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1 Supplement

1.1 Preliminaries

Lemma 1.1. Consider any function φ : R→ R and θ > 0. Suppose the following holds

− 1

θ
log
(
1− θx+ θ2x2

)
≤ φ(x) ≤ 1

θ
log
(
1 + θx+ θ2x2

)
, ∀x ∈ R (1)

then, we have for any matrix A ∈ Hd×d,

−1

θ
log
(
1− θA+ θ2A2

)
≤ φ(A) ≤ 1

θ
log
(
I + θA+ θ2A2

)
.

Proof. Note that for any x ∈ R, − 1
θ log

(
1− xθ + x2θ2

)
≤ 1

θ log
(
1 + xθ + x2θ2

)
, then, the claim

follows immediately from the definition of the matrix function.

The above lemma is useful in our context mainly due to the following lemma,
Lemma 1.2. The truncation function 1

θψ(θx) = sign(x) ·
(
|x| ∧ 1

θ

)
satisfies the assumption (14) in

Lemma 5.1.

Proof. Denote f1(x) = − 1
θ log

(
1− θx+ θ2x2

)
, f2(x) = 1

θ log
(
1 + θx+ θ2x2

)
and g(x) =

sign(x) ·
(
|x| ∧ 1

θ

)
. Note first that

f1(0) = g(0) = f2(0) = 0,

f1(1/θ) ≤ g(1/θ) ≤ f2(1/θ),

f1(−1/θ) ≤ g(−1/θ) ≤ f2(−1/θ),

and the subgradient

∂g(x) =


1, x ∈ (−1/θ, 1/θ),

0, x ∈ (−∞,−1/θ) ∪ (1/θ,+∞),

[0, 1], x = −1/θ, 1/θ.

Next, we take the derivative of f2(x) and compare it to the derivative of g(x).

f ′2(x) =
1

θ
· θ + 2xθ2

1 + xθ + x2θ2
=

1 + 2xθ

1 + xθ + x2θ2
.
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Note that f ′2(x) ≥ 1, x ∈ (0, 1/θ), f ′2(x) ≥ 0, x ≥ 1/θ, f ′2(x) ≤ 1, x ∈ (−1/θ, 0] and f ′2(x) ≤
0, x ≤ −1/θ. Thus, we have g(x) ≤ f2(x), ∀x ∈ R. Similarly, we can take the derivative of
f1(x) and compare it to g(x), which results in f ′1(x) ≤ 1, x ∈ (0, 1/θ), f ′1(x) ≤ 0, x ≥ 1/θ,
f ′1(x) ≥ 1, x ∈ (−1/θ, 0] and f ′2(x) ≥ 0, x ≤ −1/θ. This implies f1(x) ≤ g(x) and the Lemma is
proved.

The following lemma demonstrates the importance of matrix logarithm function in matrix analysis,
whose proof can be found in Bhatia (2013) and Tropp (2015),
Lemma 1.3. (a) The matrix logarithm is operator monotone, that is, if A � B � 0 are two matrices
in Hd×d, then, log(A) � log(B).
(b) Given a fixed matrix H ∈ Hd×d, the function

A→ tr exp(H + log(A))

is concave on the cone of positive semi-definite matrices.

The following lemma is a generalization of Chebyshev’s association inequality. See Theorem 2.15 of
Boucheron et al. (2013) for proof.
Lemma 1.4 (FKG inequality). Suppose f, g : Rd → R are two functions non-decreasing on each
coordinate. Let Y = [Y1, Y2, · · · , Yd] be a random vector taking values in Rd, then,

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

The following corollary follows immediately from the FKG inequality.
Corollary 1.1. Let Z = X − µ0, then, we have σ2

0 = ‖E
[
ZZT ‖Z‖22

]
‖ ≥

tr
(
E
[
ZZT

]) ∥∥E[ZZT ]∥∥ = tr(Σ0)‖Σ0‖.

