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Abstract

Machine learning is now being used to make crucial decisions about people’s lives.
For nearly all of these decisions there is a risk that individuals of a certain race,
gender, sexual orientation, or any other subpopulation are unfairly discriminated
against. Our recent method has demonstrated how to use techniques from coun-
terfactual inference to make predictions fair across different subpopulations. This
method requires that one provides the causal model that generated the data at hand.
In general, validating all causal implications of the model is not possible without
further assumptions. Hence, it is desirable to integrate competing causal models to
provide counterfactually fair decisions, regardless of which causal “world” is the
correct one. In this paper, we show how it is possible to make predictions that are
approximately fair with respect to multiple possible causal models at once, thus
mitigating the problem of exact causal specification. We frame the goal of learning
a fair classifier as an optimization problem with fairness constraints entailed by
competing causal explanations. We show how this optimization problem can be
efficiently solved using gradient-based methods. We demonstrate the flexibility of
our model on two real-world fair classification problems. We show that our model
can seamlessly balance fairness in multiple worlds with prediction accuracy.

1 Introduction

Machine learning algorithms can do extraordinary things with data. From generating realistic images
from noise [7], to predicting what you will look like when you become older [18]. Today, governments
and other organizations make use of it in criminal sentencing [4], predicting where to allocate police
officers [3, 16], and to estimate an individual’s risk of failing to pay back a loan [8]. However, in
many of these settings, the data used to train machine learning algorithms contains biases against
certain races, sexes, or other subgroups in the population [3, 6]. Unwittingly, this discrimination is
then reflected in the predictions of such algorithms. Simply being born male or female can change an
individual’s opportunities that follow from automated decision making trained to reflect historical
biases. The implication is that, without taking this into account, classifiers that maximize accuracy
risk perpetuating biases present in society.
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For instance, consider the rise of ‘predictive policing’, described as “taking data from disparate
sources, analyzing them, and then using the results to anticipate, prevent and respond more effectively
to future crime” [16]. Today, 38% of U.S. police departments surveyed by the Police Executive
Research Forum are using predictive policing and 70% plan to in the next 2 to 5 years. However,
there have been significant doubts raised by researchers, journalists, and activists that if the data used
by these algorithms is collected by departments that have been biased against minority groups, the
predictions of these algorithms could reflect that bias [9, 12].

At the same time, fundamental mathematical results make it difficult to design fair classifiers. In
criminal sentencing the COMPAS score [4] predicts if a prisoner will commit a crime upon release,
and is widely used by judges to set bail and parole. While it has been shown that black and white
defendants with the same COMPAS score commit a crime at similar rates after being released [1], it
was also shown that black individuals were more often incorrectly predicted to commit crimes after
release by COMPAS than white individuals were [2]. In fact, except for very specific cases, it is
impossible to balance these measures of fairness [3, 10, 20].

The question becomes how to address the fact that the data itself may bias the learning algorithm and
even addressing this is theoretically difficult. One promising avenue is a recent approach, introduced
by us in [11], called counterfactual fairness. In this work, we model how unfairness enters a dataset
using techniques from causal modeling. Given such a model, we state whether an algorithm is fair if
it would give the same predictions had an individual’s race, sex, or other sensitive attributes been
different. We show how to formalize this notion using counterfactuals, following a rich tradition of
causal modeling in the artificial intelligence literature [15], and how it can be placed into a machine
learning pipeline. The big challenge in applying this work is that evaluating a counterfactual e.g.,
“What if I had been born a different sex?”, requires a causal model which describes how your sex
changes your predictions, other things being equal.

Using “world” to describe any causal model evaluated at a particular counterfactual configuration,
we have dependent “worlds” within a same causal model that can never be jointly observed, and
possibly incompatible “worlds” across different models. Questions requiring the joint distribution of
counterfactuals are hard to answer, as they demand partially untestable “cross-world” assumptions
[5, 17], and even many of the empirically testable assumptions cannot be falsified from observational
data alone [14], requiring possibly infeasible randomized trials. Because of this, different experts as
well as different algorithms may disagree about the right causal model. Further disputes may arise
due to the conflict between accurately modeling unfair data and producing a fair result, or because
some degrees of unfairness may be considered allowable while others are not.

