
Supplementary material for “Real-Time Bidding
with Side Information”

Assumption 1. The random variables V and P are conditionally independent given X.
Moreover, there exists θ∗ ∈ Rd such that E[V | X] = XTθ∗ and ‖θ∗‖∞ ≤ 1.

Assumption 2. (a) B/T = β is a constant independent of any other relevant quantities.

(b) There exists r > 0, known to the advertiser, such that pt ≥ r for all t ∈ N.

(c) We have E[1/XTθ∗] <∞.

(d) The random variable P has a continuous conditional probability density function given
the occurrence of the value x of X, denoted by fx(·), that is upper bounded by L̄ <∞.

Algorithm 1: Interval updating procedure at the end of phase k
Data: λ̄k, λk, ∆k = 3

√
2 ln(2T )/Nk, and φ̂k(λ, C) for any λ ≥ λk

Result: λ̄k+1 and λk+1
γ̄k = λ̄k, γk = λk;
while φ̂k(γ̄k, C) > β + ∆k do

γ̄k = γ̄k + |Ik|, γk = γ
k

+ |Ik|;
end
if φ̂k(1/2γ̄k + 1/2γ

k
, C) ≤ β + ∆k then

λ̄k+1 = 1/2γ̄k + 1/2γ
k
, λk+1 = γ

k
;

else
λ̄k+1 = γ̄k, λk+1 = 1/2γ̄k + 1/2γ

k
;

end

A Proof of Lemma 1
Lemma 1. The optimal non-anticipating strategy is to bid bt = xT

tθ∗ at any time period
t ∈ N and we have EROPT(T ) =

∑T
t=1 E[(xT

tθ∗ − pt)+].

Proof. Consider any non-anticipating algorithm. The expected reward obtained at period
t ∈ N is:

E[(vt − pt) · 1bt≥pt ] = E[E[(vt − pt) · 1bt≥pt | F̃t−1]]
= E[(E[vt | F̃t−1, bt]− pt) · 1bt≥pt ]
= E[(xT

tθ∗ − pt) · 1bt≥pt ]
≤ E[(xT

tθ∗ − pt)+].

To derive the second equality, we use the fact that ((xτ , vτ , pτ ))τ∈N is an i.i.d. sequence,
that (vt, pt) is independent of bt conditioned on xt since the algorithm is non-anticipating,
and that vt is independent of pt conditioned on xt. This shows that:

EROPT(T ) ≤
T∑
t=1

E[(xT
tθ∗ − pt)+].
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Moreover, this last inequality is in fact an equality since bidding bt = xT
tθ∗ at any time

period t ∈ N yields the expected reward:

E[(vt − pt) · 1xT
t θ∗≥pt ] = E[E[(vt − pt) · 1xT

t θ∗≥pt | F̃t−1]]

= E[(E[vt | F̃t−1]− pt) · 1xT
t θ∗≥pt ]

= E[(xT
tθ∗ − pt) · 1xT

t θ∗≥pt ]
= E[(xT

tθ∗ − pt)+].

B Proof of Lemma 2
At any round t, we bid:

bt = max(0,min(1,max
θ∈Ct

θTxt)) = max(0,min(1, θ̂T
txt + δT ·

√
xT
tM
−1
t xt)). (1)

Lemma 2. We have P[θ∗ /∈ ∩Tt=1Ct] ≤ 1
T .

Proof. This is almost a direct consequence of Theorems 1 and 2 of [1] with the minor
change (in their notations): ηt = (vt− xT

tθ∗) · 1bt≥pt , Xt = 1bt≥pt · xt, and Yt = vt · 1bt≥pt .
Defining the σ-algebra Ft = σ(x1, · · · , xt+1, p1, · · · , pt+1, v1, · · · , vt), observe that Xt is
Ft−1-measurable since (1) defines a non-anticipating algorithm, that ηt is Ft-measurable,
and that ηt ∈ [−1, 1] and has mean 0 conditioned on Ft−1 since vt is independent of pt
conditioned on xt with mean xT

tθ∗ and since ((xτ , vτ , pτ ))τ∈N is an i.i.d. sequence. This
implies that the assumptions of Theorems 1 and 2 of [1] are satisfied with R = 1, V = Id,
S =

√
d (since ‖θ∗‖∞ ≤ 1), δ = 1/T , and L =

√
d (since ‖xt‖∞ ≤ 1).

C Proof of Theorem 1
Theorem 1. Bidding according to (1) incurs a regret RT = Õ(d ·

√
T ).

Proof. At any time period t ∈ N, we denote by θ̃t an arbitrary element of argmaxθ∈Ct x
T
tθ

so that bt = max(0,min(1, xT
t θ̃t)). Using Lemma 1, we have:

RT =
T∑
t=1

E[(xT
tθ∗ − pt)+]−

T∑
t=1

E[(vt − pt) · 1bt≥pt ]

=
T∑
t=1

E[(xT
tθ∗ − pt)+]−

T∑
t=1

E[(xT
tθ∗ − pt) · 1bt≥pt ].

The second equality is derived by conditioning on F̃t−1 in the same fashion as done in the
proof of Lemma 1 since bt is entirely determined by F̃t−1, see (1). Observe that:

(xT
tθ∗ − pt)+ = (xT

tθ∗ − pt)+ · 1xT
t θ∗≥pt>bt + (xT

tθ∗ − pt)+ · 1bt≥pt
≤ (xT

tθ∗ − pt)+ · 1xT
t θ∗>bt

+ (xT
tθ∗ − pt)+ · 1bt≥pt

≤ 1xT
t θ∗>bt

+ (xT
tθ∗ − pt)+ · 1bt≥pt ,

since vt ∈ [0, 1] (which implies that xT
tθ∗ = E[vt|xt] ∈ [0, 1]) and pt ≥ 0. Plugging this

inequality back into the regret bound yields:

RT ≤
T∑
t=1

P[xT
tθ∗ > bt] + E[((xT

tθ∗ − pt)+ − (xT
tθ∗ − pt)) · 1bt≥pt ]

=
T∑
t=1

P[xT
tθ∗ > bt] + E[(pt − xT

tθ∗)+ · 1bt≥pt ].