Proof. Consider any unit vector v ∈ Rd. It is enough to show E
[
(vTZ)2‖Z‖22

]
≥

E
[
(vTZ)2

]
E
[
‖Z‖22

]
. We change the coordinate by considering an orthonormal basis {v1, · · · ,vd}

with v1 = v. Let Yi = vTi Z, i = 1, 2, · · · , d, then we obtain,

E
[
(vTZ)2‖Z‖22

]
= E

[
Y 2

1 ‖Y ‖22
]
≥ E

[
Y 2

1

]
E
[
‖Y ‖22

]
,

where the last inequality follows from FKG inequality by taking f
(
Y 2

1 , · · · , Y 2
d

)
= Y 2

1 and
g
(
Y 2

1 , · · · , Y 2
d

)
= ‖Y ‖22.

1.2 Additional computation in the proof of Lemma 2.1

In order to show (11), it is enough to show that

C ′‖Σ0‖

√ dσ

‖Σ0‖

(
β

m

) 3
4

+

√
dσ

‖Σ0‖
β

m
+

√
dσ

‖Σ0‖

(
β

m

) 5
4

+ d

(
β

m

) 3
2

+
dβ2

m2
+ d

5
4

(
β

m

) 9
4

 ≤ σ√ β

m
.

Note that d = σ2
0/‖Σ0‖2 ≥ tr(Σ0)/‖Σ0‖ ≥ 1, and assuming that the sample size satisfies m ≥

(6C ′)4dβ, we have dβ/m ≤ 1/(6C ′)4 < 1. We then bound each of the 6 terms on the left side.

C ′‖Σ0‖

√
dσ

‖Σ0‖

(
β

m

) 3
4

=C ′
√
σ

(
β

m

) 1
4

·
(
‖Σ0‖dβ
m

)1/4

·
(
‖Σ0‖dβ
m

)1/4

≤C ′
√
σ

(
β

m

) 1
4

·
(
‖Σ0‖dβ
m

)1/4

· 1

6C ′

=
1

6

√
σσ0

√
β

m
≤ 1

6
σ

√
β

m
,

C ′‖Σ0‖ ·
√
d

σ

‖Σ0‖
β

m
=C ′σ

√
β

m
·

√
dβ

m
≤ C ′σ

√
β

m

1

(6C ′)2
≤ 1

6
σ

√
β

m
,

C ′‖Σ0‖

√
dσ

‖Σ0‖

(
β

m

) 5
4

≤C ′‖Σ0‖

√
dσ

‖Σ0‖

(
β

m

) 3
4

≤ 1

6
σ

√
β

m
.
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Note that we have the following

C ′‖Σ0‖d
β

m
= C ′‖Σ0‖

(
dβ

m

) 1
2
(
dβ

m

) 1
2

≤ C ′‖Σ0‖
(
dβ

m

) 1
2 1

(6C ′)2
≤ 1

6
σ0

√
β

m
≤ 1

6
σ

√
β

m
,

thus, the rest three terms can be bounded as follows,

C ′‖Σ0‖d
(
β

m

) 3
2

≤C ′‖Σ0‖d
β

m
≤ 1

6
σ

√
β

m

C ′‖Σ0‖d
β2

m2
≤C ′‖Σ0‖d

β

m
≤ 1

6
σ

√
β

m

C ′‖Σ0‖d
5
4

(
β

m

) 9
4

≤C ′‖Σ0‖d
5
4

(
β

m

) 5
4

≤ C ′‖Σ0‖d
β

m
≤ 1

6
σ

√
β

m
.

Overall, we have (11) holds.