To address these problems, we propose a method for ensuring fairness within multiple causal models.
We do so by introducing continuous relaxations of counterfactual fairness. With these relaxations
in hand, we frame learning a fair classifier as an optimization problem with fairness constraints.
We give efficient algorithms for solving these optimization problems for different classes of causal
models. We demonstrate on three real-world fair classification datasets how our model is able to
simultaneously achieve fairness in multiple models while flexibly trading off classification accuracy.

2 Background

We begin by describing aspects causal modeling and counterfactual inference relevant for modeling
fairness in data. We then briefly review counterfactual fairness [11], but we recommend that the
interested reader should read the original paper in full. We describe how uncertainty may arise over
the correct causal model and some difficulties with the original counterfactual fairness definition.
We will use A to denote the set of protected attributes, a scalar in all of our examples but which
without loss of generality can take the form of a set. Likewise, we denote as Y the outcome of
interest that needs to be predicted using a predictor Ŷ . Finally, we will use X to denote the set of
observed variables other than A and Y , and U to denote a set of hidden variables, which without loss
of generality can be assumed to have no observable causes in a corresponding causal model.

2.1 Causal Modeling and Counterfactual Inference

We will use the causal framework of Pearl [15], which we describe using a simple example. Imagine
we have a dataset of university students and we would like to model the causal relationships that
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Figure 1: Dark nodes correspond to observed variables and light nodes are unobserved. (Left) This
model predicts that both study S and motivation U directly cause graduation rate Y . However, this
model does not take into account how an individual’s race may affect observed variables. (Center)
In this model, we encode how an individual’s race may affect whether they need to have a job J
while attending university. (Right) We may wonder if there are further biases in society to expect
different rates of study for different races. We may also suspect that having a job may influence one’s
graduation likelihood, independent of study.

lead up to whether a student graduates on time. In our dataset, we have information about whether
a student holds a job J , the number of hours they study per week S, and whether they graduate
Y . Because we are interested in modeling any unfairness in our data, we also have information
about a student’s race A. Pearl’s framework allows us to model causal relationships between these
variables and any postulated unobserved latent variables, such as some U quantifying how motivated
a student is to graduate. This uses a directed acyclic graph (DAG) with causal semantics, called
a causal diagram. We show a possible causal diagram for this example in Figure 1, (Left). Each
node corresponds to a variable and each set of edges into a node corresponds to a generative model
specifying how the “parents” of that node causally generated it. In its most specific description, this
generative model is a functional relationship deterministically generating its output given a set of
observed and latent variables. For instance, one possible set of functions described by this model
could be as follows:

S = g(J, U) + ε Y = I[φ(h(S,U)) ≥ 0.5] (1)

where g, h are arbitrary functions and I is the indicator function that evaluates to 1 if the condition
holds and 0 otherwise. Additionally, φ is the logistic function φ(a) = 1/(1 + exp(−a)) and ε is
drawn independently of all variables from the standard normal distributionN (0, 1). It is also possible
to specify non-deterministic relationships:

U ∼ N (0, 1) S ∼ N (g(J, U), σS) Y ∼ Bernoulli(φ(h(S,U)) (2)

where σS is a model parameter. The power of this causal modeling framework is that, given a
fully-specified set of equations, we can compute what (the distribution of) any of the variables would
have been had certain other variables been different, other things being equal. For instance, given
the causal model we can ask “Would individual i have graduated (Y =1) if they hadn’t had a job?”,
even if they did not actually graduate in the dataset. Questions of this type are called counterfactuals.

For any observed variables V,W we denote the value of the counterfactual “What would V have
been if W had been equal to w?” as VW←w. Pearl et al. [15] describe how to compute these
counterfactuals (or, for non-deterministic models, how to compute their distribution) using three
steps: 1. Abduction: Given the set of observed variables X ={X1, . . . , Xd} compute the values of
the set of unobserved variables U = {U1, . . . , Up} given the model (for non-deterministic models,
we compute the posterior distribution P(U|X )); 2. Action: Replace all occurrences of the variable
W with value w in the model equations; 3. Prediction: Using the new model equations, and U (or
P(U|X )) compute the value of V (or P (V |X )). This final step provides the value or distribution of
VW←w given the observed, factual, variables.

