Supplementary material for “Real-Time Bidding
with Side Information”

Assumption 1. The random variables V and P are conditionally independent given X.
Moreover, there ezists 0, € R? such that E[V | X] = X0, and ||0.] <1

Assumption 2. (a) B/T = 3 is a constant independent of any other relevant quantities.
(b) There exists v > 0, known to the advertiser, such that p, > r for all t € N.
(c) We have E[1/X76,] < oo

(d) The random variable P has a continuous conditional probability density function given
the occurrence of the value x of X, denoted by f.(-), that is upper bounded by L < co.

Algorithm 1: Interval updating procedure at the end of phase k
Data: 5\;@ A, A = 34/21n(2T) /Ny, and d;k()\,C) for any A > A,
Result: A\pi1 and Ay
Ve = Ak Ve = Ak
while ¢y, (3x,C) > 8+ Ay do

| Ak =T+ kv, = 7, + s
end
if dr(1/29k +1/27,,C) < B+ Ay, then
| ka1 = 1/2% 4+ 1/29,, A1 = 7,
else
| ki1 =T Apgr = 1/29% +1/27,;
end

A Proof of Lemma [1]

Lemma 1. The optimal non-anticipating strategy is to bid by = 20, at any time period
t € N and we have ERopr(T) = Zthl E[(z{0. — pt)+]-

Proof. Consider any non-anticipating algorithm. The expected reward obtained at period
t € Nis:
El(ve = pe) - Loy>p) = EE[(0r = pe) - Toy>p, | Fimil]
= E[(E[v; | Fo-1,0e) = pe) - Lo, >p,]
= E[(x;0. — pt) - 1b,>p,]
< E[(z;0. —pi)+]-
To derive the second equality, we use the fact that ((,,v,,pr))ren is an i.i.d. sequence,

that (v¢,p¢) is independent of b; conditioned on z; since the algorithm is non-anticipating,
and that v; is independent of p; conditioned on x;. This shows that:

T
ERopr(T Z ({0 — pe)+].



Moreover, this last inequality is in fact an equality since bidding by = z{6. at any time

period t € N yields the expected reward:
El(ve = pe) - Loro,>p,] = E[E[(ve — pt) - L1, >p, | Fr-1l]

Elve | Fie1] = p) - Loto,>p,)

J?Ie* - pt) : ]17;1—9*2;0,5]

—~ o~
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B Proof of Lemma [2

At any round ¢, we bid:

by = max(O,min(l,rdpaCXQT;vt)) = max (0, min(1, 6]z + o7 - m)) (1)

€Cy
Lemma 2. We have P[0* ¢ N_,C] < +.

Proof. This is almost a direct consequence of Theorems 1 and 2 of [I] with the minor
change (in their notations): n, = (vy — 2{0x) - Lo, >p,, Xt = Lp,>p, - @1, and Yy = v - L, >p, -
Defining the o-algebra F} = (21, ,%441,01, " »Pt+1,V1,° - ,Ut), Observe that X is
F;_i-measurable since defines a non-anticipating algorithm, that 7, is Fi-measurable,
and that 7y € [—1, 1] and has mean 0 conditioned on F;_; since v; is independent of p,
conditioned on z; with mean z]6, and since ((z,v;,pr))ren is an i.i.d. sequence. This
implies that the assumptions of Theorems 1 and 2 of [I] are satisfied with R =1, V = I,
S = /d (since ||6.]|, <1),§ =1/T, and L = V/d (since |lz,|| , < 1). O

C Proof of Theorem [

Theorem 1. Bidding according to incurs a regret Rp = O(d - V/T).