1.3 Proof of Lemma 4.2

First of all, by definition of Σ̂µ, we have

sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣vT (Σ̂µ − Σµ)v
∣∣∣ = sup

‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

mθ

m∑
i=1

〈Zi − µ,v〉2
ψ
(
θ‖Zi − µ‖22

)
‖Zi − µ‖22

− E
[
〈Zi − µ,v〉2

]∣∣∣∣∣ .
Expanding the squares on the right hand side gives

sup
‖µ‖2≤Bβ

∥∥∥Σ̂µ − Σµ

∥∥∥ ≤ sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

〈Zi,v〉2
ψ
(
θ‖Zi − µ‖22

)
θ‖Zi − µ‖22

− E
[
〈Zi,v〉2

]∣∣∣∣∣ (I)

+ 2 sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

〈Zi,v〉 〈µ,v〉
ψ
(
θ‖Zi − µ‖22

)
θ‖Zi − µ‖22

− E[〈Zi,v〉 〈µ,v〉]

∣∣∣∣∣ (II)

+ sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

〈µ,v〉2
ψ
(
θ‖Zi − µ‖22

)
θ‖Zi − µ‖22

− 〈µ,v〉2
∣∣∣∣∣ . (III)

We will then bound these three terms separately. Note that given ‖µ̂− µ0‖2 ≤ Bβ , the term (III) can
be readily bounded as follows using the fact that 0 ≤ ψ(x) ≤ x, ∀x ≥ 0,

(III) = sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣〈µ,v〉2
(

1

m

m∑
i=1

ψ
(
θ‖Zi − µ‖22

)
θ‖Zi − µ‖22

− 1

)∣∣∣∣∣ ≤ sup
‖µ‖2≤Bβ ,‖v‖2≤1

〈µ,v〉2 ≤ B2
β

= 242
tr(Σ0)

m
β ≤ 242

σ2
0β

‖Σ0‖m
≤ 242‖Σ0‖

dβ

m
, (2)

where the second from the last inequality follows from Corollary 5.1 and the last inequality follows
from d = σ2

0/‖Σ0‖2.

The rest two terms are bounded through the following lemma whose proof is delayed to the next
section:
Lemma 1.5. Given ‖µ̂ − µ0‖2 ≤ Bβ , with probability at least 1 − 4de−β , we have the following
two bounds hold,

(I) ≤ 2σ

√
β

m
+ 22‖Σ0‖

√2d
1
4

(
β

m

) 3
4

+ 2
√

2

√
dσ

‖Σ0‖

(
β

m

) 5
4

+ 11d
1
2

(
β

m

) 3
2

+ 22
dβ2

m2

 ,

(II) ≤ 11‖Σ0‖

√2

√
dσ

‖Σ0‖

(
β

m

) 3
4

+ 3
√

2
√
d

σ

‖Σ0‖
β

m
+ 44d

3
4

(
β

m

) 5
4

+44
√

2d

(
β

m

) 3
2

+ 242
√

2
dβ2

m2
+ 484d

5
4

(
β

m

) 9
4

)
.
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Note that since σ ≥ σ0, we have σ/‖Σ0‖ ≥ σ0/‖Σ0‖ =
√
d. Combining the above lemma with (15)

finishes the proof of Lemma 4.2.

1.4 Proof of Lemma 5.5

Before proving the Lemma, we introduce the following abbreviations:

gv(Zi) = 〈Zi,v〉2
ψ
(
θ‖Zi‖22

)
θ‖Zi‖22

, hµ(Zi) =
‖Zi‖22

ψ (θ‖Zi‖22)

ψ
(
θ‖Zi − µ‖22

)
‖Zi − µ‖22

,

g̃v(Zi) = 〈Zi,v〉
ψ
(
θ‖Zi‖22

)
θ‖Zi‖22

.

Our analysis relies on the following simply yet important fact which gives deterministic upper and
lower bound of hµ(Zi) around 1. Its proof is delayed to the next section.
Lemma 1.6. For any µ such that ‖µ‖2 ≤ Bβ , the following holds:

1− 2Bβ
√
θ −B2

βθ ≤ hµ(Zi) ≤ 1 + 2Bβ
√
θ +B2

βθ.

The following Lemma gives a general concentration bound for heavy tailed random matrices under a
mapping φ(·).