2.2 Counterfactual Fairness

In the above example, the university may wish to predict Y , whether a student will graduate, in
order to determine if they should admit them into an honors program. While the university prefers
to admit students who will graduate on time, it is willing to give a chance to some students without
a confident graduation prediction in order to remedy unfairness associated with race in the honors
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program. The university believes that whether a student needs a job J may be influenced by their race.
As evidence they cite the National Center for Education Statistics, which reported3 that fewer (25%)
Asian-American students were employed while attending university as full-time students relative to
students of other races (at least 35%). We show the corresponding casual diagram for this in Figure 1
(Center). As having a job J affects study which affects graduation likelihood Y this may mean
different races take longer to graduate and thus unfairly have a harder time getting into the honors
program.

Counterfactual fairness aims to correct predictions of a label variable Y that are unfairly altered by
an individual’s sensitive attribute A (race in this case). Fairness is defined in terms of counterfactuals:

Definition 1 (Counterfactual Fairness [11]). A predictor Ŷ of Y is counterfactually fair given the
sensitive attribute A=a and any observed variables X if

P(ŶA←a=y | X = x, A = a) = P(ŶA←a′ =y | X = x, A = a) (3)

for all y and a′ 6=a.

In what follows, we will also refer to Ŷ as a function f(x, a) of hidden variables U , of (usually a
subset of) an instantiation x of X , and of protected attribute A. We leave U implicit in this notation
since, as we will see, this set might differ across different competing models. The notation implies

ŶA←a = f(xA←a, a). (4)

Notice that if counterfactual fairness holds exactly for Ŷ , then this predictor can only be a non-trivial
function of X for those elements X ∈ X such that XA←a = XA←a′ . Moreover, by construction
UA←a = UA←a′ , as each element of U is defined to have no causes in A ∪ X .

The probabilities in eq. (3) are given by the posterior distribution over the unobserved variables
P(U | X = x, A = a). Hence, a counterfactual ŶA←a may be deterministic if this distribution is
degenerate, that is, if U is a deterministic function of X and A. One nice property of this definition
is that it is easy to interpret: a decision is fair if it would have been the same had a person had a
different A (e.g., a different race4), other things being equal. In [11], we give an efficient algorithm
for designing a predictor that is counterfactually fair. In the university graduation example, a predictor
constructed from the unobserved motivation variable U is counterfactually fair.

One difficulty of the definition of counterfactual fairness is it requires one to postulate causal
relationships between variables, including latent variables that may be impractical to measure directly.
In general, different causal models will create different fair predictors Ŷ . But there are several reasons
why it may be unrealistic to assume that any single, fixed causal model will be appropriate. There
may not be a consensus among experts or previous literature about the existence, functional form,
direction, or magnitude of a particular causal effect, and it may be impossible to determine these from
the available data without untestable assumptions. And given the sensitive, even political nature of
problems involving fairness, it is also possible that disputes may arise over the presence of a feature
of the causal model, based on competing notions of dependencies and latent variables. Consider the
following example, formulated as a dispute over the presence of edges. For the university graduation
model, one may ask if differences in study are due only to differences in employment, or whether
instead there is some other direct effect of A on study levels. Also, having a job may directly affect
graduation likelihood. We show these changes to the model in Figure 1 (Right). There is also potential
for disagreement over whether some causal paths from A to graduation should be excluded from the
definition of fairness. For example, an adherent to strict meritocracy may argue the numbers of hours
a student has studied should not be given a counterfactual value. This could be incorporated in a
separate model by omitting chosen edges when propagating counterfactual information through the
graph in the Prediction step of counterfactual inference5. To summarize, there may be disagreements
about the right causal model due to: 1. Changing the structure of the DAG, e.g. adding an edge; 2.
Changing the latent variables, e.g. changing the function generating a vertex to have a different signal
vs. noise decomposition; 3. Preventing certain paths from propagating counterfactual values.

3https://nces.ed.gov/programs/coe/indicator_ssa.asp
4At the same time, the notion of a “counterfactual race,” sex, etc. often raises debate. See [11] for our take

on this.
5In the Supplementary Material of [11], we explain how counterfactual fairness can be restricted to particular

paths from A to Y , as opposed to all paths.

4

https://nces.ed.gov/programs/coe/indicator_ssa.asp


3 Fairness under Causal Uncertainty

In this section, we describe a technique for learning a fair predictor without knowing the true casual
model. We first describe why in general counterfactual fairness will often not hold in multiple
different models. We then describe a relaxation of the definition of counterfactual fairness for
both deterministic and non-deterministic models. Finally we show an efficient method for learning
classifiers that are simultaneously accurate and fair in multiple worlds. In all that follows we denote
sets in calligraphic script X , random variables in uppercase X , scalars in lowercase x, matrices in
bold uppercase X, and vectors in bold lowercase x.