Proof. At any time period ¢ € N, we denote by 6, an arbitrary element of argmaxycc, ;0
so that by = max(0, min(1,z{6;)). Using Lemma [I} we have:
T

T
> E[(@f0. — p)+] = Y E[(ve — pr) - Lo,zp,]
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E[(z{0. —pi)+] = p_El(x{0« — pe) - L, 2p,]-
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The second equality is derived by conditioning on .7:}_1 in the same fashion as done in the
proof of Lemma |1 since b; is entirely determined by F;_1, see . Observe that:

(@0x — pe)4 = (@{0s — o)+~ LaTg, >p, 50, + (@10x — D)+ - Loy>p,
S (xw* - pt)-‘r : ]]'110*>bt + (1’19* - pt)+ : ﬂthPt
< 1m19*>bt + (2{0s — pe)+ - Lo, >p,

since v; € [0,1] (which implies that z}6, = E[v|z¢] € [0,1]) and p; > 0. Plugging this
inequality back into the regret bound yields:
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T
S Plaf. > be] + E[((270. — pe)+ — (@70 — pt)) - Lo, >p,]
' (2)
P[]0, > b] + E[(p; — 27604)+ - Ly, 5p,)-
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Since x;0. € [0,1], 230, > b, implies that x;6, > maxgec, ;0 and we conclude that
0* ¢ C,. Using Lemmal we get:

T

T
> Plaif. > b < Z [6: ¢ Ci] <
t=1 t=1

What remains to be done is to upper bound the second term in the right-hand side of .
Using Fubini’s theorem, we have:

T

D E[(pe — a70.)4 - L,>p,) = / Z pe—al0,>u " Lo >p,|du

I

T
- E[Z(bt - $10*)+ : ]lthPt]'
t=1

“]

bt xTG >u” ]lbt>17t}du (3)

HMH 1

Using Lemma [2| we have that 0* € C; (which implies Hét — H*HMt < 24p) for all t €
{t,---, T} with probability at least 1 — 1/7. Using the shorthand E = {0, € N’_,C;}, we
get:

T T
D E[(br — 20.) 1 - To,zp] < T P[EY] + E[l - D (b =204 - Lo, p,]
t=1 t=1

T

t=1

T

]

< 1 +E[]1E ) H]lthPt . xt”]\/j;l : Hét -
t=1

T

< 14267 - E[Y (| Lo2p, - @ellpy 1]
t=1

<1427 - d'T'ln(T)’

where we use b; € [0,1] and z{6, € [0,1] for the first inequality and where the last
inequality is derived in Lemma 3 of [2. O

D Proof of Theorem [2

We bid:
by = max (0, min(1, max 07x)), (4)

Tt

at any round t, where 73 is the last round before round ¢ where the last batch update
happened.

Theorem 2. Bidding according to at any round t incurs a regret Ry = O(d -/ A-T).

Proof. At any time period ¢t € N, we denote by 6, an arbitrary element of argmaxgec, x.0.
The proof is along the same lines as for Theorem [I] except for two inequalities. Flrst we



now bound the first term in the right-hand side of [2] as follows:

T

t=1

B

P[0, ¢ Cs,]
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which leads to the same conclusion. Second, using the shorthand E = {0, € NL_,C;}, we
bound the right-hand side of as follows:

T T
E[) (b )a - Loyop) < T-PIEY + E[lp - Y |270, — 276.] - Lo, >p,]

P t=1
T
S1+2VI+ A6 B[ I[L2p, - @illpy1]
t=1
<1+2V1+A-6p-+/d-T-In(T),

where the second inequality is a direct consequence of the proof of Theorem 4 in [I] and
the last inequality is derived in Lemma 11 of [2] just like for Theorem O

E Proof of Lemma [3

Lemma 3. We have ERopr(B,T) < T - R(\.,C) + VT /r + 1, where A\, > 0 satisfies
?(As,C) = B or Ax = 0 if no such solution exists (i.e. if E[P] < () in which case

Proof. There are two cases depending on whether E[P] > /5 or not.

Case 1: E[P] < 8.