Lemma 1.7. Let A1, A2, · · · , Am be a sequence of i.i.d. random matrices in Hd×d with zero mean
and finite second moment σ2

A = ‖E
[
A2
i

]
‖. Let φ(·) be any function satisfying the assumption (14) of

Lemma 5.1. Then, for any t > 0,

Pr

(
m∑
i=1

(φ(Ai)− E[Ai]) ≥ t
√
m

)
≤ 2d exp

(
−tθ
√
m+mθ2σ2

A

)
.

Specifically, if the assumption (14) holds for θ = t
2
√
mσA

, then we obtain the subgaussian tail
2d exp(−t2/4σ2

A).

The intuition behind this lemma is that the log(1 + x) tends to “robustify” a random variable by
implicitly trading the bias for a tight concentration. A scalar version of such lemma with a similar
idea is first introduced in the seminal work Catoni (2012). The proof of the current matrix version
is similar to Lemma 3.1 and Theorem 3.1 of Minsker (2016) by modifying only the constants. We
omitted the details here for brevity. Note that this lemma is useful in our context by choosing
φ(x) = 1

θψ(θx). Next, we prove two parts of Lemma 5.5 separately.

Proof of (I) in Lemma 5.5. Using the abbreviation introduced at the beginning of this section, we
have

(I) = sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

gv(Zi)hµ(Zi)− E
[
〈Zi,v〉2

]∣∣∣∣∣
We further split it into two terms as follows:

(I) ≤ sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

gv(Zi) (hµ(Zi)− 1)

∣∣∣∣∣+ sup
‖v‖≤

∣∣∣∣∣ 1

m

m∑
i=1

gv(Zi)− E
[
〈Zi,v〉2

]∣∣∣∣∣ (3)

The two terms in (16) are bounded as follows:

1. For the second term in (16), note that we can write it back into the matrix form as∥∥∥∥∥ 1

mθ

m∑
i=1

ZiZ
T
i

ψ
(
θ‖Zi‖22

)
‖Zi‖22

− E
[
ZiZ

T
i

]∥∥∥∥∥ .
Note that the matrix ZiZTi is a rank one matrix with the eigenvalue equal to ‖Zi‖22, so it
follows from the definition of matrix function,

ZiZ
T
i

ψ
(
θ‖Zi‖22

)
‖Zi‖22

=
1

θ
ψ
(
θZiZ

T
i

)
.

4



Now, applying Lemma 5.2 setting θ = t
2σ2
√
m

together with Lemma 5.7 gives

Pr

(∥∥∥∥∥ 1

mθ

m∑
i=1

ZiZ
T
i

ψ
(
θ‖Zi‖22

)
‖Zi‖22

− E
[
ZiZ

T
i

]∥∥∥∥∥ ≥ t/√m
)
≤ 2d exp(−t2/4σ2).

Setting t = 2σ
√
β (which results in θ = 1

σ

√
β
m ) gives∥∥∥∥∥ 1

mθ

m∑
i=1

ZiZ
T
i

ψ
(
θ‖Zi‖22

)
‖Zi‖22

− E
[
ZiZ

T
i

]∥∥∥∥∥ ≤ 2σ

√
β

m
(4)

with probability at least 1− 2de−β .

2. For the first term in (16), by the fact that gv(Zi) ≥ 0 and Lemma 5.6,

sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

gv(Zi) (hµ(Zi)− 1)

∣∣∣∣∣
≤ sup
‖µ‖2≤Bβ ,‖v‖2≤1

1

m

m∑
i=1

gv(Zi) |hµ(Zi)− 1|

≤ sup
‖v‖2≤1

1

m

m∑
i=1

gv(Zi)
(

2Bβ
√
θ +B2

βθ
)

≤

(∥∥E[ZiZTi ]∥∥+ 2σ

√
β

m

)(
2Bβ
√
θ +B2

βθ
)
,

with probability at least 1−2de−β , where the last inequality follows from the same argument
leading to (17). Note that E

[
ZiZ

T
i

]
= Σ0.