3.1 Exact Counterfactual Fairness Across Worlds

We can imagine extending the definition of counterfactual fairness so that it holds for every plausible
causal world. To see why this is inherently difficult consider the setting of deterministic causal
models. If each causal model of the world generates different counterfactuals then each additional
model induces a new set of constraints that the classifier must satisfy, and in the limit the only
classifiers that are fair across all possible worlds are constant classifiers. For non-deterministic
counterfactuals, these issues are magnified. To guarantee counterfactual fairness, Kusner et al.
[11] assumed access to latent variables that hold the same value in an original datapoint and in its
corresponding counterfactuals. While the latent variables of one world can remain constant under the
generation of counterfactuals from its corresponding model, there is no guarantee that they remain
constant under the counterfactuals generated from different models. Even in a two model case, if the
P.D.F. of one model’s counterfactual has non-zero density everywhere (as is the case under Gaussian
noise assumptions) it may be the case that the only classifiers that satisfy counterfactual fairness
for both worlds are the constant classifiers. If we are to achieve some measure of fairness from
informative classifiers, and over a family of different worlds, we need a more robust alternative to
counterfactual fairness.

3.2 Approximate Counterfactual Fairness

We define two approximations to counterfactual fairness to solve the problem of learning a fair
classifier across multiple causal worlds.

Definition 2 ((ε, δ)-Approximate Counterfactual Fairness). A predictor f(X , A) satisfies (ε, 0)-
approximate counterfactual fairness ((ε, 0)-ACF) if, given the sensitive attribute A = a and any
instantiation x of the other observed variables X , we have that:∣∣f(xA←a, a)− f(xA←a′ , a

′)
∣∣ ≤ ε (5)

for all a′ 6= a if the system deterministically implies the counterfactual values of X . For a non-
deterministic causal system, f satisfies (ε, δ)-approximate counterfactual fairness, ((ε, δ)-ACF) if:

P(
∣∣f(XA←a, a)− f(XA←a′ , a′)

∣∣ ≤ ε | X = x, A = a) ≥ 1− δ (6)

for all a′ 6=a.

Both definitions must hold uniformly over the sample space of X ×A. The probability measures used
are with respect to the conditional distribution of background latent variables U given the observations.
We leave a discussion of the statistical asymptotic properties of such plug-in estimator for future work.
These definitions relax counterfactual fairness to ensure that, for deterministic systems, predictions f
change by at most ε when an input is replaced by its counterfactual. For non-deterministic systems,
the condition in (6) means that this ε change must occur with high probability, where the probability is
again given by the posterior distribution P(U|X ) computed in the Abduction step of counterfactual
inference. If ε= 0, the deterministic definitions eq. (5) is equivalent to the original counterfactual
fairness definition. If also δ=0 the non-deterministic definition eq. (6) is actually a stronger condition
than the counterfactual fairness definition eq. (3) as it guarantees equality in probability instead of
equality in distribution6.

6In the Supplementary Material of [11], we describe in more detail the implications of the stronger condition.
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Algorithm 1 Multi-World Fairness
1: Input: features X = [x1, . . . ,xn], labels y = [y1, . . . , yn], sensitive attributes a = [a1, . . . , an],

privacy parameters (ε, δ), trade-off parameters L = [λ1, . . . , λl].
2: Fit causal models: M1, . . . ,Mm using X,a (and possibly y).
3: Sample counterfactuals: XA1←a′ , . . . ,XAm←a′ for all unobserved values a′.
4: for λ ∈ L do
5: Initialize classifier fλ.
6: while loop until convergence do
7: Select random batches Xb of inputs and batch of counterfactuals XA1←a′ , . . . ,XAm←a′ .
8: Compute the gradient of equation (7).
9: Update fλ using any stochastic gradient optimization method.

10: end while
11: end for
12: Select model fλ: For deterministic models select the smallest λ such that equation (5) using fλ

holds. For non-deterministic models select the λ that corresponds to δ given fλ.