In this case A\, = 0 and the total expected reward obtained by any non-anticipating
algorithm is:

T —1 T

Z V¢ - ]lbt>pt < E Z’Ut
TRV
=T-E[E[V | X]]
=T-E[g(X)],

which shows that ERopr(B,T) < T - R(\«,C).
Case 2: E[P] > (.
The total expected reward obtained by any non-anticipating algorithm can be bounded as



follows:

T —1 T*

E[Z Ut + ]]-thPt] S E[Z Ut - ]lthPt]
t=1 t=1

M

E[lr>t - vg - 1o, >p,]
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E[IT*zt . E[Ut | ]}t—hbt] . ]lbtzpt}
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E[l > - min(1 10) -1
[‘f' >t Hlln( ’%gcxxte) thPt]
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= E[; min(L IglEaCXl'Ie) ’ ]lthPt]
% —1

< E[ Z mm(l,rgleaé(xze) : ]]'thPt,} +1,
t=1

where we use the the fact that ((a¢,vs,pt))ien is an ii.d. sequence, that (ve,p:) is
independent of b; conditioned on x; since the algorithm is non-anticipating, that v
is independent of p; conditioned on x;, and that 7* is a stopping time with respect to
((x¢,ve,pt))ten- As a result, up to a constant additive term in the final bound, we just need
to bound the performance of any non-anticipating algorithm when the reward obtained at
round ¢ is min(1, maxgec 276)- 1p,>p, as opposed to v -1y, >,,. Observe that, in this setting,
the total reward (resp. cost) obtained (resp. incurred) by any non-anticipating algorithm
can be written as 23;1 min (1, maxgec x16) - yr (resp. Zle Pt - y¢) where y, = 1p,>,, for
t <7* and y, = 0 for ¢t > 7*. Remark that y;, € [0,1] for all ¢ € {1,--- ,T} and that, by
definition of 7*, Zle Pt -y < B. Thus (y¢)=1,..., is always a feasible solution to the
knapsack problem:

T
sup min(1, max 2/0) - &
(Et)t=1,...,T ; oeC
3 (5)
subject to Zpt & <B
t=1
&elo1], t=1,---,T.

As a consequence, we conclude that the expected total reward obtained by any non-
anticipating algorithm is always no larger than the expected optimal value of . This
reduces the problem of bounding ERopr (B, T) to a stochastic i.i.d. knapsack problem with
T items and a knapsack capacity of B when the ¢-th item has value min(1, maxgec 2760)
and weights p;. The authors of [5] study general stochastic knapsack problems and,
adapting their results to our notations, show that the expected optimal value of is
equal to T - R(A.,C) + O(1), under technical conditions discussed in their paper. For the
purpose of being self-contained and in order to relax some of the assumptions made in [3],
we derive a weaker bound that will suit our needs. It is well known that filling up the
knapsack with the items sorted in descending order of their value-to-weight ratios until
the knapsack is full, possibly using a fractional value for the last item, defines an optimal
solution to , which we denote by (& );=1,... 7. In what follows, we use the shorthand
notations z; = min(l, maxgec ;6) and & = 1.,>x,.p,, for t = 1,--- ,T. The expected



optimal value of can be bounded as follows:

T T T
]E[Z zi- &) < E[Z Ze- &+ ILZT pbi<B Zzt (& - &)
t=1 t=1 = - =l
T
=T- R(}\*7C) + E[]]-ZT pe-€:<B Zzt ’ ('ff - ft)]
=1 T t=1
T
<T-ROC) +E[lgr oy D0 (6~ &)
t=1 >t= =1
1 T
STR()\*7C)+;E[]]-ZT pt-§t<B.(B_Zpt.£t)}
=t B t=1

ST R+ - B (6 —p- &)
t=1

T
:T-R()\*,C)—F%'EHZ‘St'pt'ft”