Overall, we get

(I) ≤ 2σ

√
β

m
+

(
‖Σ0‖+ 2σ

√
β

m

)(
2Bβ
√
θ +B2

βθ
)
,

with probability at least 1− 2de−β . Now we substitute Bβ = 11
√

2tr(Σ0)β/m and θ = 1
σ

√
β
m into

the above bound gives

(I) ≤ 2σ

√
β

m
+ 22

√
2‖Σ0‖

√
tr(Σ0)

σ

(
β

m

) 3
4

+ 242‖Σ0‖
trΣ0

σ

(
β

m

) 3
2

+ 44
√

2
√
σtr(Σ0)

(
β

m

) 5
4

+ 484tr(Σ0)

(
β

m

)2

Using Corollary 5.1, we have
tr(Σ0)

σ
≤ tr(Σ0)

σ0
≤ tr(Σ0)√

tr(Σ0)‖Σ0‖
≤ σ0

‖Σ0‖
≤ d, (5)

and also,
tr(Σ0) ≤ ‖Σ0‖σ2

0/‖Σ0‖2 ≤ ‖Σ0‖d. (6)
Substitute these two bounds into the bound of (I) gives the final bound for (I) stated in Lemma 5.5
with probability at least 1− 2de−β .

Proof of (II) in Lemma 5.5. First of all, using the definition of g̃v(Zi) and hµ(Zi), we can rewrite
(II) as follows:

(II) = sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

g̃v(Zi)hµ(Zi) 〈µ,v〉 − E[〈Zi,v〉] 〈µ,v〉

∣∣∣∣∣
≤Bβ · sup

‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

g̃v(Zi)hµ(Zi)− E[〈Zi,v〉]

∣∣∣∣∣ .
5



Similar to the analysis of (I), we further split the above term into two terms and get

(II) ≤ Bβ sup
‖µ‖2≤Bβ ,‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

g̃v(Zi) (hµ(Zi)− 1)

∣∣∣∣∣︸ ︷︷ ︸
(IV )

+Bβ sup
‖v‖2≤1

∣∣∣∣∣ 1

m

m∑
i=1

g̃v(Zi)− E[〈Zi,v〉]

∣∣∣∣∣︸ ︷︷ ︸
(V )

.

(7)

For the first term, by Cauchy-Schwarz inequality and then Lemma 5.6, we get

(IV) ≤Bβ sup
‖µ‖2≤Bβ ,‖v‖2≤1

1

m

m∑
i=1

|g̃v(Zi) (hµ(Zi)− 1)|

≤Bβ sup
‖µ‖2≤Bβ ,‖v‖2≤1

(
1

m

m∑
i=1

g̃v(Zi)
2

)1/2(
1

m

m∑
i=1

|hµ(Zi)− 1|2
)1/2

≤Bβ sup
‖v‖2≤1

(
1

m

m∑
i=1

g̃v(Zi)
2

)1/2 (
2Bβ
√
θ +B2

βθ
)
.

Note that 1
θψ
(
θ‖Zi‖22

)
/‖Zi‖22 ≤ 1, then, it follows,

g̃v(Zi)
2 = 〈Zi,v〉2

(
1
θψ
(
θ‖Zi‖22

)
‖Zi‖22

)2

≤ 〈Zi,v〉2
1
θψ
(
θ‖Zi‖22

)
‖Zi‖22

.

Thus, by the same analysis leading to (17), we get

(IV) ≤ Bβ

(∥∥E[ZiZTi ]∥∥+ 2σ

√
β

m

)1/2 (
2Bβ
√
θ +B2

βθ
)
, (8)

with probability at least 1− 2de−β . For the second term (V), notice that E[Zi] = 0, thus we have

