p1�εqδq   1 andH � Hpp1�εqp1�δqq   1.
Then note that p 3

δ q2αρpαq Ñ 1 as αÑ 0. This means that we can select α small enough such that
H � p 3

δ q2αρpαq   1 and L� p 3
δ q2αρpαq   1. For this value of α, we get that

Prpδ2αn ¡ εq (170)

The first result is obtained by noting that δαn � θαn ¤ 2δ2αn.

Now, we show the following theorem. Then, from the above lemma the first part of Theorem 2
follows immediately.
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Theorem 4. Consider the conditions in the first part of Theorem 2 and fpxq � λ|x|. Denote,

Φλ � 1

n
min

v

1

2
}ν �Av}22 � λ}v � x}1 (171)

Further, assume that there exist constants α, β, ε ¡ 0, such that

lim
nÑ8PrpδαnpAq � θαnpAq ¡ 1� εq � 0 (172)

lim
nÑ8PrpσmaxpAq ¡ βq � 0 (173)

Then,
Φλ Ñp Cf�λ|x|pγ, σq (174)

Proof. Take v̂p0q as the minimal point of the optimization

Φλ,µ � 1

m
min

v

1

2
}ν �Av}22 � λ}v � x}1 � µ

2
}v}22 (175)

From Theorem 2, there exists a real number L, such that for every µ   1, }v̂p0q}22{m   L2 with high
probability (i.e. Prp}v̂p0q}22{m ¥ L2q Ñ 0 as dimensions grow). Define

φpvq � 1

2
}ν �Av}22 � λ}v � x}1 (176)

The KKT condition, implies that
�µvp0q P Bφpvp0qq (177)

Define ζp0q � �µvp0q. Set k � αn, select k entries of vp0q with largest absolute values and collect
their indexes in I0. Set p0 � 0 P Rk and t � 0. Now, perform the following iterative algorithm.

1. Define Pt � AIt and ht � ν �AIct
v
ptq
Ic , and solve

min
w

1

2
}ht �Ptw}22 � λ}xIt �w} � pTt w (178)

Denote its cost function and minimum by φtpwq and wt, respectively.

2. Find k elements in Ict with largest absolute value in AT
Ict

AItpwt � v
ptq
It
q. Denote their

indexes by It�1. Set pt�1 � ζptqIt�1
.

3. Construct vpt�1q and ζt�1, such that v
pt�1q
It

� wt, v
pt�1q
Ict

� v
ptq
Ict

, ζpt�1q
It

� pt, and

ζ
pt�1q
Ict

� ζptqIct �AT
Ict

AIpwt � v
ptq
I q.

4. Set tÐ t� 1 and go to step 1.

In the sequel, we show that the above process leads to a point vp8q with a sub-gradient ζp8q P
Bφpvp8qq. Such that,

1?
m
}vp8q � vp0q}2 ¤ µL

1�δk�θk (179)

}ζp8q}8 ¤ µL
�a

m
k � θk

1�δk�θk

	
(180)

We denote C1 � L
�a

m
k � θk

1�δk�θk

	
and C2 � L

1�δk�θk .

Once this is established, notice that vp8q is the minimum point of the optimization

ρµ,λ � min
v

1

2
}ν �Av}22 � λ}v � x}1 � vT ζp8q (181)

The subscripts λ, µ emphasize that ζp8q, vp8q are computed for a given λ, µ. Note that since
vT ζp8q ¤ }v}1}ζp8q}8 ¤ µC1}v}1, we get that

ρµ,λ ¤ Φλ�C1µ (182)

18



which can also be written as
Φλ ¥ ρµ,λ�C1µ (183)

On the other hand,

mρµ,λ � 1
2}ν �Avp8q}22 � λ}vp8q � x}1 � pvp8qqT ζp8q

¥ mΦλ,µ � fTApvp8q � vp0qq � λ}vp8q � vp0q}1 � pvp8qqT ζp8q
¥ mΦλ,µ �

�}fTA}2 � λ
?
m
� }vp8q � vp0q}2 � }vp8q}2}ζp8q}2

mΦλ,µ � pσmaxpAq}f}2 � λ
?
mqµC2

?
m�?