(2)
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Since xT
tθ∗ ∈ [0, 1], xT

tθ∗ > bt implies that xT
tθ∗ > maxθ∈Ct xT

tθ and we conclude that
θ∗ /∈ Ct. Using Lemma 2, we get:

T∑
t=1

P[xT
tθ∗ > bt] ≤

T∑
t=1

P[θ∗ /∈ Ct] ≤ 1.

What remains to be done is to upper bound the second term in the right-hand side of (2).
Using Fubini’s theorem, we have:

T∑
t=1

E[(pt − xT
tθ∗)+ · 1bt≥pt ] =

∫ ∞
0

E[
T∑
t=1

1pt−xT
t θ∗≥u · 1bt≥pt ]du

≤
∫ ∞

0
E[

T∑
t=1

1bt−xT
t θ∗≥u · 1bt≥pt ]du

= E[
T∑
t=1

(bt − xT
tθ∗)+ · 1bt≥pt ].

(3)

Using Lemma 2, we have that θ∗ ∈ Ct (which implies
∥∥θ̃t − θ∗∥∥Mt

≤ 2δT ) for all t ∈
{t, · · · , T} with probability at least 1− 1/T . Using the shorthand E = {θ∗ ∈ ∩Tt=1Ct}, we
get:

T∑
t=1

E[(bt − xT
tθ∗)+ · 1bt≥pt ] ≤ T · P[E{] + E[1E ·

T∑
t=1

(bt − xT
tθ∗)+ · 1bt≥pt ]

≤ 1 + E[1E ·
T∑
t=1
|xT
t θ̃t − xT

tθ∗| · 1bt≥pt ]

≤ 1 + E[1E ·
T∑
t=1
‖1bt≥pt · xt‖M−1

t
·
∥∥θ̃t − θ∗∥∥Mt

]

≤ 1 + 2δT · E[
T∑
t=1
‖1bt≥pt · xt‖M−1

t
]

≤ 1 + 2δT ·
√
d · T · ln(T ),

where we use bt ∈ [0, 1] and xT
tθ∗ ∈ [0, 1] for the first inequality and where the last

inequality is derived in Lemma 3 of [2].

D Proof of Theorem 2
We bid:

bt = max(0,min(1, max
θ∈Cτt

θTxt)), (4)

at any round t, where τt is the last round before round t where the last batch update
happened.

Theorem 2. Bidding according to (4) at any round t incurs a regret RT = Õ(d ·
√
A · T ).

Proof. At any time period t ∈ N, we denote by θ̃t an arbitrary element of argmaxθ∈Cτt x
T
tθ.

The proof is along the same lines as for Theorem 1 except for two inequalities. First, we
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now bound the first term in the right-hand side of 2 as follows:

T∑
t=1

P[xT
tθ∗ > bt] ≤

T∑
t=1

P[θ∗ /∈ Cτt ]

≤
T∑
t=1

P[θ∗ /∈ ∩Tτ=1Cτ ]

≤ 1,

which leads to the same conclusion. Second, using the shorthand E = {θ∗ ∈ ∩Tt=1Ct}, we
bound the right-hand side of (3) as follows:

E[
T∑
t=1

(bt − xT
tθ∗)+ · 1bt≥pt ] ≤ T · P[E{] + E[1E ·

T∑
t=1
|xT
t θ̃t − xT

tθ∗| · 1bt≥pt ]

≤ 1 + 2
√

1 +A · δT · E[
T∑
t=1
‖1bt≥pt · xt‖M−1

t
]

≤ 1 + 2
√

1 +A · δT ·
√
d · T · ln(T ),

where the second inequality is a direct consequence of the proof of Theorem 4 in [1] and
the last inequality is derived in Lemma 11 of [2] just like for Theorem 1.

E Proof of Lemma 3
Lemma 3. We have EROPT(B, T ) ≤ T · R(λ∗, C) +

√
T/r + 1, where λ∗ ≥ 0 satisfies

φ(λ∗, C) = β or λ∗ = 0 if no such solution exists (i.e. if E[P ] < β) in which case
φ(λ∗, C) ≤ β.

Proof. There are two cases depending on whether E[P ] ≥ β or not.
Case 1: E[P ] < β.
In this case λ∗ = 0 and the total expected reward obtained by any non-anticipating
algorithm is:

E[
τ∗−1∑
t=1

vt · 1bt≥pt ] ≤ E[
T∑
t=1

vt]

= T · E[V ]
= T · E[E[V | X]]
= T · E[g(X)],

which shows that EROPT(B, T ) ≤ T ·R(λ∗, C).
Case 2: E[P ] ≥ β.
The total expected reward obtained by any non-anticipating algorithm can be bounded as
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follows:

E[
τ∗−1∑
t=1

vt · 1bt≥pt ] ≤ E[
τ∗∑
t=1

vt · 1bt≥pt ]

=
∞∑
t=1

E[Iτ∗≥t · vt · 1bt≥pt ]

=
∞∑
t=1

E[Iτ∗≥t · E[vt | F̃t−1, bt] · 1bt≥pt ]