(V) ≤ Bβ sup
‖v‖2≤1

∣∣∣∣∣
〈

1

m

m∑
i=1

Zi
‖Zi‖22

1

θ
ψ(θ‖Zi‖22),v

〉∣∣∣∣∣ ≤ Bβ
∥∥∥∥∥ 1

m

m∑
i=1

Zi
‖Zi‖22

‖Zi‖22 ∧
1

θ

∥∥∥∥∥
2

≤ Bβ

∥∥∥∥∥ 1

m

m∑
i=1

Zi
‖Zi‖22

‖Zi‖22 ∧
1

θ
− E

[
Zi
‖Zi‖22

‖Zi‖22 ∧
1

θ

]∥∥∥∥∥
2

+Bβ

∥∥∥∥E[ Zi
‖Zi‖22

‖Zi‖22 ∧
1

θ

]∥∥∥∥
2

.

(9)

For the second term, which measures the bias, we have by the fact E[Zi] = 0,∥∥∥∥E[ Zi
‖Zi‖22

‖Zi‖22 ∧
1

θ

]∥∥∥∥
2

=

∥∥∥∥E[Zi(‖Zi‖22 ∧ 1
θ

‖Zi‖22
− 1

)]∥∥∥∥
2

= sup
‖v‖2≤1

E
[
〈Zi,v〉

(‖Zi‖22 ∧ 1
θ

‖Zi‖22
− 1

)]
≤ sup
‖v‖2≤1

E
[
〈Zi,v〉 1{‖Zi‖2≥1/

√
θ}

]
.

Now by Cauchy-Schwarz inequality and then Markov inequality, we obtain,

sup
‖v‖2≤1

E
[
〈Zi,v〉 1{‖Zi‖2≥1/

√
θ}

]
≤
√

sup
‖v‖2≤1

E
[
〈Zi,v〉2

]
Pr(‖Zi‖2 ≥ 1/

√
θ)1/2 ≤

√
‖Σ0‖E

[
‖Zi‖22

]1/2√
θ

=
√
‖Σ0‖

tr(Σ0)1/2β1/4

m1/4σ1/2
≤ (‖Σ0‖tr(Σ0))1/4β1/4

m1/4
≤
(
σ2

m
β

)1/4

,

where the last two inequalities both follow from Lemma 5.1. This gives the second term in (22) is

given by Bβ
(
σ2

m β
)1/4

.
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For the first term in (22), note that for any vector x ∈ Rd,

‖x‖2 =

∥∥∥∥[0 xT

x 0

]∥∥∥∥ ,
and furthermore, the matrix

[
0 xT

x 0

]
has two same eigenvalues equal to ‖x‖2, which follows from

[
0 xT

x 0

]2

=

[
‖x‖22 0

0 xxT

]
.

Thus, if we take

Ai =

[
0 ZTi
Zi 0

] ‖Zi‖22 ∧ 1
θ

‖Zi‖22
,

Then, the first term of (22) is equal to
∥∥ 1
m

∑m
i=1Ai − E[Ai]

∥∥. For this Ai, we have

‖E
[
A2
i

]
‖ ≤ E

[
‖Zi‖22

]
= tr(Σ0), ‖Ai‖ ≤

1√
θ

=
m1/4σ1/2

β1/4
.

By matrix Bernstein’s inequality (Tropp (2012)), we obtain the bound

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Ai − E[Ai]

∥∥∥∥∥ ≥ t
)
≤ d exp

(
−3

8

(
mt2

σ2
∧m
√
θt

))
= d exp

(
−3

8

(
mt2

σ2
∧ m

3/4β1/4t

σ1/2

))
,

where c is a fixed positive constant. Taking t = 3
√

σ2β
‖Σ0‖m gives

Pr

(∥∥∥∥∥ 1

m

m∑
i=1

Ai − E[Ai]