mµC1}vp8q}2
¥ mΦλ,µ � pσmaxpAqr � λqµC2m�mµC1pL� C2µq (184)

where f � ν �Avp0q, r is a proper bound, independent of all parameters, such that }ν}2 ¤ r
?
m

with high probability (which exists by the law of large numbers) and we use the fact that }f}2 ¤ }ν}2.
Thus,

ρµ,λ ¥ Φλ,µ � pσmaxpAqr � λqµC2 � µC1pL� C2µq (185)
We conclude that

Φλ,µ ¥ Φλ ¥ Φλ�C1µ,µ � pσmaxpAqr � λ� C1µqµC2 � µC1pL� C2µq (186)

Noting that Φλ,µ Ñp Cλ,µ � Cf�λ|x|�µ{2|x|2 , given in Theorem 2, and due to continuity of Cλ,µ at
µ � 0, for any ε ¡ 0, one can select µ small enough such that Prp|Φλ � Cλ,µ�0| ¡ εq Ñp 0. This
completes the proof as Cλ,µ�0 � Cf�λ|x|.

Now, we show (179) and (180):

Step 1:

First note that ζt P Bφpvpnqq. To see this, use induction:

• Clearly ζ0 P Bφpvp0qq.
• Suppose that ζt P Bφpvptqq. From the KKT condition for (178), we have that pζt�1qIt �

pt P AH
It
pg � Avpt�1qq � B}xIt � v

pn�1q
It

}1. Moreover, noting that pζtqIct P AH
Ict
pg �

Avptqq � B}xIct � v
ptq
Ict
}1, we get that pζt�1qIct P �AH

Ict
pg�Avpt�1qq � B}xIct � v

pt�1q
Ict

}1.
This shows that ζt�1 P Bφpvpt�1qq.

Step 2:

Now we show by induction that

1?
m
}vpt�1q � vptq}2 ¤ µL

1�δk

�
θk

1�δk

	t
(187)

ζ
pt�1q
It

� ζpt�1q
It

(188)

}ζpt�1q
pItYIt�1qc � ζ

ptq
pItYIt�1qc}8 ¤ µL

�
θk

1�δk

	t�1 a
m
k (189)

The argument is as follows:

• First, note that (188) holds, since by definition, ζpt�1q
It

� ζpt�1q
It

� pt. Then,

1?
m
}ζp0qI0 }2 ¤

1?
m
}ζp0q}2 � µL (190)

Thus, min |ζp0qI0 | ¤ µL
a

m
k , which leads to

}ζp0qIc0 }8 ¤ min |ζp0qI0 | ¤ µL

c
m

k
(191)

Note that ζp0qI0 P Bφ0pw � v
p0q
I0
q. Hence, by Lemma 4, we get that

1?
m
}w0 � v

p0q
I0
}2 ¤

}ζp0qI0 }2
σ2

minpAI0q
¤ µL

1� δk
(192)
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• Start induction by t � 0: From the construction, we get#
ζ
p1q
I0

� 0

ζ
p1q
I0

� ζp0qI0 �AT
Ic0

AI0pw0 � v
p0q
I0
q (193)

and p1 � ζp0qI1 . Note that

1?
m

���AT
I1AI0

�
w0 � v

p0q
I0

	���
2
¤ θk?

m

���w0 � v
p0q
I0

���
2
¤ θkµL

1� δk
(194)

which leads to���AT
pI0YI1qcAI0

�
w0 � v

p0q
I0

	���
8
¤ min

���AT
I1AI0

�
w0 � v

p0q
I0

	��� ¤ θkµL

1� δk

c
m

k
(195)

proving (189) for t � 0. Note that the relation in (192) proves (187) for t � 0 as }vp1q �
vp0q}2 � }w0 � v

p0q
I0
}2.