3.3 Learning a Fair Classifier

Assume we are given a dataset of n observations a = [a1, . . . , an] of the sensitive attribute A
and of other features X = [x1, . . . ,xn] drawn from X . We wish to accurately predict a label Y
given observations y=[y1, . . . , yn] while also satisfying (ε, δ)-approximate counterfactual fairness.
We learn a classifier f(x, a) by minimizing a loss function `(f(x, a), y). At the same time, we
incorporate an unfairness term µj(f,x, a, a

′) for each causal model j to reduce the unfairness in f .
We formulate this as a penalized optimization problem:

min
f

1

n

n∑
i=1

`(f(xi, ai), yi) + λ

m∑
j=1

1

n

n∑
i=1

∑
a′ 6=ai

µj(f,xi, ai, a
′) (7)

where λ trades-off classification accuracy for multi-world fair predictions. We show how to naturally
define the unfairness function µj for deterministic and non-deterministic counterfactuals.

Deterministic counterfactuals. To enforce (ε, 0)-approximate counterfactual fairness a natural
penalty for unfairness is an indicator function which is one whenever (ε, 0)-ACF does not hold, and
zero otherwise:

µj(f,xi, ai, a
′) := I[

∣∣f(xi,Aj←ai , ai)− f(xi,Aj←a′ , a
′)
∣∣ ≥ ε] (8)

Unfortunately, the indicator function I is non-convex, discontinuous and difficult to optimize. Instead,
we propose to use the tightest convex relaxation to the indicator function:

µj(f,xi, ai, a
′) := max{0,

∣∣f(xi,Aj←ai , ai)− f(xi,Aj←a′ , a
′)
∣∣− ε} (9)

Note that when (ε, 0)-approximate counterfactual fairness is not satisfied µj is non-zero and thus the
optimization problem will penalize f for this unfairness. Where (ε, 0)-approximate counterfactual
fairness is satisfied µj evaluates to 0 and it does not affect the objective. For sufficiently large λ,
the value of µj will dominate the training loss 1

n

∑n
i=1 `(f(xi, ai), yi) and any solution will satisfy

(ε, 0)-approximate counterfactual fairness. However, an overly large choice of λ causes numeric
instability, and will decrease the accuracy of the classifier found. Thus, to find the most accurate
classifier that satisfies the fairness condition one can simply perform a grid or binary search for the
smallest λ such that the condition holds.

Non-deterministic counterfactuals. For non-deterministic counterfactuals we begin by writing a
Monte-Carlo approximation to (ε, δ)-ACF, eq. (6) as follows:

1

S

S∑
s=1

I(
∣∣f(xsAj←ai , ai)−f(xsAj←a′ , a

′)
∣∣≥ε)≤ δ (10)

where xk is sampled from the posterior distribution P(U|X ). We can again form the tightest convex
relaxation of the left-hand side of the expression to yield our unfairness function:

µj(f,xi, ai, a
′) :=

1

S

S∑
s=1

max{0,
∣∣f(xsi,Aj←ai , ai)− f(xsi,Aj←a′ , a

′)
∣∣− ε} (11)
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Note that different choices of λ in eq. (7) correspond to different values of δ. Indeed, by choosing
λ = 0 we have the (ε, δ)-fair classifier corresponding to an unfair classifier7. While a sufficiently
large, but finite, λ will correspond to a (ε, 0) approximately counterfactually fair classifier. By varying
λ between these two extremes, we induce classifiers that satisfy (ε, δ)-ACF for different values of δ.

With these unfairness functions we have a differentiable optimization problem eq. (7) which can be
solved with gradient-based methods. Thus, our method allows practitioners to smoothly trade-off
accuracy with multi-world fairness. We call our method Multi-World Fairness (MWF). We give a
complete method for learning a MWF classifier in Algorithm 1.

For both deterministic and non-deterministic models, this convex approximation essentially describes
an expected unfairness that is allowed by the classifier:
Definition 3 (Expected ε-Unfairness). For any counterfactual a′ 6= a, the Expected ε-Unfairness of
a classifier f , or Eε[f ], is

E
[

max{0,
∣∣f(XA←a, a)− f(XA←a′ , a′)

∣∣− ε} | X = x, A = a
]

(12)

where the expectation is over any unobserved U (and is degenerate for deterministic counterfactuals).
We note that the term max{0,

∣∣f(XA←a, a)−f(XA←a′ , a′)
∣∣−ε} is strictly non-negative and therefore

the expected ε-unfairness is zero if and only if f satisfies (ε, 0)-approximate counterfactual fairness
almost everywhere.