t=1

1
<T-R(\,C)+ - -E
T

<T-R(A.,C)+ g,

where (€;)=1,... 7 is a collection of T independent Rademacher variables that are jointly
independent of ((x¢,pt))i=1,... r.- The first inequality is a consequence of the inequality
& > & that holds for any ¢t = 1,--- ,T when Zlept - & > B. This follows from the
definition of & and the fact that, in this case, we cannot fit all items of value-to-weight
ratio at least A, in the knapsack when Zle pt-& > B. The first equality is a consequence
of E[z: - &] = R(A«,C), which holds by definition of z; and &. The second inequality is
a consequence of z; < 1 < 2t by Assumption [2land & < & for any ¢t = 1,--- ,T when
23:1 pt - & < B given the definition of £ and the fact that, in this case, the combination
of all items of value-to-weight ratio at least A, fit in the knapsack. The third inequality
is a consequence of Zthl pi - & < B since (& )¢=1,... 7 is a feasible solution to (). The
fourth inequality is a consequence of z - 1;>¢ < |z| for all z € R. The second equality is
obtained by symmetrization since p; - {; has mean ¢(A,,C) = forany t =1,--- ,T. The
fifth inequality is a direct consequence of the Khintchine inequality. The last inequality
results from p; € [0,1] and & € [0, 1]. This concludes the proof.

O

F Proof of Lemma {4
Lemma 4. For any A1, A2 > 0, we have: |R(A1,C) — R(A2,C)| < 1/7-|d(A1,C) — p(A2,C)|.
Proof. For any A1 > A > 0, we have:

|R(A1,C) — R(A2,C)| = E[g(X) - Ly(x)/n0>P>g(X) /M)

1
< 5 EIP Ly /a2 Pog(x0) /0]
1
=161, C) = d(A2, C)),
where the first inequality is a consequence of g(X) € [0,1] and P > r. O



G Proof of Lemma [5
Lemma 5. ¢(-,C) is L -E[1/X70,]-Lipschitz.
Proof. For any Ay > A1 > 0, we have:

|p(A2,C) — ¢(A1,C)| = E[P - Linin(1,9(X)/M\1)>P>min(1,g(X)/A2))

< E[Lmin(1,9(X)/A1)>P>min(1,9(X)/A2))
min(1,9(X)/A1)

=E| Fx (w)dw]
B min(1,9(X)/A2)

< L-E[min(1, g(X)/\1) — min(1, g(X)/A\2)]
- 1

< E.E[X%*] = Xal,

where the first inequality is obtained using P € [0, 1], the second inequality is a consequence
of Assumption [2] the third inequality actually holds almost surely irrespective of whether
g(X)/ A <1, g(X)/A > 1, g(X)/ A2 <1, or g(X)/A2 > 1, and the last inequality is
obtained using the fact that 6, € C. Also, observe that the last inequality holds even when
A =0. O

H Proof of Lemma
Lemma 6. We have P[SUPAe[)\k,z/r] |0k(A,C) — d(N,C)| < Ar] > 1 —1/T, for any k.

Proof. For any phase k € N, we denote by t; the time period at which phase k starts. First
note that we can reason conditionally on F3, , since ((z, vt, pt))ien is an i.i.d. stochastic
process. We use the Rademacher complexity approach to concentration inequalities for
empirical processes to derive the result, see, for example, [3] and [4]. Specifically, the class
of functions of interest is F = {{x : (z,y) € [0,1] x [r,1] = y - Lysay | A € [Ar,2/7]}.
Observe that £x(x,y) € [0,1] for any (z,y) € [0, 1] x[r, 1] and that ¢(X,C) = E[lx(9(X), P)].
Moreover, note that Nj samples, denoted by (min(1, maxgec X0), Pn)n=1,... .N,, have
been generated according to the same distribution as (¢(X), P) in an i.i.d. fashion at the
end of phase k. Using Theorem 3.2 from [4], we get:

]P[El)‘ € [Ak72/r] | ng(>ﬁc) - (,ZS()\,C)| > QRNk (]:) +1 | ]:tka < eXp(72Nk 'tz) vVt >0,

(6)
where Ry, (F) is the Rademacher complexity of F for Ny samples. What remains to be
done is to upper bound this last quantity. By definition, we have, for Ny independent



Rademacher variables (€, )n=1.... ., that are independent of (X,,, Py)n=1... N,:

K

Ni

1

Ry (F)=—-—" E[ sup | €n - £x(min(1, max X0), P,)|]
’ N, AE[A,,2/7] nz::l gec ="