• Now, suppose that the relations (187),(188) and (189) hold for all t1 ¤ t an let us prove
them for t � 1. Consider the optimization (178) for t and note that ζptq P Bφpvptqq. It is
simple to see that this leads to ζptqIt � pt P BφtpvptqIt q, which subsequently leads to

AT
ItAIt�1pwt�1 � v

pt�1q
It�1

q P BφtpvptqIt q (196)

By lemma 9, we obtain that
1?
m
}wt � v

ptq
It
}2 ¤ 1

p1�δkq
?
m
}AT

It
AIt�1pwt�1 � v

pt�1q
It�1

q}2
¤ θk

p1�δkq
?
m
}wt�1 � v

pt�1q
It�1

}2
� θk

p1�δkq
?
m
}vptq � vpt�1q}2

¤ θk
1�δk

µL
1�δk

�
θk

1�δk

	t�1

� µL
1�δk

�
θk

1�δk

	t
(197)

This proves (187) as }vpt�1q � vptq}2 � }wt � v
ptq
It
}2. We also get that

1?
m
}AT

It�1
AItpwt � v

ptq
It
q}2 ¤ θk}wt � v

ptq
It
}2 ¤ θkµL

1� δk

�
θk

1� δk


t
(198)

Thus,

}ζpt�1q
pItYIt�1qc � ζ

ptq
pItYIt�1qc}8 � }AT

pItYIt�1qcAItpwt � v
ptq
It
q}8

¤ min |AT
It�1

AItpwt � v
ptq
It
q| ¤

b
1
k }AT

It�1
AItpwt � v

ptq
It
q}2

¤a
m
k µL

�
θk

1�δk

	t�1

(199)

which proves (189).

Step 3:

It is now clear from (187) that if θk � δk   1, the sequence vt is absolutely convergent. Moreover,
(188) and (189), together with the fact that

1?
m
}ζt�1
It�1

� ζtIt�1
}2 � }AT

It�1
AItpwt � v

ptq
It
q}2 ¤ µL

�
θk

1� δk


t�1

(200)

yield to

}ζt�1 � ζt}2 �
b
}ζt�1
It

� ζtIt}22 � }ζt�1
It�1

� ζtIt�1
}22 � }ζt�1

pItYIt�1qc � ζtpItYIt�1qc}22
�

b
}ζt�1
It

� ζtIt}22 � }ζt�1
It�1

� ζtIt�1
}22 � }ζt�1

pItYIt�1qc � ζtpItYIt�1qc}22

¤ ?
m

c
µ2L2

�
θk

1�δk

	2t

� µ2L2
�

θk
1�δk

	2t�2

� µ2L2pmk � 1q
�

θk
1�δk

	2t�2

(201)
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which shows that the sequence ζptq is also absolutely convergent. Denote the limits for ζptq and vptq

by ζp8q and vp8q, respectively.

We have that

1?
m
}vp0q � vp8q}2 ¤

8°
t�0

}vpt�1q � vptq}2 ¤
8°
t�0

µL
1�δk

�
θk

1�δk

	t
� µL

1�δk�θk (202)

Now, we show that }ζp8q}8 is bounded. To see this, consider any index i and denote by t1   t2   . . .
the iterations t, where i P It. For i R I0 due to (188), we have that

ζ
p8q
i � ζ

p0q
i �

8̧

t�0

ζ
pt�1q
i � ζ

ptq
i �

¸
t�tr,t�tr�1

ζ
pt�1q
i � ζ

ptq
i �

¸
t|iPpItYIt�1qc

ζ
pt�1q
i � ζ

ptq
i (203)

which leads to

|ζp8qi | ¤ ζ
p0q
i � °

t|iPpItYIt�1qc
|ζpt�1q
i � ζ

ptq
i | ¤ µL

a
m
k � µL

8°
t�0

�
θk

1�δk

	t�1

�¤ µL
�a

m
k � θk

1�δk�θk

	
(204)