∥∥∥∥∥ ≥ 3

√
σ2

m
β

)
≤ d exp

(
−3β ∧

(
m1/4β3/4d

1/4
))
≤ d exp(−β),

where d = σ2/‖Σ0‖2 ≥ σ2
0/‖Σ0‖2 ≥ tr(Σ0)/‖Σ0‖ ≥ 1 and the last inequality follows from the

assumption that m ≥ β. Overall, term (V) is bounded as follows

(V) ≤ Bβ
(
σ2

m
β

)1/4

+ 3Bβ

√
σ2β

‖Σ0‖m
,

with probability at least 1− de−β . Note that E
[
ZiZ

T
i

]
= Σ0, then, combining with (21), the term

(II) is bounded as

(II) ≤ Bβ

(
‖Σ0‖

1
2 +
√

2σ
1
2

(
β

m

) 1
4

)(
2Bβ
√
θ +B2

βθ
)

+Bβ

(
σ2

m
β

)1/4

+ 3Bβ

√
σ2β

‖Σ0‖m
,

with probability at least 1− 2de−β . Substituting Bβ = 11

√
2tr(Σ0)β

m and θ = 1
σ

√
β
m gives

(II) ≤ 11
√

2
√

tr(Σ0)σ

(
β

m

) 3
4

+ 33
√

2

√
tr(Σ0)σ

‖Σ0‖1/2
β

m
+ 484‖Σ0‖1/2

tr(Σ0)

σ1/2

(
β

m

) 5
4

+ 484
√

2tr(Σ0)

(
β

m

) 3
2

+ 2
√

2 · 113‖Σ0‖
1
2

tr(Σ0)3/2

σ

(
β

m

)2

+ 4 · 113 tr(Σ0)3/2

σ1/2

(
β

m

)9/4

.

Using the bounds (18) and (19) with some algebraic manipulations, we have the second bound in
Lemma 5.5 holds with probability at least 1− 2de−β .
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1.5 Proof of Lemma 5.6

We divide our analysis into the following four cases:

1. If ‖Zi‖22 ≤ 1/θ and ‖Zi − µ‖22 ≤ 1/θ, then, we have hµ(Zi) = 1.

2. If ‖Zi‖22 ≤ 1/θ and ‖Zi−µ‖22 > 1/θ. Since ‖µ‖ ≤ Bβ , it follows ‖Zi−µ‖2 ≤
√

1/θ+Bβ ,
and we have

hµ(Zi) =
1/θ

‖Zi − µ‖22
≤ 1,

hµ(Zi) ≥
1/θ(√

1/θ +Bβ

)2 =
1

1 + 2Bβ
√
θ +B2

βθ

≥ 1− 2Bβ
√
θ −B2

βθ,

where the last inequality follows from the fact 1
1+x ≥ 1− x, ∀x ≥ 0.

3. If ‖Zi‖22 > 1/θ and ‖Zi − µ‖22 ≤ 1/θ. Since ‖µ‖2 ≤ Bβ , it follows ‖Zi‖2 ≤
√

1/θ+Bβ ,
and we have

hµ(Zi) =
‖Zi‖22
1/θ

≥ 1,

hµ(Zi) ≤

(√
1/θ +Bβ

)2

1/θ
= 1 + 2Bβ

√
θ +B2

βθ.

4. If ‖Zi‖22 > 1/θ and ‖Zi − µ‖22 > 1/θ. Then, we have

hµ(Zi) =
‖Zi‖22
‖Zi − µ‖22

≤ (‖Zi − µ‖2 +Bβ)2

‖Zi − µ‖22

≤

(
1/
√
θ +Bβ

1/
√
θ

)2

≤ 1 + 2Bβ
√
θ +B2

βθ,

hµ(Zi) ≥
‖Zi‖22

(‖Zi‖2 +Bβ)2
≥

(
1/
√
θ

1/
√
θ +Bβ

)2

=
1

1 + 2Bβ
√
θ +B2

βθ
≥ 1− 2Bβ

√
θ −B2

βθ,

Overall, we proved the lemma.