=
∞∑
t=1

E[Iτ∗≥t ·min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

= E[
τ∗∑
t=1

min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

≤ E[
τ∗−1∑
t=1

min(1,max
θ∈C

xT
tθ) · 1bt≥pt ] + 1,

where we use the the fact that ((xt, vt, pt))t∈N is an i.i.d. sequence, that (vt, pt) is
independent of bt conditioned on xt since the algorithm is non-anticipating, that vt
is independent of pt conditioned on xt, and that τ∗ is a stopping time with respect to
((xt, vt, pt))t∈N. As a result, up to a constant additive term in the final bound, we just need
to bound the performance of any non-anticipating algorithm when the reward obtained at
round t is min(1,maxθ∈C xT

tθ)·1bt≥pt as opposed to vt ·1bt≥pt . Observe that, in this setting,
the total reward (resp. cost) obtained (resp. incurred) by any non-anticipating algorithm
can be written as

∑T
t=1 min(1,maxθ∈C xT

tθ) · yt (resp.
∑T
t=1 pt · yt) where yt = 1bt≥pt for

t < τ∗ and yt = 0 for t ≥ τ∗. Remark that yt ∈ [0, 1] for all t ∈ {1, · · · , T} and that, by
definition of τ∗,

∑T
t=1 pt · yt ≤ B. Thus (yt)t=1,··· ,T is always a feasible solution to the

knapsack problem:

sup
(ξt)t=1,··· ,T

T∑
t=1

min(1,max
θ∈C

xT
tθ) · ξt

subject to
T∑
t=1

pt · ξt ≤ B

ξt ∈ [0, 1], t = 1, · · · , T.

(5)

As a consequence, we conclude that the expected total reward obtained by any non-
anticipating algorithm is always no larger than the expected optimal value of (5). This
reduces the problem of bounding EROPT(B, T ) to a stochastic i.i.d. knapsack problem with
T items and a knapsack capacity of B when the t-th item has value min(1,maxθ∈C xT

tθ)
and weights pt. The authors of [5] study general stochastic knapsack problems and,
adapting their results to our notations, show that the expected optimal value of (5) is
equal to T ·R(λ∗, C) +O(1), under technical conditions discussed in their paper. For the
purpose of being self-contained and in order to relax some of the assumptions made in [5],
we derive a weaker bound that will suit our needs. It is well known that filling up the
knapsack with the items sorted in descending order of their value-to-weight ratios until
the knapsack is full, possibly using a fractional value for the last item, defines an optimal
solution to (5), which we denote by (ξ∗t )t=1,··· ,T . In what follows, we use the shorthand
notations zt = min(1,maxθ∈C xT

tθ) and ξt = 1zt≥λ∗·pt , for t = 1, · · · , T . The expected
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optimal value of (5) can be bounded as follows:

E[
T∑
t=1

zt · ξ∗t ] ≤ E[
T∑
t=1

zt · ξt + 1∑T

t=1
pt·ξt≤B

·
T∑
t=1

zt · (ξ∗t − ξt)]

= T ·R(λ∗, C) + E[1∑T

t=1
pt·ξt≤B

·
T∑
t=1

zt · (ξ∗t − ξt)]

≤ T ·R(λ∗, C) + E[1∑T

t=1
pt·ξt≤B

·
T∑
t=1

pt
r
· (ξ∗t − ξt)]

≤ T ·R(λ∗, C) + 1
r
· E[1∑T

t=1
pt·ξt≤B

· (B −
T∑
t=1

pt · ξt)]

≤ T ·R(λ∗, C) + 1
r
· E[|

T∑
t=1

(β − pt · ξt)|]

= T ·R(λ∗, C) + 1
r
· E[|

T∑
t=1

εt · pt · ξt|]

≤ T ·R(λ∗, C) + 1
r
· E[

√√√√ T∑
t=1
|pt · ξt|2 ]

≤ T ·R(λ∗, C) +
√
T

r
,

where (εt)t=1,··· ,T is a collection of T independent Rademacher variables that are jointly
independent of ((xt, pt))t=1,··· ,T . The first inequality is a consequence of the inequality
ξt ≥ ξ∗t that holds for any t = 1, · · · , T when

∑T
t=1 pt · ξt > B. This follows from the

definition of ξ∗t and the fact that, in this case, we cannot fit all items of value-to-weight
ratio at least λ∗ in the knapsack when

∑T
t=1 pt ·ξt > B. The first equality is a consequence

of E[zt · ξt] = R(λ∗, C), which holds by definition of zt and ξt. The second inequality is
a consequence of zt ≤ 1 ≤ pt

r by Assumption 2 and ξt ≤ ξ∗t for any t = 1, · · · , T when∑T
t=1 pt · ξt ≤ B given the definition of ξ∗t and the fact that, in this case, the combination

of all items of value-to-weight ratio at least λ∗ fit in the knapsack. The third inequality
is a consequence of

∑T
t=1 pt · ξ∗t ≤ B since (ξ∗t )t=1,··· ,T is a feasible solution to (5). The

fourth inequality is a consequence of x · 1x≥0 ≤ |x| for all x ∈ R. The second equality is
obtained by symmetrization since pt · ξt has mean φ(λ∗, C) = β for any t = 1, · · · , T . The
fifth inequality is a direct consequence of the Khintchine inequality. The last inequality
results from pt ∈ [0, 1] and ξt ∈ [0, 1]. This concludes the proof.

F Proof of Lemma 4
Lemma 4. For any λ1, λ2 ≥ 0, we have: |R(λ1, C)−R(λ2, C)| ≤ 1/r · |φ(λ1, C)−φ(λ2, C)|.

