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A Minibatch objective

Standard GAN training are motivated from a maximin formulation on an expectation objective

max
θ

min
w

Epd(x)[logDw(x)] + Epz(z)[log(1−Dw(Gθ(z)))] (1)

where pd is the true data distribution, and pz is the prior distribution on z.

In practice, however, a minibatch of data X = {x1, ...,xn} and noise Z = {z1, ..., zn} are sampled
each time, and one gradient update is made to update w and θ each.

In our formulation, in particular the dual GAN with linear discriminators, we can solve the inner
optimization problem over w on minibatch samples X and Z to optimality, θ is then updated with
the optimal w. This effectively makes the optimization problem take the following form

max
θ

min
w

EX,Z[f(w, θ,X,Z)], where f(w, θ,X,Z) =
1

n

∑
i

f̂x(w, θ,xi)+
1

n

∑
i

f̂z(w, θ, zi)

(2)
where f̂x and f̂z are the individual loss functions. Using this notation, the original GAN problem can
be represented as

max
θ

min
w

Ex,z[f(w, θ, {x}, {z})] = max
θ

min
w

EX,Z[f(w, θ,X,Z)] (3)

since, xi and zi are drawn i.i.d. from corresponding distributions.

Let w∗ = argminw EX,Z[f(w, θ,X,Z)], we have

EX,Z[min
w

f(w, θ,X,Z)] ≤ EX,Z[f(w∗, θ,X,Z)] = min
w

EX,Z[f(w, θ,X,Z)], (4)

which means our minibatch algorithm is actually optimizing a lower bound on the theoretical GAN
objective, this introduces a bias that decreases with minibatch size, but guarantees that the optimization
is still valid.

On the other hand, interleaving minibatch training with partial optimization of w (not all the way to
optimality) makes the standard GAN training behave differently, however the exact properties of this
process is hard to characterize and beyond the scope of this paper.

B Proof of Claim 1

Claim 1. The dual program to the minimization task

min
w

C

2
‖w‖22 +

1

2n

∑
i

log(1 + exp(−w>xi)) +
1

2n

∑
i

log(1 + exp(w>Gθ(zi))).
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reads as follows:

max
λ

g(θ, λ) = − 1

2C

∥∥∥∥∥∑
i

λxixi −
∑
i

λziGθ(zi)

∥∥∥∥∥
2

+
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi),

s.t. ∀i, 0 ≤ λxi ≤
1

2n
, 0 ≤ λzi ≤

1

2n
. (5)

with binary entropy H(u) = −u log u− (1− u) log(1− u), and the optimal solution to the original
problem w∗ can be expressed with optimal λ∗xi and λ∗zi as

w∗ =
1

C

(∑
i

λ∗xixi −
∑
i

λ∗ziGθ(zi)

)

Proof. We introduce auxillary variables ξxi = w>xi and ξzi = −w>Gθ(zi), the original minimiza-
tion problem can then be transformed into the following equality constrained problem

minw
C

2
‖w‖22 +

1

2n

∑
i

log(1 + e−ξxi ) +
1

2n

∑
i

log(1 + e−ξzi )) (6)

s.t. ∀i, ξxi = w>xi, ξzi = −w>Gθ(zi).
The corresponding Lagrangian has the following form

L(w, ξ, λ, θ) =
C

2
‖w‖22 +

1

2n

∑
i

log(1 + e−ξxi ) +
1

2n

∑
i

log(1 + e−ξzi ))

+
∑
i

λxi(ξxi −w>xi) +
∑
i

λzi(ξzi + w>Gθ(zi)) (7)

Set the derivatives with respect to the primal variables to 0, we get
∂L

∂w
= Cw −

∑
i

λxixi +
∑
i

λziGθ(zi) = 0 (8)

∂L

∂ξxi
= − 1

2n

e−ξxi

1 + e−ξxi
+ λxi = 0 (9)

∂L

∂ξzi
= − 1

2n

e−ξzi

1 + e−ξzi
+ λzi = 0. (10)

We can then represent the primal variables using the λ’s,

w =
1

C

(∑
i

λxixi −
∑
i

λziGθ(zi)

)
(11)

ξxi = log
1− 2nλxi

2nλxi
(12)

ξzi = log
1− 2nλzi

2nλzi
. (13)

Eq.(9) and (10) also introduced extra constraints on λxi and λzi , as follows

∀i, 0 ≤ λxi ≤
1

2n
, 0 ≤ λzi ≤

1

2n
. (14)

Substituting the primal variables back to the Lagrangian, we get the dual objective

g(θ, λ) =
C

2

∥∥∥∥∥ 1

C

(∑
i

λxi −
∑
i

λzi

)∥∥∥∥∥
2

2

− 1

2n
log(1− 2nλxi)−

1

2n
log(1− 2nλzi)