Similarly, for any i P I0, we have that

ζ
p8q
i � ζ

p1q
i �

¸
t¥1|iPpItYIt�1qc

ζ
pt�1q
i � ζ

ptq
i (205)

Thus, noting that ζp1qI0 � 0, we get that

|ζp8qi | ¤ µL
8̧

t�1

�
θk

1� δk


t�1

� µLθ2
k

p1� θk � δkqp1� δkq (206)

Together, we get that

}ζp8q}8 ¤ µL

�c
m

k
� θk

1� δk � θk



(207)

Note that as ζptq P Bφpvptqq, we obtain that ζp8q P Bφpvp8qq.

The second claim in part 1 can be easily proved by a similar approach as in the previous theorems:
Notice that for any sufficiently small value of δ ¡ 0,

Φλ � Φλ�δ
δ

¤ }x̂}1
n

¤ Φλ�δ � Φλ
δ

(208)

This shows that }x̂}1
n

Ñp
BΦλ
Bλ �Mλ|x|,|x| (209)

Lemma 9. Consider the function ρpvq � 1
2}h�Pv}22 � λ}v � x}1 � pTv and suppose that it is

minimized at v�. Take an arbitrary point v and q P Bρpvq. Then,

}v � v�}2 ¤ 1

σ2
minpPq

}q}2 (210)

Proof. Notice that the function ρ can be written as ρpvq � α
2 }v}22� gpvq, where α � σminpPq2 and

gpvq is convex. Now, we prove a more general result for any strongly convex function of the form
ρpvq � α

2 }v}22 � gpvq, where g is convex. For any point v any subgradient p of f , we have that
p � αv� q, where q is a subgradient of g at v. Moreover at v�, g has the subgradient q� � �αv�.
Since g is convex, we have that

pq� q�qT pv � v�q ¥ 0 (211)
which can also be written as

pp� αpv� � vqqT pv � v�q ¥ 0 ñ pT pv � v�q ¥ α}v � v�}22 (212)

Using the Cauchy-Schwartz inequality, we obtain that }p}2{α ¥ }v � v�}2. Specializing this result
for the given function and substituting α � σminpPq2, we obtain the desired result.
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3.3.2 Part 2

Step 1: Denote by x̂λ,ε the minimal solution of the optimization

Φλ,ε � 1

n
min

x

1

2
}y �Ax}22 � λ}x}1 � ε

2
}x}22 (213)

We later prove that under the given conditions, for each η ¡ 0, there exist ε, ρ such that 0   ε   η
and |ρ|   η. Moreover,

Pr

�}x̂λ�ρ,ε � x̂λ,0}22
n

¡ η



Ñ 0 (214)

Given this result, we may write that

gpx̂λ,0q
n

�Mλ|x|,g �

n°
i�1

gpx̂λ,0i q
n

�Mλ|x|,g �
�
� n°

i�1
gpx̂λ,0i q
n �

n°
i�1

gpx̂λ�ρ,εi q
n

�

�

�
� n°

i�1
gpx̂λ�ρ,εi q
n �Mpλ�ρq|x|�εx2{2,g

�

�

�
Mpλ�ρq|x|�εx2{2,g �Mλ|x|,g

�
(215)

Define x̂λ,0 � h � x̂λ�ρ,ε. Then from the Taylor expansion theorem, we have that

n°
i�1

gpx̂λ,0i q
n

�

n°
i�1

gpx̂λ�ρ,εi q
n

�

n°
i�1

g1px̂λ�ρ,εi qhi � g2pηiqh2
i {2

n
(216)