Proof. For any λ1 ≥ λ2 ≥ 0, we have:

|R(λ1, C)−R(λ2, C)| = E[g(X) · 1g(X)/λ2≥P>g(X)/λ1 ]

≤ 1
r
· E[P · 1g(X)/λ2≥P>g(X)/λ1 ]

= 1
r
· |φ(λ1, C)− φ(λ2, C)|,

where the first inequality is a consequence of g(X) ∈ [0, 1] and P ≥ r.
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G Proof of Lemma 5
Lemma 5. φ(·, C) is L̄ · E[1/XTθ∗]-Lipschitz.

Proof. For any λ2 ≥ λ1 > 0, we have:

|φ(λ2, C)− φ(λ1, C)| = E[P · 1min(1,g(X)/λ1)≥P>min(1,g(X)/λ2)]‘
≤ E[1min(1,g(X)/λ1)≥P>min(1,g(X)/λ2)]

= E[
∫ min(1,g(X)/λ1)

min(1,g(X)/λ2)
fX(w)dw]

≤ L̄ · E[min(1, g(X)/λ1)−min(1, g(X)/λ2)]

≤ L̄ · E[ 1
g(X) ] · |λ1 − λ2|

≤ L̄ · E[ 1
XTθ∗

] · |λ1 − λ2|,

where the first inequality is obtained using P ∈ [0, 1], the second inequality is a consequence
of Assumption 2, the third inequality actually holds almost surely irrespective of whether
g(X)/λ1 ≤ 1, g(X)/λ1 > 1, g(X)/λ2 ≤ 1, or g(X)/λ2 > 1, and the last inequality is
obtained using the fact that θ∗ ∈ C. Also, observe that the last inequality holds even when
λ1 = 0.

H Proof of Lemma 6
Lemma 6. We have P[sup

λ∈[λk,2/r]
|φ̂k(λ, C)− φ(λ, C)| ≤ ∆k] ≥ 1− 1/T , for any k.

Proof. For any phase k ∈ N, we denote by tk the time period at which phase k starts. First
note that we can reason conditionally on Ftk−1 since ((xt, vt, pt))t∈N is an i.i.d. stochastic
process. We use the Rademacher complexity approach to concentration inequalities for
empirical processes to derive the result, see, for example, [3] and [4]. Specifically, the class
of functions of interest is F = {`λ : (x, y) ∈ [0, 1] × [r, 1] → y · 1x≥λ·y | λ ∈ [λk, 2/r]}.
Observe that `λ(x, y) ∈ [0, 1] for any (x, y) ∈ [0, 1]×[r, 1] and that φ(λ, C) = E[`λ(g(X), P )].
Moreover, note that Nk samples, denoted by (min(1,maxθ∈C XT

nθ), Pn)n=1,··· ,Nk , have
been generated according to the same distribution as (g(X), P ) in an i.i.d. fashion at the
end of phase k. Using Theorem 3.2 from [4], we get:

P[∃λ ∈ [λk, 2/r] | φ̂k(λ, C)− φ(λ, C)| ≥ 2RNk(F) + t | Ftk−1 ] ≤ exp(−2Nk · t2) ∀t ≥ 0,
(6)

where RNk(F) is the Rademacher complexity of F for Nk samples. What remains to be
done is to upper bound this last quantity. By definition, we have, for Nk independent
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Rademacher variables (εn)n=1,··· ,Nk that are independent of (Xn, Pn)n=1,··· ,Nk :

RNk(F) = 1
Nk
· E[ sup

λ∈[λk,2/r]
|
Nk∑
n=1

εn · `λ(min(1,max
θ∈C

XT
nθ), Pn)|]

= 1
Nk
· E[E[ sup

z∈S((Xn,Pn)n=1,··· ,Nk )
|
Nk∑
n=1

εn · zn| | (Xn, Pn)n=1,··· ,Nk ]]

≤ 1
Nk
· E[
√

2Nk · ln(2|S((Xn, Pn)n=1,··· ,Nk)|)]

≤

√
2 ln(2(Nk + 1))

Nk

≤

√
2 ln(2T )
Nk

,

with:

S((Xn, Pn)n=1,··· ,Nk) = {(Pf(n) · 1min(1,maxθ∈C XT
f(n)θ)/Pf(n)≥λ)n=1,··· ,Nk | λ ≥ 0},

where the permutation f(·) of {1, · · · , Nk} is determined by:

min(1,max
θ∈C

XT
f(n)θ)/Pf(n) ≤ · · · ≤ min(1,max

θ∈C
XT
f(1)θ)/Pf(1).

The second equality is obtained by reindexing the vector (z1, · · · , zNk) according to
the mapping f(·) which does not change the inner expectation since (εn)n=1,··· ,Nk is
independent of (Xn, Pn)n=1,··· ,Nk . Note that S((Xn, Pn)n=1,··· ,Nk) is always a finite set
with cardinality no larger than Nk + 1, which yields the second and third inequality using
standard bounds on the Rademacher complexity of a finite set, see Theorem 3.3 of [4].
Plugging t =

√
2 ln(2T )
Nk

in (6) and using the definition of ∆k, we conclude that:

P[∃λ ∈ [λk, 2/r] | φ̂k(λ, C)− φ(λ, C)| ≥ ∆k | Ftk−1 ] ≤ exp(−4 ln(2T )) ≤ 1/T,

which, in particular, implies that:

P[ sup
λ∈[λk,2/r]

|φ̂k(λ, C)− φ(λ, C)| ≤ ∆k] ≥ 1− 1/T.