Linear Classifiers and Convexity Although we have presented these results in their most general
form, it is worth noting that for linear classifiers, convexity guarantees are preserved. The family of
linear classifiers we consider is relatively broad, and consists those linear in their learned weights w,
as such it includes both SVMs and a variety of regression methods used in conjuncture with kernels
or finite polynomial bases.

Consider any classifier whose output is linear in the learned parameters, i.e., the family of classifiers
f all have the form f(X , A) =

∑
l wlgl(X , a), for a set of fixed kernels gl. Then the expected

ε-unfairness is a linear function of w taking the form:

E
[

max{0,
∣∣f(XA←a, a)− f(XA←a′ , a′)

∣∣− ε}] (13)

= E
[

max{0,
∣∣∑

l

wl(gl(XA←a, a)− gl(XA←a′ , a′))
∣∣}]

This expression is linear in w and therefore, if the classification loss is also convex (as is the case for
most regression tasks), a global optima can be ready found via convex programming. In particular,
globally optimal linear classifiers satisfying (ε, 0)-ACF or (ε, δ)-ACF, can be found efficiently.

Bayesian alternatives and their shortcomings. One may argue that a more direct alternative is to
provide probabilities associated with each world and to marginalize set of the optimal counterfactually
fair classifiers over all possible worlds. We argue this is undesirable for two reasons: first, the averaged
prediction for any particular individual may violate (3) by an undesirable margin for one, more or
even all considered worlds; second, a practitioner may be restricted by regulations to show that, to
the best of their knowledge, the worst-case violation is bounded across all viable worlds with high
probability. However, if the number of possible models is extremely large (for example if the causal
structure of the world is known, but the associated parameters are not) and we have a probability
associated with each world, then one natural extension is to adapt Expected ε-Unfairness eq. (3) to
marginalize over the space of possible worlds. However, we leave this extension to future work.

4 Experiments

We demonstrate the flexibility of our method on two real-world fair classification problems: 1. fair
predictions of student performance in law schools; and 2. predicting whether criminals will re-offend
upon being released. For each dataset we begin by giving details of the fair prediction problem. We
then introduce multiple causal models that each possibly describe how unfairness plays a role in the
data. Finally, we give results of Multi-World Fairness (MWF) and show how it changes for different
settings of the fairness parameters (ε, δ).

7In the worst case, δ may equal 1.
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Figure 2: Causal models for the law school and COMPAS datasets. Shaded nodes are observed an
unshaded nodes are unobserved. For each dataset we consider two possible causal worlds. The first
law school model is a deterministic causal model with additive unobserved variables εG, εL, εY . The
second is a non-deterministic causal model with a latent variable U . For COMPAS, the first causal
model omits the dotted lines, and the second includes them. Both models are non-deterministic
models with latent variables UJ , UD. The large white arrows signify that variablesA,E are connected
to every variable contained in the box they point to. The law school model equations are given in
eq. (14) and COMPAS model equations are shown in eq. (15).

4.1 Fairly predicting law grades
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Figure 3: Test prediction results for differ-
ent ε on the law school dataset.

We begin by investigating a dataset of survey results across
163 U.S. law schools conducted by the Law School Admis-
sion Council [19] . It contains information on over 20,000
students including their race A (here we look at just black
and white students as this difference had the largest effect
in counterfactuals in [11]), their grade-point average G
obtained prior to law school, law school entrance exam
scores L, and their first year average grade Y . Consider
that law schools may be interested in predicting Y for all
applicants to law school using G and L in order to decide
whether to accept or deny them entrance. However, due to societal inequalities, an individual’s race
may have affected their access to educational opportunities, and thus affected G and L. Accordingly,
we model this possibility using the causal graphs in Figure 2 (Left). In this graph we also model the
fact that G,L may have been affected by other unobserved quantities. However, we may be uncertain
whether what the right way to model these unobserved quantities is. Thus we propose to model this
dataset with the two worlds described in Figure 2 (Left). Note that these are the same models as used
in Kusner et al. [11] (except here we consider race as the sensitive variable). The corresponding
equations for these two worlds are as follows:

G = bG + wAGA+ εG G ∼ N (bG + wAGA+ wUGU, σG) (14)

L = bL + wALA+ εL L ∼ Poisson(exp(bL + wALA+ wULU))

Y = bY + wAYA+ εY Y ∼ N (wAYA+ wUY U, 1)

εG, εL, εY ∼ N (0, 1) U ∼ N (0, 1)

where variables b, w are parameters of the causal model.