+
∑
i

λxi log
1− 2nλxi

2nλxi
+
∑
i

λzi log
1− 2nλzi

2nλzi
+

1

C

∥∥∥∥∥∑
i

λxixi − λziGθ(zi)

∥∥∥∥∥
2

2

= − 1

2C

∥∥∥∥∥∑
i

λxixi −
∑
i

λziGθ(zi)

∥∥∥∥∥
2

+
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi) (15)
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The overall dual problem is therefore

maxλ g(θ, λ) = − 1

2C

∥∥∥∥∥∑
i

λxixi −
∑
i

λziGθ(zi)

∥∥∥∥∥
2

+
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi),

s.t. ∀i, 0 ≤ λxi ≤
1

2n
, 0 ≤ λzi ≤

1

2n
. (16)

Once we have solved for the optimal λ∗, we can recover the optimal primal solution w∗ using
(11).

C Setting the step size ∆k in the trust-region method

Pursuing this trust-region intuition, we can alternatively choose ∆k based on the accuracy of the
model mk,θ(s). To this end it is often convenient to introduce the acceptance ratio

ρ =
f(wk, θ)− f(wk + s, θ)

f(wk, θ)−mk,θ(s)
, (17)

which compares the real function value difference to the modeled one. If the acceptance ratio ρ
deviates significantly from 1 on either side, we may opt to decrease the trust region ∆k and resolve
the program given in Eq. (4) of the main paper, instead of accepting the step.

Intuitively, if ρ specified in Eq. (17) is far from 1, the model function does not fit well the original
objective. To obtain a better fit we resolve the program using a smaller trust region size ∆k.

D Proof of Claim 2

Claim 2. The dual program to minsmk,θ(s) s.t. 1
2‖s‖

2
2 ≤ ∆k with model function given as

mk,θ(s) =
C

2
‖wk + s‖22 +

1

2n

∑
i

log

(
1 + exp

(
−F (wk,xi)− s>

∂F (wk,xi)

∂w

))
+

1

2n

∑
i

log

(
1 + exp

(
F (wk, Gθ(zi)) + s>

∂F (wk, Gθ(zi))

∂w

))
is the following:

max
λ

C

2
‖wk‖22 −

1

2(C + λT )

∥∥∥∥∥−Cwk +
∑
i

λxi
∂F (wk,xi)

∂w
−
∑
i

λzi
∂F (wk, Gθ(zi))

∂w

∥∥∥∥∥
2

2

+
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi)−
∑
i

λxiFxi +
∑
i

λziFzi − λT∆k

s.t. λT ≥ 0 ∀i, 0 ≤ λxi ≤
1

2n
, 0 ≤ λzi ≤

1

2n
.

The optimal s∗ to the original problem can be expressed through optimal λ∗T , λ
∗
xi , λ

∗
zi as

s∗ =
1

C + λ∗T

(∑
i

λ∗xi
∂F (wk,xi)

∂w
−
∑
i

λ∗zi
∂F (wk, zi)

∂w

)
− C

C + λ∗T
wk

Proof. In this optimization problem, the free variable is s. We introduce short hand notations
Fxi = F (wk,xi), Fzi = F (wk, Gθ(zi)),∇Fxi = ∂F (wk,xi)

∂w and ∇Fzi = ∂F (wk,Gθ(zi))
∂w . With

these extra notations we can simplify the primal problem as

mk,θ(s) =
C

2
‖wk + s‖22 +

1

2n

∑
i

log
(

1 + e−Fxi
−s>∇Fxi

)
+

1

2n

∑
i

log
(

1 + eFzi
+s>∇Fzi

)
(18)
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Again, we introduce auxillary variables ξxi = s>∇Fxi and ξzi = −s>∇Fzi , and obtain the
following constrained optimization problem

min
s,ξ

C

2
‖wk + s‖22 +

1

2n

∑
i

log
(
1 + e−Fxi

−ξxi
)

+
1

2n

∑
i

log
(
1 + eFzi

−ξzi
)

(19)

s.t. ξxi = s>∇Fxi , ξzi = −s>∇Fzi , ∀i
1

2
‖s‖2 ≤ ∆k

The corresponding Lagrangian is the following

L(w, ξ, λ) =
C

2
‖wk + s‖22 +

1

2n

∑
i

log
(
1 + e−Fxi

−ξxi
)

+
1

2n

∑
i

log
(
1 + eFzi

−ξzi
)

+
∑
i

λxi(ξxi − s>∇Fxi) +
∑
i

λzi(ξzi + s>∇Fzi) + λT

(
1

2
‖s‖2 −∆k

)
(20)

Setting the derivatives of the primal variables with respect to the Lagrangian to 0, we get

∂L

∂s
= C(wk + s)−

∑
i

λxi∇Fxi +
∑
i

λzi∇Fzi + λT s = 0 (21)

∂L

∂ξxi
= − 1

2n

e−Fxi
−ξxi

1 + e−Fxi
−ξxi

+ λxi = 0 (22)

∂L

∂ξzi
= − 1

2n

eFzi
−ξzi

1 + eFzi
−ξzi

+ λzi = 0 (23)

Therefore

s =
1

C + λT

(∑
i

λxi∇Fxi −
∑
i

λzi∇Fzi

)
− C

C + λT
wk (24)

ξxi = log
1− 2nλxi

2nλxi
− Fxi (25)

ξzi = log
1− 2nλzi

2nλzi
+ Fzi , (26)

which includes the equation for s∗.