I Proof of Lemma 7
Lemma 7. For T ≥ 3, we have k̄T ≤ ln(T + 1) and 4k̄T ≤ T

ln2(T ) + 1.

Proof. By definition, we have:

T ≥
k̄T−1∑
k=0

Nk

≥ 3
k̄T−1∑
k=0

4k · ln2(T )

≥ (4k̄T − 1) · ln2(T ),

which implies 4k̄T ≤ T/ ln2(T ) + 1. Since ln2(T ) ≥ 1 for T ≥ 3, we get 4k̄T ≤ T + 1.
Taking logarithms yields the claim since ln(4) ≥ 1.
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J Proof of Lemma 8
Lemma 8. For C = L̄ · E[1/XTθ∗] and provided that T ≥ exp(8r2/C2), we have:

P[∩k̄Tk=0{|φ̂k(λk, C)−φ(λ∗, C)| ≤ 4C · |Ik|, |φ(λk, C)−φ(λ∗, C)| ≤ 3C · |Ik|}] ≥ 1− 2 ln2(T )
T

,

Proof. To simplify the discussion, we assume that E[P ] ≤ β so that φ(λ∗, C) = β but
the discussion would be almost identical if E[P ] > β (in which case λ∗ = 0). For any
k ∈ {0, · · · , k̄T }, we define the event:

Ak = {λ∗ ≥ λk, |φ̂k(λk, C)− β| ≤ 4C · |Ik|, |φ(λk+1, C)− β| ≤ 3C · |Ik+1|}.

Using the shorthand E = ∩k̄Tk=0Ak, we have:

P[E{] ≤
k̄T∑
k=0

P[A{
k].

Note that we exclude the condition |φ(λ0, C)− β| ≤ 3C · |I0| from the definition of E since
this condition is automatically satisfied almost surely given Lemma 5. By induction, we
have:

P[A{
k] ≤ P[A{

0] +
k−1∑
j=0

P[A{
j+1 ∩Aj ]

=
k−1∑
j=0

P[A{
j+1 ∩Aj ]

for any k > 0 since, by construction, λ∗ ∈ [λ0, λ̄0] = [0, 2/r] which implies that P[A{
0] = 0.

Rearranging yields:

P[E{] ≤
k̄T∑
k=0

(k̄T − k) · P[A{
k+1 ∩Ak]

≤
k̄T∑
k=0

(k̄T − k) · P[B{
k ] +

k̄T∑
k=0

(k̄T − k) · P[A{
k+1 ∩Ak ∩Bk]

≤ 1
T
· k̄T · (k̄T + 1) +

k̄T∑
k=0

(k̄T − k) · P[A{
k+1 ∩Ak ∩Bk]

≤ ln(T + 1)2

T
+

k̄T∑
k=0

(k̄T − k) · P[A{
k+1 ∩Ak ∩Bk],

where Bk = {sup
λ∈[λk,2/r]

|φ̂k(λ, C) − φ(λ, C)| ≤ ∆k}. We use Lemma 6 to derive the
third inequality and Lemma 7 for the last inequality. What remains to be done is to
show that the second term in the right-hand side is 0. Consider k ∈ {1, · · · , k̄T } and
suppose that Ak−1 and Bk−1 hold. We show that Ak must hold which will imply that
P[A{

k ∩Ak−1 ∩Bk−1] = 0. First observe that we have:

|φ̂k(λk, C)− β| ≤ |φ̂k(λk, C)− φ(λk, C)|+ |φ(λk, C)− β|
≤ ∆k + 3C · |Ik|
≤ 4C · |Ik|,
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where we use the fact that Ak−1 and Bk−1 hold for the first inequality and the fact that
T ≥ exp(8r2/C2) for the last inequality. At the end of Algorithm 1 for the k-th phase,
we end up with an interval [γ

k
, γ̄k] of length |Ik| such that either (i) γ

k
> λk or (ii)

γ
k

= λk. In situation (i), by definition of the ending criterion of Algorithm 1, we must
have φ̂k(γ̄k, C) ≤ β + ∆k and φ̂k(γ

k
, C) > β + ∆k. This last inequality, combined with the

fact that Bk−1 holds, implies that φ(γ
k
, C) > β and thus we have γ

k
≤ λ∗. In situation

(ii), we automatically have γ
k
≤ λ∗ since Ak−1 holds. Moreover, by definition of the

ending criterion of Algorithm 1, we must have φ̂k(γ̄k, C) ≤ β + ∆k. We conclude that
γ
k
≤ λ∗ and:

φ̂k(γ̄k, C) ≤ β + ∆k (7)

irrespective of whether (i) or (ii) holds. There are several cases to consider at this point
depending on the value of |φ̂k(1/2γ

k
+ 1/2γ̄k, C)− β|. We show that, in any case, we have

λk+1 ≤ λ∗ and |φ(λk+1, C)− β| ≤ 3C · |Ik+1| which will conclude the proof.
Case 1: φ̂k(1/2γ

k
+ 1/2γ̄k, C) < β −∆k.

In this case, we have λk+1 = γ
k
≤ λ∗ and λ̄k+1 = 1/2γ

k
+ 1/2γ̄k. Using φ̂k(λ̄k+1, C) <

β −∆k along with the fact that Bk−1 holds, we get φ(λ̄k+1, C) < β which implies that
λ∗ ∈ [λk+1, λ̄k+1] and, as a result, |φ(λk+1, C)− β| = |φ(λk+1, C)− φ(λ∗, C)| ≤ C · |Ik+1|
using Lemma 5.
Case 2: |φ̂k(1/2γ

k
+ 1/2γ̄k, C)− β| ≤ ∆k.