N

1
= — -E[E| sup |y en-znl | (Xn, Po)n=1, .N,]]

Ny 2€8((Xn,Pp)n=1, ,N;,) ,;1 '
< — - E[\/2N0 - In(2S((X,., Pr) )
=N, k-1 nyd'n)n=1,-- Ny

21n(2(Nj, + 1))

R A
_ [2meT)
<N

with:

S((Xnapn)nzl,---,Nk) = {(Pf(n) . ]]'min(l,manec X}(n)e)/Pf(n)ZA)":L‘“7Nk ‘ A 2 0},

where the permutation f(-) of {1,---, Ny} is determined by:
. T . T
min(1, I{gleachf(n)H)/Pf(n) <...< mm(l,réleacx X:1)0)/Pray-
The second equality is obtained by reindexing the vector (zi,---,zn,) according to
the mapping f(-) which does not change the inner expectation since (€,)n=1,... N, IS
independent of (X,,, P,)n=1,... ,N,- Note that S((X,, P,)n=1,....~,) is always a finite set

with cardinality no larger than Ny + 1, which yields the second and third inequality using
standard bounds on the Rademacher complexity of a finite set, see Theorem 3.3 of [4].

Plugging t = 1/%?) in @ and using the definition of Ag, we conclude that:
P[ED\ € [4\k72/r] | ng(A,C) - ¢(A7C)| Z Ak | ‘Ftka S eXp(_4 IH(QT)) S 1/Ta
which, in particular, implies that:

Pl sup  [6k(A\C) = ¢(A,C) <A > 1—1/T.
AEA, 2/7]

I Proof of Lemma
Lemma 7. For T > 3, we have kp < In(T+ 1) and gkt < lp% + 1.
Proof. By definition, we have:

> (457 — 1) - In*(T),

which implies 457 < T/In?(T) + 1. Since In*(T) > 1 for T > 3, we get 47 < T + 1.
Taking logarithms yields the claim since In(4) > 1. O



J Proof of Lemma

Lemma 8. For C = L-E[1/X70,] and provided that T > exp(8r?/C?), we have:
21n*(T")
—7
Proof. To simplify the discussion, we assume that E[P] < 8 so that ¢(\,C) = S but

the discussion would be almost identical if E[P] > § (in which case A\, = 0). For any
ke€{0,--- ,kr}, we define the event:

BINET o {161 (Aks ) — (0, O)] < 4C- |1, 60k, C) — 6(An, C)] < 3C-|Li]}] > 1

Ak - {)\* Z 2\1« ‘ék(élﬁc) - ﬁ' S 4C - ‘Ik|a |¢(2\k+1ac) - ﬁ| S 3C - |Ik+1|}-

Using the shorthand E = ﬂiioAk» we have:

kT

PE®] < ) PlAT).

k=0

Note that we exclude the condition |¢(Ag,C) — 8| < 3C - |Ip| from the definition of E since
this condition is automatically satisfied almost surely given Lemma [5} By induction, we
have:

k—1
P[Af] < P[AS) + Y P[AS,, n 4]

=Y PlA% N4y

j=0

for any k > 0 since, by construction, A, € [Ag, Ao] = [0, 2/r] which implies that P[AS] =
Rearranging yields:

PIEC] <> (kr — k) - PlAF,, N Ay

k=
ke

< Z(kT —k)-P[BS] + Z kp — Ak+1 N Ay N By]
k=0
. ET .