Using the Cauchy-Schwartz inequality and the fact that g2 ¤ C1 for some value of C1, we get that��������

n°
i�1

gpx̂λ,0i q
n

�

n°
i�1

gpx̂λ�ρ,εi q
n

��������
¤

gffe n°
i�1

pg1q2px̂λ�ρ,εi q
n

gffe n°
i�1

h2
i

n
� C1

2

n°
i�1

h2
i

n
(217)

Notice that since g2 ¤ C1, we have that |g1pxq| ¤ C1|x| � C2. Then,

n°
i�1

pg1q2px̂λ�ρ,εi q
n

¤ 2C2
2

n°
i�1

px̂λ�ρ,εi q2

n
� 2C2

3 (218)

From Theorem 1, the term

n°
i�1

px̂λ�ρ,εi q2

n converges in probability to a finite value. Hence, the exists a
value R ¡ 0, such that

Prp

n°
i�1

pg1q2px̂λ�ρ,εi q
n

¥ R2q Ñ 0 (219)

Take an arbitrary value δ ¡ 0. Take η1 ¡ 0 such that R
?
η1 � c1η1{2   δ{3. Furthermore, it is easy

to verify that, one can choose η2 ¡ 0 such that for any 0   ε   η2, |ρ|   η2, we have that

��Mpλ�ρq|x|�εx2{2,g �Mλ|x|,g
��   δ

3
(220)

Next, take η � minpη1, η2q. Assume the result in (214) with a proper choice of ε, ρ for the given
value η. This leads to that with high probability

n°
i�1

h2
i

n
  η ¤ η1, (221)
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which further yields to��������

n°
i�1

gpx̂λ,0i q
n

�

n°
i�1

gpx̂λ�ρ,εi q
n

��������
¤ R

?
η1 � c1η1{2   δ{3 (222)

Notice that from Theorem 1, we have that

Pr

�
���
��������

n°
i�1

gpx̂λ�ρ,εi q
n

�Mpλ�ρq|x|�εx2{2,g

��������
¡ δ

3

�
��
Ñ 0 (223)

From (215), (220), (222) and (223), we get that with high probability����gpx̂λ,0qn
�Mλ|x|,g

���� ¤ δ (224)

which leads to the desired result.

Step 2: It remains to show (214). First, observe that with high probability we have that

M0 � θ   lp1� δlpAqq
2n

(225)

where θ ¡ 0 is a fixed number and l   n is a natural number, where δl   1. This shows that
p1�δlq ¡ 2pM0�θq and l{n ¡ 2pM0�θq. Take 0   α   minp4M0, 2θq. DefineK �M0�θ�α{2
and k � l

nK � 1. Notice that K ¡M and

k � l

npM0 � θ � α{2q � 1 ¡ l

npM0 � θq � 1 ¡ 1 (226)

Further,

K �M � θ � α

2
¤ lp1� δlpAqq

2n
¤ l

n

�
1� α� δlpAq

2� α
� α{2

�
� α

2
¤ l

n

�
1� α� δlpAq

2� α

�
(227)

which leads to

α ¤ k � 1� pk � 1qδlpAq
k

(228)

DenoteMλ,ε �Mλ|x|� ε
2x

2,x2 andNλ,ε �Mλ|x|� ε
2x

2,|x|. Take an arbitrary value δ ¡ 0. It is simple
to see that there exist values ρ, ε, such that 0   ε   δ, |ρ|   δ and 0   Nλ�ρ,ε �Nλ,0   δ. Then,
take µ ¡ 0, such that

2µ   Nλ�ρ,ε �Nλ,0. (229)
For the above values of ε and ρ, define h � x̂λ,0 � x̂λ�ρ,ε. Denote the objective function in (213) by
Φλ,εpxq. Then we have