In this case, we have λk+1 = γ
k
≤ λ∗ and λ̄k+1 = 1/2γ

k
+ 1/2γ̄k. We get:

|φ(λk+1, C)− β| = |φ(λk+1, C)− φ(λ∗, C)|
≤ |φ(λk+1, C)− φ(λ̄k+1, C)|
+ |φ(λ̄k+1, C)− φ̂k(λ̄k+1, C)|
+ |φ̂k(λ̄k+1, C)− β|
≤ C · |Ik+1|+ ∆k + ∆k

≤ 3C · |Ik+1|,

where we use Lemma 5, the fact Bk−1 hold, and |φ̂k(1/2γ
k

+ 1/2γ̄k, C)− β| ≤ ∆k for the
second inequality while we use T ≥ exp(8r2/C2) for the last inequality.
Case 3: φ̂k(1/2γ

k
+ 1/2γ̄k, C) > β + ∆k.

In this case, λk+1 = 1/2γ
k
+1/2γ̄k and λ̄k+1 = γ̄k. Since Bk−1 holds, we get φ(λk+1, C) > β

and thus λk+1 ≤ λ∗. Using (7), we have either (a) φ̂k(γ̄k, C) < β −∆k or (b) |φ̂k(γ̄k, C)−
β| ≤ ∆k. If (a) is true then, since Bk−1 holds, it must be that φ(λ̄k+1, C) < β and thus
we get λ∗ ∈ [λk+1, λ̄k+1] which implies that |φ(λk+1, C)− β| = |φ(λk+1, C)− φ(λ∗, C)| ≤
C · |Ik+1| using Lemma 5. If (b) is true then we have:

|φ(λk+1, C)− β| = |φ(λk+1, C)− φ(λ∗, C)|
≤ |φ(λk+1, C)− φ(λ̄k+1, C)|
+ |φ(λ̄k+1, C)− φ̂k(λ̄k+1, C)|
+ |φ̂k(λ̄k+1, C)− β|
≤ C · |Ik+1|+ ∆k + ∆k

≤ 3C · |Ik+1|.

where we use (7), the fact that Bk−1 holds, and (b) for the second inequality while we use
T ≥ exp(8r2/C2) for the last inequality.
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K Proof of Theorem 3
At any round t ∈ N, we bid:

bt = min(1,min(1,max
θ∈C

xT
tθ)/λt). (8)

Theorem 3. Bidding according to (8) incurs a regret RB,T = Õ( L̄·E[1/XTθ∗]
r2 ·

√
T · ln(T )).

Proof. For any phase k ∈ N, we denote by tk the time period at which phase k starts.
Using Lemma 3, we have:

RB,T ≤ T ·R(λ∗, C)− E[
τ∗−1∑
t=1

vt · 1bt≥pt ] +O(
√
T

r
)

= T ·R(λ∗, C)− E[
τ∗∑
t=1

vt · 1bt≥pt ] +O(
√
T

r
).

Since τ∗ is a stopping time with respect to the sequence ((xt, vt, pt))t∈N and since bt =
min(1,min(1,maxθ∈C xT

tθ)/λt) is F̃t−1-measurable, we have:

E[
τ∗∑
t=1

vt · 1bt≥pt ] =
∞∑
t=1

E[1τ∗≥t · E[vt | F̃t−1] · 1bt≥pt ]

=
∞∑
t=1

E[1τ∗≥t ·min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

= E[
τ∗∑
t=1

min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

=
T∑
t=1

E[min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]− E[

T∑
t=τ∗+1

min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

≥
T∑
t=1

E[min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]−

1
r
· E[

T∑
t=τ∗+1

pt · 1bt≥pt ],

where we use min(1,maxθ∈C xT
tθ) ≤ 1, pt ≥ r, and the fact that vt is independent of pt

conditioned on xt. Observe that:
T∑

t=τ∗+1
pt · 1bt≥pt = 0 ≤ (

T∑
t=1

pt · 1bt≥pt −B)+,

if τ∗ = T + 1 while:
T∑

t=τ∗+1
pt · 1bt≥pt ≤

T∑
t=τ∗+1

pt · 1bt≥pt +
τ∗∑
t=1

pt · 1bt≥pt −B

≤ (
T∑
t=1

pt · 1bt≥pt −B)+

if τ∗ < T + 1 since, in this case, we have run out of resources before round T , i.e.∑τ∗

t=1 pt · 1bt≥pt ≥ B. We derive:

RB,T ≤ T ·R(λ∗, C)−
T∑
t=1

E[min(1,max
θ∈C

xT
tθ) · 1bt≥pt ] + 1

r
· E[(

T∑
t=1

pt · 1bt≥pt −B)+]

+O(
√
T

r
).

(9)
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We bound the two terms appearing in the right-hand side of (9) separately starting with
the first one. Using the shorthand notation:

E = ∩k̄Tk=0{|φ̂k(λk, C)− φ(λ∗, C)| ≤ 4C · |Ik|, |φ(λk, C)− φ(λ∗, C)| ≤ 3C · |Ik|},

where C = L̄ · E[ 1
XTθ∗

], we have:

T ·R(λ∗, C)−
T∑
t=1

E[min(1,max
θ∈C

xT
tθ) · 1bt≥pt ]

=
T∑
t=1
{R(λ∗, C)− E[min(1,max

θ∈C
xT
tθ) · 1min(1,maxθ∈C xT

t θ)≥λt·pt ]}

=
T∑
t=1
{R(λ∗, C)− E[E[min(1,max

θ∈C
xT
tθ) · 1min(1,maxθ∈C xT

t θ)≥λt·pt | Ft−1]]}

=
T∑
t=1
{R(λ∗, C)− E[R(λt, C)]}

≤
T∑
t=1

E[|R(λ∗, C)−R(λt, C)|]