< T'kT'(kT+1)+;(kT—k)-IP[AE+1ﬁAkﬂBk]
In(T +1)2 <& - c

ST (kR RlAL N AN By

where By, = {SupAep\ 2] |¢k()\ C) — ¢\, C)| < Ax}. We use Lemma [6] to derive the
third inequality and Lemma [7] for the last inequality. What remains to be done is to
show that the second term in the right-hand side is 0. Consider k € {1,--- ,kr} and
suppose that Ax_1 and Bi_; hold. We show that A; must hold which Will imply that
IE”[AE N Ag_1 N Bi_1] = 0. First observe that we have:

10k, ©) = Bl < 108\ €) — d(Ags C)| + [6 (Mg, C) — B
< A +3C - |1
<4C - |1,



where we use the fact that Ax_1 and By_1 hold for the first inequality and the fact that
T > exp(8r2/C?) for the last inequality. At the end of Algorithm I 1| for the k-th phase,
we end up with an interval [y,,7] of length |I)| such that either (i) v, > A, or (ii)
¥, = Ak~ In situation (i), by definition of the ending criterion of Algorithm I l we must
have oy, (F,C) < B+ Ay and ¢;€(yk, ) >+ Ag. This last inequality, combined with the
fact that Bi_; holds, implies that ¢(’yk, ) > 3 and thus we have 7, < A.. In situation
(ii), we automatically have v, < A since Ag_1 holds. Moreover, by definition of the
endmg criterion of Algorithm [1 l, we must have ¢ (7, C) < 8+ Ag. We conclude that
e S A and:
Oe(,C) < B+ Ay (7)

irrespective of whether (i) or (ii) holds. There are several cases to consider at this point
depending on the value of |q§k(1/2fjk +1/29,C) — B|. We show that, in any case, we have
M1 < A and [¢(Ag11,C) — B] < 3C - [Ik41| which will conclude the proof.

Case 1: ¢y, (1/27, +1/27,C) < B — Ay.

In this case, we have A\, 1 =7, < A« and Negp1 = 1/2%% + 1/2%,. Using (;Bk(j\k+17(,’) <
B — Ay along with the fact that Bj_1 holds, we get #(Me41,C) < B which implies that
As € [Apg1, Ak41] and, as a result, [¢(Apy1,C) — B = [¢(Ap41,C) — ¢( A, C)| < C - [je41]
using Lemma [5]

Case 2: [¢x(1/2y, + 1/2%,C) — B| < Ay.

In this case, we have )\, =7, < A« and Nog1 = 1/2%@ + 1/2%;. We get:

|0(Ae41,C) — Bl = [#(Ar11,C) — d(As, C)
< p(Ak+1,C) — ¢(Ak41,C)|
+¢(Met1,C) = dr(Aks1,C))|
+|k(Aet1,C) — B
<C- |Ik+1|+Ak+Ak
<30 - [Tpq4],

where we use Lemma the fact Bg_; hold, and |g?>k(1/2:yk +1/2%;,C) — | < Ay for the
second inequality while we use 7" > exp(8r?/C?) for the last inequality.
Case 3: ¢k(1/27k +1/2%;,C) > B+ Ag.
In this case, Ajyq = 1/27, +1/27; and Met1 = k- Since By,_; holds, we get ¢(Ay41,C) > 8
and thus \;,; < A.. Using (7)), we have either (a) or(Gr,C) < B — Ay, or (b) | ok (F, C) —
Bl < Ay. If (a) is true then, since By_; holds, it must be that ¢(A\r41,C) < B and thus
we get A. € [Agy1, Aer1] which implies that [6(Agy1,C) — 8 = [6(Ax11,€) — $(M, )] <
C - |I41| using Lemma [5| If (b) is true then we have:
[6(Ak+1,C) = Bl = [¢(A41,C) — ¢(As, C)
S |¢( k+1> ) ¢(>‘k+1vc)|
+1¢(Met1,C) = Br(Ap1,C)l

+ ¢k (Aks1,C) — B
< C | Ijg1| + A + Ag
S 30 ‘Ik+1|-

where we use , the fact that By_; holds, and (b) for the second inequality while we use
T > exp(8r2/C?) for the last inequality. O

10



K Proof of Theorem [3

At any round ¢t € N, we bid:
by = min(l,min(l,rggg{x{@)/)\t). (8)

Theorem 3. Bidding according to incurs a regret Rp o = O(M VT -In(T)).