Results. Figure 3 shows the result of learning a linear MWF classifier on the deterministic law
school models. We split the law school data into a random 80/20 train/test split and we fit casual
models and classifiers on the training set and evaluate performance on the test set. We plot the test
RMSE of the constant predictor satisfying counterfactual fairness in red, the unfair predictor with
λ=0, and MWF, averaged across 5 runs. Here as we have one deterministic and one non-deterministic
model we will evaluate MWF for different ε and δ (with the knowledge that the only change in the
MWF classifier for different δ is due to the non-deterministic model). For each ε, δ, we selected the
smallest λ across a grid (λ ∈ {10−510−4, . . . , 1010}) such that the constraint in eq. (6) held across
95% of the individuals in both models. We see that MWF is able to reliably sacrifice accuracy for
fairness as ε is reduced. Note that as we change δ we can further alter the accuracy/fairness trade-off.
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Figure 4: Test prediction results for different ε and δ on the COMPAS dataset.

4.2 Fair recidivism prediction (COMPAS)

We next turn our attention to predicting whether a criminal will re-offend, or ‘recidivate’ after being
released from prison. ProPublica [13] released data on prisoners in Broward County, Florida who
were awaiting a sentencing hearing. For each of the prisoners we have information on their race A
(as above we only consider black versus white individuals), their age E, their number of juvenile
felonies JF , juvenile misdemeanors JM , the type of crime they committed T , the number of prior
offenses they have P , and whether they recidivated Y . There is also a proprietary COMPAS score
[13] C designed to indicate the likelihood a prisoner recidivates.

We model this dataset with two different non-deterministic causal models, shown in Figure 2 (Right).
The first model includes the dotted edges, the second omits them. In both models we believe that
two unobserved latent factors juvenile criminality UJ and adult criminality UD also contribute to
JF , JM , C, T, P . We show the equations for both of our casual models below, where the first causal
model includes the blue terms and the second does not:

T ∼ Bernoulli(φ(bT + wUD

C UD + wECE + wACA) (15)

C ∼ N (bC + wUD

C UD + wECE + wACA + wTCT + wPCP + wJFC JF + wJMC JM , σC)

P ∼ Poisson(exp(bP + wUD

P UD + wEPE + wAPA))

JF ∼ Poisson(exp(bJF + wUJ

JF
+ wEJFE + wAJFA))

JM ∼ Poisson(exp(bJM + wUJ

JM
+ wEJME + wAJMA))

[UJ , UD] ∼ N (0,Σ)

Results. Figure 4 shows how classification accuracy using both logistic regression (linear) and
a 3-layer neural network (deep) changes as both ε and δ change. We split the COMPAS dataset
randomly into an 80/20 train/test split, and report all results on the test set. As in the law school
experiment we grid-search over λ to find the smallest value such that for any ε and δ the (ε, δ)-ACF)
constraint in eq. (6) is satisfied for at least 95% of the individuals in the dataset, across both worlds.
We average all results except the constant classifier over 5 runs and plot the mean and standard
deviations. We see that for small δ (high fairness) both linear and deep MWF classifiers significantly
outperform the constant classifier and begin to approach the accuracy of the unfair classifier as ε
increases. As we increase δ (lowered fairness) the deep classifier is better able to learn a decision
boundary that trades-off accuracy for fairness. But if ε, δ is increased enough (e.g., ε≥0.13, δ=0.5),
the linear MWF classifier matches the performance of the deep classifier.

5 Conclusion

This paper has presented a natural extension to counterfactual fairness that allows us to guarantee fair
properties of algorithms, even when we are unsure of the causal model that describes the world.

As the use of machine learning becomes widespread across many domains, it becomes more important
to take algorithmic fairness out of the hands of experts and make it available to everybody. The
conceptual simplicity of our method, our robust use of counterfactuals, and the ease of implementing
our method mean that it can be directly applied to many interesting problems. A further benefit of
our approach over previous work on counterfactual fairness is that our approach only requires the
estimation of counterfactuals at training time, and no knowledge of latent variables during testing. As
such, our classifiers offer a fair drop-in replacement for other existing classifiers.
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