≤ 1
r
·
T∑
t=1

E[|φ(λ∗, C)− φ(λt, C)|]

≤ 1
r
·
k̄T∑
k=0

Nk · E[|φ(λ∗, C)− φ(λk, C)|]

≤ T

r
· P[E{] + 1

r
·
k̄T∑
k=0

Nk · E[|φ(λ∗, C)− φ(λk, C)| · 1E ]

≤ 2 ln2(T )
r

+ 3C
r
·
k̄T∑
k=0

Nk · |Ik|

≤ 2 ln2(T )
r

+ 18C
r2 ·

k̄T∑
k=0

2k · ln2(T )

≤ 2 ln2(T )
r

+ 36C
r2 ·

√
T · ln(T ).

To derive the third equality we use the fact that λt is Ft−1-measurable. For the second
inequality, we use Lemma 4 For the fourth inequality, we use φ(λk, C), β ∈ [0, 1]. We use
Lemma 8 to derive the fifth inequality while we use Lemma 7 for the last one. We can
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now focus on the second term appearing in the right-hand side of (9):

E[(
T∑
t=1

pt · 1bt≥pt −B)+] = E[(
T∑
t=1

pt · 1min(1,maxθ∈C xT
t θ)≥λt·pt −B)+]

≤
k̄T−1∑
k=0

E[(
tk+1−1∑
t=tk

pt · 1min(1,maxθ∈C xT
t θ)≥λk·pt

−Nk · β)+]

+ E[(
T∑

t=tk̄T

pt · 1min(1,maxθ∈C xT
t θ)≥λk̄T ·pt

− (T −
k̄T−1∑
k=0

Nk) · β)+]

≤
k̄T−1∑
k=0

Nk · E[(φ̂k(λk, C)− φ(λ∗, C))+]

+ (T −
k̄T−1∑
k=0

Nk) · E[(φ̂k̄T (λk̄T , C)− φ(λ∗, C))+]

≤ T · P[E{] +
k̄T∑
k=0

Nk · E[|φ̂k(λk, C)− φ(λ∗, C)| · 1E ]

≤ 2 ln2(T ) + 4C ·
k̄T∑
k=0

Nk · |Ik|

≤ 2 ln2(T ) + 24C
r
·
k̄T∑
k=0

2k · ln2(T )

≤ 2 ln2(T ) + 48C
r
·
√
T · ln(T ).

To derive the second inequality, we use β ≥ φ(λ∗, C). To derive the third inequality, we
use φ̂k(λk, C), φ(λ∗, C) ∈ [0, 1] and Nk̄T ≥ T −

∑k̄T−1
k=0 Nk. We use Lemma 8 to derive the

fourth inequality while we use Lemma 7 for the last one.

L Proof of Lemma 9
Lemma 9. We have Q ≤ Q̄ = d · ln(T · d)/ ln(1 +A) almost surely.

Proof. We have:

det(M0) · (1 +A)Q ≤ det(MT )
≤ det((T · d)Id)
= (T · d)d,

by definition of Q. The second inequality is obtained using ‖xt‖∞ ≤ 1 (which implies that
dId − xtxT

t is positive semidefinite) and the fact that det(B + C) ≥ det(B) for positive
semidefinite matrices B and C. Taking logarithms yields the claim.

M Proof of Theorem 4
At any round t ∈ N, we bid:

bt = min(1,min(1, max
θ∈Cτt

xT
tθ)/λt). (10)

13



Theorem 4. Bidding according to (10) incurs a regret RB,T = Õ(d· L̄·E[1/XTθ∗]
r2 ·f(A)·

√
T ),

where f(A) = 1/ ln(1 +A) +
√

1 +A.

Proof. For any master phase q ∈ {0, · · · , Q̄}, we denote by tq ∈ N the round at which
phase q starts. For any master phase q ∈ {0, · · · , Q̄}, any phase k ∈ {0, · · · , k̄T }, and any
λ ≥ 0, we denote by φ̂q,k(λ, Cq) the empirical estimate of φ(λ, Cq) using all Nk samples
obtained during the k-th phase of the binary search that runs during the q-th master
phase. We also use the shorthand notations E = {θ∗ ∈ ∩Tt=1Ct} and:

Eq = ∩k̄Tk=0{|φ̂q,k(λq,k, Cq)− φ(λq,∗, Cq)| ≤ 4C · |Ik|, |φ(λq,k, Cq)− φ(λq,∗, Cq)| ≤ 3C · |Ik|},

for any q ∈ {0, · · · , Q̄}. Using the same analysis as in the proof of Theorem 3 with
C = {θ∗} (see (9)), we derive:

RB,T ≤ T ·R(λ∗, {θ∗})−
T∑
t=1

E[xT
tθ∗ · 1bt≥pt ] + 1

r
· E[(

T∑
t=1

pt · 1bt≥pt −B)+] +O(
√
T

r
).

(11)
We first study the third term in (11). Observe that, along the same lines as what is done
in the proof of Theorem 3, we have:

E[(
T∑
t=1

pt · 1bt≥pt −B)+] ≤ E[(
T∑
t=1

pt · 1bt≥pt −B)+ · 1E ] + T · P[E]

≤ E[
Q∑
q=0

k̄q∑
k=0

Nk · |φ̂q,k(λq,k, Cq)− φ(λq,∗, Cq)| · 1E ] + 1

≤ E[
Q∑
q=0

k̄q∑
k=0

4Nk · C · |Ik|] + T ·
Q̄∑
q=0

P[E{
q ∩ E] +O(1)

≤ 24C
r
·
Q̄∑
q=0

k̄T∑
k=0

2k · ln2(T ) + 2 ln2(T ) · (Q̄+ 1) +O(1)

≤ 48C
r
·
√
T · ln(T ) · (Q̄+ 1) + 2 ln2(T ) · (Q̄+ 1) +O(1)

= O( d · C
r · ln(1 +A) ·

√
T · ln2(T · d))

= Õ( d · C
r · ln(1 +A) ·

√
T ).