1.6 Proof of Lemma 2.2

By definition,
B = sup

‖v‖2≤1

E
[
|〈v, X〉|4

]
≥ E

[∣∣Xj
∣∣4], ∀j = 1, 2, · · · , d,

where Xj denotes the j-th entry of the random vector X . Also, for any fixed vector v ∈ Rd, we have

0 ≤ E
[(
|〈v, X〉|2 −

∣∣Xj
∣∣2)2

]
= E

[
|〈v, X〉|4

]
+ E

[∣∣Xj
∣∣2]− 2E

[
|〈v, X〉|2

∣∣Xj
∣∣2]

⇒ E
[
|〈v, X〉|4

]
+ E

[∣∣Xj
∣∣2] ≥ 2E

[
|〈v, X〉|2

∣∣Xj
∣∣2], ∀j = 1, 2, · · · , d.

Taking the supremum from both sides of the above inequality and use the previous bound on B, we
get

sup
‖v‖2≤1

E
[
|〈v, X〉|4

]
≥ sup
‖v‖2≤1

E
[
|〈v, X〉|2

∣∣Xj
∣∣2], ∀j = 1, 2, · · · , d.
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Summing over i = 1, 2, · · · , d gives

Bd = sup
‖v‖2≤1

E
[
|〈v, X〉|4

]
d ≥

d∑
j=1

sup
‖v‖2≤1

E
[
|〈v, X〉|2

∣∣Xj
∣∣2] ≥ sup

‖v‖2≤1

E
[
|〈v, X〉|2 ‖X‖2

]
=
∥∥XXT ‖X‖22

∥∥ = σ2
0 .

1.7 Proof of Lemma 2.3

First of all, let Z = X − µ0, then, we have E[Z] = 0. The lower bound of σ2
0 follows directly from

Corollary 5.1. It remains to show the upper bound. Note that by Cauchy-Schwarz inequality,

σ2
0 =

∥∥ZZT ‖Z‖22∥∥ = sup
‖v‖2≤1

E
[
〈Z,v〉2‖Z‖22

]
≤ sup
‖v‖2≤1

E
[
〈Z,v〉4

]1/2E[‖Z‖42]1/2.
We then bound the two terms separately. For any vector x ∈ Rd, let xj be the j-th entry. Note that

E
[
〈Z,v〉4

]1/2
=

 d∑
j=1

E
[
(Zjvj)4

]
+

d∑
j,k, j 6=k

E
[
(Zjvj)2(Zkvk)2

]1/2

≤

 d∑
j=1

E
[
(Zjvj)4

]
+

d∑
j,k, j 6=k

E
[
(Zjvj)4

]1/2E[(Zkvk)4
]1/21/2

=

d∑
j=1

√
E[(Zjvj)4] =

d∑
j=1

√
E[(Zj)4](vj)2 ≤ R

d∑
j=1

E
[
(Zj)2

]
(vj)2

where the last inequality uses the fact that the kurtosis is bounded. Thus,

sup
‖v‖2≤1

E
[
〈Z,v〉4

]1/2 ≤ R · sup
‖u‖1≤1

d∑
j=1

E
[
(Zj)2

]
uj = R · max

j=1,2,··· ,d
E
[
(Zj)2

]
≤ R‖Σ0‖ (10)

where the last inequality follows from

max
j=1,2,··· ,d

E
[
(Zj)2

]
= max
j=1,2,··· ,d

eTj Σ0ej ≤ sup
‖v‖≤1

vTΣ0v = ‖Σ0‖.

Similarly, we have

E
[
‖X‖42

]1/2
=

 d∑
j=1

E
[
(Xj)4

]
+

d∑
j,k=1, j 6=k

E
[
(Xj)2(Xk)2

]1/2

≤

 d∑
j=1

E
[
(Xj)4

]
+

d∑
j,k=1, j 6=k

E
[
(Xj)4

]1/2E[(Xk)4
]1/21/2

≤
d∑
j=1

√
E[(Xj)4] ≤ R ·

d∑
j=1

E
[
(Xj)2

]
= R · tr(Σ0)

Combining the above bounds with (23) gives

σ2
0 ≤ R2‖Σ0‖tr(Σ0),

which readily implies the lemma.
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