Φλ�ρ,εpx̂λ,0q � Φλ,0px̂λ,0q � 1
n

�
ε
2}x̂λ,0}22 � ρ}x̂λ,0}1

� ¤ Φλ,0px̂λ�ρ,εq � 1
n

�
ε
2}x̂λ,0}22 � ρ}x̂λ,0}1

�
� Φλ�ρ,εpx̂λ�ρ,εq � 1

n

�
ε
2}x̂λ,0}22 � ρ}x̂λ,0}1 � ε

2}x̂λ�ρ,ε}22 � ρ}x̂λ�ρ,ε}1
�

¤ Φλ�ρ,ε � ε
2
}h}22
n � ε }h}2?

n
}xλ�ρ,ε}2?

n
� ρ

n

�}x̂λ,0}1 � }x̂λ�ρ,ε}1
�

(230)

Now, from Theorem 1 and the first part of Theorem 2 we have that

}x̂λ�ρ,ε}22
n

Ñp M
λ�ρ,ε,

}x̂λ�ρ,ε}1
n

Ñp N
λ�ρ,ε,

}x̂λ,0}1
n

Ñp N
λ,0 (231)

Hence taking a constant value M ¡
?
Mλ�ρ,ε, we obtain that

Φλ�ρ,εpx̂λ,0q ¤ Φλ�ρ,ε � ε

2

}h}22
n

�Mε
}h}2?
n
� ρδ (232)

23



Define the following index sets

S � tk | |x̂λ�ρ,εk | ¥ µu L � tk | 0   |x̂λ�ρ,εk |   µu (233)

Define Kλ,ε
µ �Mλ|x|�εx2{2,χRzp�µ µq . Notice that by Theorem 1, we have that

|S|
n

Ñp K
λ�ρ,ε
µ (234)

On the other hand
lim

pµ,ρ,εqÑ0
Kλ�ρ,ε
µ �M0 (235)

Hence, for small enough values of δ, we have that Kλ�ρ,ε
µ   K, which subsequently yields to the

fact that with high probability
|S|
n

  K (236)

From (231), we know that with high probability,

}x̂λ�ρ,ε}1
n

� }x̂λ,0}1
n

¡ 2µ (237)

Which can also be written as,
}x̂λ�ρ,εS }1

n � }x̂λ�ρ,εT }1
n ¡ }x̂λ�ρ,εS �hS}1

n � }x̂λ�ρ,εT �hT }1
n � }hpSYT qc}1

n � 2µ

¥ }x̂λ�ρ,εS }1�}hS}1
n � }hT }1�}x̂λ�ρ,εT }1

n � }hpSYT qc}1
n � 2µ (238)

Notice that by definition }x̂λ�ρ,εT }1 ¤ µ. Hence, we obtain that with high probability

}hS}1 ¥ }hSc}1 (239)

Now, define z � y �Ax̂pλ�ρ,εq. Decompose with the following procedure the vector hSc into the
blocks T1, T2, . . .: hT1

is the k|S| elements of hSc with the largest absolute value. hT2
is the k|S|

elements of the remaining elements (i.e., the ones in hSczT1
) with the largest absolute, and so on.

Define U � S Y T1. We have that

nΦλ�ρ,εpx̂λ,0q � 1

2
}z�Ah}22 � pλ� ρq}xλ�ρ,ε � h}1 � ε

2
}xλ�ρ,ε � h}22 (240)

Notice that x̂λ,0 � x̂λ�ρ,ε � h is the minimal point of the function Φλ,0pxq. Hence,

AT pz�Ahq � AT
�
y �Ax̂λ,0

� P λB}x̂λ,0}1 (241)

Hence,
}AT

Uc pz�Ahq }8 ¤ λñ �hTUcA
T
Uc pz�Ahq ¥ �λ}hUc}1 (242)

which leads to
�hTUcA

T
Uc pz�AUhU q ¥ �λ}hUc}1 � }AUchUc}22 (243)