We use the same analysis as in the proof of Theorem 3 along with Lemma 2 to derive the
second inequality. We use Lemma 8 for the fourth inequality and we use Lemma 9 to get
the final asymptotic bound. We move on to study the second term in (11). Denoting by
θ̃t an arbitrary element of argmaxθ∈Cτt x

T
tθ, we have:

T∑
t=1

E[xT
tθ∗ · 1bt≥pt ] =

T∑
t=1

E[min(1, max
θ∈Cτt

xT
tθ) · 1bt≥pt ]

− E[
T∑
t=1

(min(1, max
θ∈Cτt

xT
tθ)− xT

tθ∗) · 1bt≥pt ]

≥
T∑
t=1

E[R(λt, Cτt)]− E[
T∑
t=1
|xT
t θ̃t − xT

tθ∗| · 1bt≥pt ]

≥
T∑
t=1

E[R(λt, Cτt)] + Õ(d ·
√
A · T ),
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where the last inequality is obtained in the proof of Theorem 2. Hence, what remains to
be done to get the regret bound is to upper bound:

T ·R(λ∗, {θ∗})−
T∑
t=1

E[R(λt, Cτt)].

First note that:

E[|
T∑
t=1

R(λt, Cτt)−
Q∑
q=0

(tq+1 − tq) ·R(λq,∗, Cq)|]

≤ E[
Q∑
q=0

k̄q∑
k=0

Nk · |R(λq,k, Cq)−R(λq,∗, Cq)|]

≤ 1
r
· E[

Q∑
q=0

k̄q∑
k=0

Nk · |φ(λq,k, Cq)− φ(λq,∗, Cq)|]

≤ 1
r
· (T · P[E] +

Q̄∑
q=0

T · P[E{
q ∩ E] +

Q̄∑
q=0

k̄T∑
k=0

3Nk · C · |Ik|)

≤ 1
r
· (1 + 2 ln2(T ) · (Q̄+ 1) + 48C

r
·
√
T · ln(T ) · (Q̄+ 1))

= Õ( d · C
r2 · ln(1 +A) ·

√
T ).

We derive the second inequality using Lemma 4 We derive the fourth inequality using
Lemma 2 and Lemma 8 in the same fashion as done for the third term in (11). We
conclude that all that is left to be done is to upper bound:

T ·R(λ∗, {θ∗})− E[
Q∑
q=0

(tq+1 − tq) ·R(λq,∗, Cq)],

which we do next. Using Lemma 3, observe that, conditioned on Ftq−1 and assuming that
θ∗ ∈ Cq, R(λq,∗, Cq) is almost surely larger than EROPT(B, T )/T − 1/(r ·

√
T )− 1/T by

definition of λq,∗ when C = Cq. Note that bidding b̃t = min(xT
tθ∗/λ∗, 1) at any time period

t is a valid algorithm for this problem that yields an expected total reward:

E[
τ∗∑
t=1

vt · 1b̃t≥pt ]

≥ T · E[min(1,max
θ∈Cq

XTθ) · 1XTθ∗≥λ∗·P ]− 1
r
· E[(

T∑
t=1

pt · 1b̃t≥pt −B)+]

≥ T · E[min(1,max
θ∈Cq

XTθ) · 1XTθ∗≥λ∗·P ]− 1
r
· E[|

T∑
t=1

pt · 1b̃t≥pt − T · φ(λ∗, {θ∗})|]

≥ T · E[min(1,max
θ∈Cq

XTθ) · 1XTθ∗≥λ∗·P ]−
√
T

r
,

where the expectations are all conditioned on Ftq−1 and the inequalities hold almost surely.
The first inequality is derived in the same fashion as done in the proof of Theorem 3
to derive (9). The second inequality is a consequence of B = β · T and φ(λ∗, {θ∗}) ≤ β.
The third inequality is obtained with Khintchine’s inequality (by symmetrization) since
pt ∈ [0, 1] and (pt · 1b̃t≥pt)t∈N is an i.i.d. stochastic process with mean φ(λ∗, {θ∗}). We
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conclude that:

R(λq,∗, Cq) ≥ E[min(1,max
θ∈Cq

XTθ) · 1XTθ∗≥λ∗·P |Ftq−1]− 2
r ·
√
T
− 1
T

≥ E[XTθ∗ · 1XTθ∗≥λ∗·P |Ftq−1]− 2
r ·
√
T
− 1
T

= R(λ∗, {θ∗})−
2

r ·
√
T
− 1
T

almost surely as long as θ∗ ∈ Cq. This implies that:

T ·R(λ∗, {θ∗})− E[
Q∑
q=0

(tq+1 − tq) ·R(λq,∗, Cq)]

= E[
Q∑
q=0

(tq+1 − tq) · (R(λ∗, {θ∗})−R(λq,∗, Cq))]

≤ E[
Q∑
q=0

(tq+1 − tq) · (1E + 2
r ·
√
T

+ 1
T

)]

≤ T · P[E] + 2
√
T

r
+ 1

= O(
√
T

r
),

where we use Lemma 2 for the last step. This concludes the proof.
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