Next we substitute these back to the Lagrangian to obtain the dual objective. We introduce another
short hand notation � =

∑
i λxi∇Fxi −

∑
i λzi∇Fzi , then s = 1

C+λT
�− C

C+λT
wk, and the dual
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objective can be written as

g(λ) =
C

2

∥∥∥∥ 1

C + λT
(λTwk + �)

∥∥∥∥2 − 1

2n

∑
i

log(1− 2nλxi)−
1

2n

∑
i

log(1− 2nλzi)

+
∑
i

λxi

(
log

1− 2nλxi
2nλxi

− Fxi −
1

C + λT
(�− Cwk)

>∇Fxi

)
+
∑
i

λzi

(
log

1− 2nλzi
2nλzi

+ Fzi +
1

C + λT
(�− Cwk)

>∇Fzi

)

+
λT
2

∥∥∥∥ 1

C + λT
(�− Cwk)

∥∥∥∥2 − λT∆k

=
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi)−
∑
i

λxiFxi +
∑
i

λziFzi − λT∆k

+
C

2(C + λT )2
‖λTwk + �‖2 − 1

C + λT
(�− Cwk)>� +

λT
2(C + λT )2

‖�− Cwk‖2

=
1

2n

∑
i

H(2nλxi) +
1

2n

∑
i

H(2nλzi)−
∑
i

λxiFxi +
∑
i

λziFzi − λT∆k

− 1

2(C + λT )
‖�− Cwk‖2 +

C

2
‖wk‖2 (27)

which is exactly the dual objective in the claim.

E More Experiment Details

E.1 Toy dataset

The toy 2D dataset used in the paper consists of a mixture of 5 2D Gaussian components, the
Gaussians have covariance matrix of 0.1I with means being uniformly spaced on a circle of radius 2.

Here we present additional results on an extra 8-mode dataset, where each of the 8 components in the
8-mode dataset is a Gaussian distribution with a covariance matrix of 0.02I , and again the means of
the components are arranged on a circle of radius 2. We use both datasets to investigate properties
such as low probability regions and low separation of modes.

To train the linear GAN we employ RBF features based on a set of anchor points {x1, ..., xn}, then
for an arbitrary x, the features for x is computed as the following

φ(x) =

[
exp(− 1

T ‖x− x1‖
2)

Z
, ...,

exp(− 1
T ‖x− xn‖

2)

Z

]>
, where Z =

∑
i

exp(− 1

T
‖x−xi‖2).

We set T to 0.2 for all experiments.

Experiment results are shown in Fig. 1.

E.2 MNIST Model Details

We used a generator architecture similar to that in [17].Instead of directly projecting the initial hidden
variables to 4× 4 images, we first feed it through a fully-connected hidden layer. In the intermediate
layers, we use 4× 4 upconvolution kernels with stride 2, ReLU activation, and batch normalization.
At the output layer, we fed it through 1 extra 3× 3 convolution layer without changing the image
size. Instead of Tanh output activation, we use a Sigmoid function, and our data takes pixel value
between 0 and 1. For all of our experiments, our initial hidden dimension is 32. For discriminator,
our pretrained MNIST convnet uses 3 3x3 convolution layers with max pooling and ReLU activation,
and 2 fully connected hidden layers with ReLU activation as well.
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Figure 1: Original data (blue) and samples obtained from the learned generator (green) for our
approach (left) and standard GAN (right). We show results for 8-mode (top) and 5-mode data
(bottom). For each of the approaches we demonstrate usage of RBF features.

Score Linearization Cost Linearization GAN

Figure 2: Nonlinear discriminator experiments on CIFAR-10, learning curves and samples organized
by class.

E.3 CIFAR-10

For the generator, we use an architecture similar to the one described for MNIST. For the discriminator,
it is similar to MNIST as well, except before each max pooling operation there are 2 convolutional
and ReLU layers instead of 1. The width of the network here is also greater than the one for MNIST
experiment.

We provide in Fig. 2 the primal objective, the discriminator accuracy and the model function value
(primal approx.) throughout training, and top samples for each class. From the training curves we see
that the proposed trust-region cost-linearization technique is significantly more stable than either the
score linearization or standard GANs. The score linearization method does a better job approximating
the discriminator at the begining, but then suffered from bad solution to the dual problem given by
the Ipopt solver.
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