Finally, we get that

1

2
}z�Ah}22 �

1

2
}z�AUhU }22�hTc AT

Uc pz�AUhU q�1

2
}AUchUc}22 ¥

1

2
}z�AUhU }22�λ}hUc}1�

1

2
}AUchUc}22

(244)
Hence, we have

nΦλ�ρ,εpx̂λ,0q ¥ 1
2}z�AUhU }22 � λ}hUc}1 � 1

2}AUchUc}22 � pλ� ρq}xλ�ρ,εU � hU }1 � pλ� ρq}xλ�ρ,εUc � hUc}1
� ε

2}xλ�ρ,εU � hU }22 � ε
2}xλ�ρ,εUc � hUc}22 (245)

Notice that w � 0 is the minimum point of the function

1

2
}z�AUw}22 � pλ� ρq}xλ�ρ,εU �w}1 � ε

2
}xλ�ρ,εU �w}22 (246)

Hence, from lemma 10, we get that
1
2}z�AUhU }22 � pλ� ρq}xλ�ρ,εU � hU }1 � ε

2}xλ�ρ,εU � hU }22
¥ σ2

minpAU q
2 }hU }22 � 1

2}z}22 � pλ� ρq}xλ�ρ,εU }1 � ε
2}xλ�ρ,εU }22 (247)
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Substituting this result in (245) gives that

nΦλ�ρ,εpx̂λ,0q � nΦλ�ρ,εpx̂λ�ρ,εq
¥ σ2

minpAU q
2 }hU }22 � λ}hUc}1 � 1

2}AUchUc}22 � pλ� ρq}xλ�ρ,εUc � hUc}1
�pλ� ρq}xλ�ρ,εUc }1 � ε

2}xλ�ρ,εUc }22 � ε
2}xλ�ρ,εUc � hUc}22

¥ σ2
minpAU q

2 }hU }22 � ρ}hUc}1 � 1
2}AUchUc}22 � 2pλ� ρq}xλ�ρ,εUc }1 � 2}xλ�ρ,εUc }2}hUc}2

¥ σ2
minpAU q

2 }hU }22 � δ
?
n}hU }2 � 1

2}AUchUc}22 � 2pλ� ρqnµ� 2
?
nµ}hUc}2 (248)

where we used the fact that

ρ}hUc}1 ¥ �δ}hUc}1 ¥ �δ}hU }1 ¥ �δ?n}hU }2 (249)

In [4, Equation (11)] it is proved that

}hUc}22 ¤
|S|
|T | }hU }

2
2 �

1

k
}hU }22 (250)

Also, in [Candes eq (12)] it is shown that

}AUchUc}2 ¤
b

1� δk|S|pAq
d
|S|
|T | }hU }2 �

c
1� δk|S|pAq

k
}hU }2 (251)

Hence,

nΦλ�ρ,εpx̂λ,0q � nΦλ�ρ,εpx̂λ�ρ,εq

¥
�

1�δp1�kq|S|pAq� 1�δk|S|pAq

k

2



}hU }22 � p1� 1?

k
qδ?n}hU }2 � pλ� δqnδ (252)

Notice that |S|   Kn. Hence according to (228),

α1 � 1�δp1�kq|S|pAq�
1� δk|S|pAq

k
¥ 1�δnp1�kqKpAq�

1� δnkKpAq
k

¥ 1�δlpAq�1� δlpAq
k

¥ α

(253)
which gives that

nΦλ�ρ,εpx̂λ,0q � nΦλ�ρ,εpx̂λ�ρ,εq
¥ α

2 }hU }22 � p1� 1?
k
qδ?n}hU }2 � pλ� δqnδ (254)

Combining (232) and (232), we get that

α

2
}hU }22 � p1� 1?

k
qδ?n}hU }2 � pλ� δqnδ ¤ δ

2
}h}22 �Mδ

?
n}h}2 � nδ2 (255)

Notice that

}h}22 ¤ p1� 1

k
q}hU }22 (256)

Then, we get that

α

2p1� 1
k q
}h}22 �

1� 1?
kb

1� 1
k

δ
?
n}h}2 � pλ� δqnδ ¤ δ

2
}h}22 �Mδ

?
n}h}2 � nδ2 (257)

Since k ¡ 1, it is simple to see for any η ¡ 0 that the value δ can be made sufficiently small such
that (257) implies (214).

Lemma 10. Consider the function ρpvq � 1
2}h�Pv}22 � λ}v � x}1 � ε

2}v}22 and suppose that it
is minimized at v�. Take an arbitrary point v. Then,

ρpvq � ρpv�q ¥ σ2
minpPq

2
}v � v�}22 (258)
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Proof. Define w � v�v�

}v�v�}2 and fpvq � ρpv� � vwq. Notice that ρpvq � fp}v � v�}2q and f
is minimized at 0. Moreover, direct calculations shows that f can be written as f � 1

2αv
2 � gpvq,

where g is convex and α � }Pw}22 � ε{2 ¥ σminpPq2. Then, Lemma 11 leads to

ρpvq � ρpv�q � fp}v � v�}2q � fp0q ¥ α

2
}v � v�}22 ¥

σ2
minpPq

2
}v � v�}22 (259)

Lemma 11. Suppose that gpvq is a convex function on R and v� is a minimum point of the function
fpvq � α

2 v
2 � gpvq. Then, for any v P R,

fpvq � fpv�q ¥ α

2
pv � v�q2 (260)

Proof. From the optimality of v�, we have that �αv� P Bgpv�q. Hence,

gpvq ¥ gpv�q � αv�pv � v�q (261)

Hence,

fpvq � fpv�q � αv�pv � v�q � α

2
pv � v�q2 � gpvq � gpv�q ¥ α

2
pv � v�q2 (262)

3.4 Proof of Theorem 2 in Paper

Let us first consider convexity over p: Since convexity is preserved by the linear action of expectation,
we only require to show that Sf

�
β
p , pΓ�X

	
is a convex function of p for any realization of Γ, X

and β. We have that

Sf

�
β

p
, pΓ�X



� min

x

β

2p
px� pΓ�Xq2 � fpxq (263)

Now, notice that β
2p px� pΓ�Xq2 is a jointly convex function of x and p (i.e., it is a convex function

of the 2� 1 vector px, pq). To see this, notice that its epigraph"
px, p,Aq | β

2p
px� pΓ�Xq2   A, p ¡ 0

*
�  px, p,Aq | βpx� pΓ�Xq2 �Ap   0, p ¡ 0

(
is a convex set (This is simply seen by introducing the linear transformation a � pA � pq{2, b �
pA� pq{2 and c � x� pΓ�X , and checking that the condition p ¡ 0 restricts the transformed set
to the upper part of a circular cone, which is convex). As a result, the objective function Lpp, xq in
(263) is jointly convex for x and p. Take two values p1, p2 ¡ 0 and their corresponding minimum
solutions x�1 , x

�
2 in (263). Also denote Sf

�
β
p , pΓ�X

	
by Sppq for simplicity. We have that

Spθp1�p1�θqp2q � min
x
Lpθp1�p1�θqp2, xq ¤ Lpθp1�p1�θqp2, θx

�
1�p1�θqx�2 q ¤ θSpp1q�p1�θqSpp2q,

where 0 ¤ θ ¤ 1 is arbitrary. This shows that S is convex and completes the proof.

Now, we consider concavity of ψpβq: Notice that we may write

ψpβq � min
Y
E
�

min
p¡0

pβpγ � 1q
2

� γσ2β

2p
� γβ2

2
� β

2p
pY � pΓ�Xq2 � fpY q



,

where Y ranges over all real-valued random variables. Notice that the inner optimization (over p)
is in the form Appq � βBppq � γβ2{2 � fpY q where A,B are convex functions of p. Hence, its
optimal value is a concave function of β. Denoting this optimal value by LY pβq, we observe that
ψ � min

Y
EpLY pβqq. Notice that the minimum of a family of concave functions is concave and

EpLY pβqq is a concave function of β. Hence, ψ is concave.
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