Proof. For any phase k € N, we denote by t; the time period at which phase k starts.
Using Lemma [3] we have:

T =1
T
RBT < T R()\*,C Z (U ]lbt>pt] +O({)

t=1

= R\, C) — th ]]'bt>pf] +O(\/T)

t=1

Since 7* is a stopping time with respect to the sequence ((zt,vs, p¢))ten and since by =
min(l, min(1, maxgec 10)/A¢) is Fi—1-measurable, we have:

E Ug ]]‘bt>pt =

E[Lye>t - Efog | Fio1] - Loy >p,)

(]2 L[]8

E[L;+>; - min(1, 0)- 1
[Lr2¢ - min(1, max 2;6) - Lo, >p,]

o~
I
-

*

= E[)_ min(1, max 2;6) - 1o, >p,]

I
[~ .

T
E[min(1, %1€aCX ‘TIG) ’ ]]'thPt] - E[t:TZ*+1 min(1, max 1'10) ’ ]]'thPt]

0
o eC
T
> E :E[mln(lﬁrggcxxze) ]lbt>17t E bt - ]lbt>17t
t=1 t=7*+1

where we use min(1, maxgpec 210) < 1, p+ > r, and the fact that v; is independent of p;
conditioned on x;. Observe that:

Z Pt - ]lbt>pt_0< Zpt ]lbt>pt_ ) +5

t=7*+1
if 7* =T + 1 while:

Z Dt Lp,>p, < Z Dt - ]1bt>pt+Zpt 1y,>p, — B

t=7*+1 t=7*+1

< (Zpt Ly >p, — B)+
t=1

if 7 < T 4+ 1 since, in this case, we have run out of resources before round T, i.e.
Yore1 Pt Ly >p, > B. We derive:

T

T
. 1
RB7T <T- R(/\*’C) - ZE[HIIH(I, Igggxw) ' ]lthPt] + ; ' E[(Zpt ' ]lthPt - B)+]
t=1 t=1

+O(T).

(9)
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We bound the two terms appearing in the right-hand side of @D separately starting with
the first one. Using the shorthand notation:

where C' = L - IE[X%Q*], we have:

T
T-R(\,C) — ZE[min(l,rgeacxxw) Ly, >p,)

T
= Z{R()\*7C) E[E[mln(lﬂ max ‘/I’.Ie) ]lmin(l,maxgec z]0)>Xi Dy | ]:tfl]]}
t=1
T
= _{B(\..C) —E[R(\,C)]}
t=1

<) E[|R(\,C) = R(A,C)]

T
< = S EI60LL€) — (Ol
t=1
1 &z
<3N B9 0) ~ 60 )
T 1
m2(T) 30 &
S2f+7~kz:0]\’k'\fk|
W3(T) 18C &
2
ol (T) +?fTC'ﬁ'ln(T)'

To derive the third equality we use the fact that \; is F;_i-measurable. For the second
inequality, we use Lemma [4| For the fourth inequality, we use ¢(\;,C), 5 € [0,1]. We use
Lemma [8] to derive the fifth inequality while we use Lemma [7] for the last one. We can

12



now focus on the second term appearing in the right-hand side of @:

E[(Z Pt - ]]'thpt Zpt min(1,maxgec ] 0)>A¢-pr B)+]

< E[( Z Pt - lmin(ltmaXf;Ec wf9)2);k~pt — Ng - ﬂ)—i—]

k=0 t=ty,
T kr—1
+]E[( Z Pt ]lmin(l,maxgec {L’I@)Z}\E pe (T - Z Nk) ) B)-‘r]
t=tg,, &r —
kr—1
< 37 NeE[(@r(Me, €) — 6, ©))4]
k=0
kr—1

Z Ni) - E[(ég, (Mg, ,C) — (Ae, C)) 4]

<T-. ]P’EC ZNk |¢k /\k’ ) d)(/\*acﬂ ) ]1E]

kr
<2 (T) +4C - Y Ny - ||
k=0
iy 4 24C o
<2In Z2k In%(

<2In®(T) + 8¢ 7. In(T).

To derive the second inequality, we use 8 > ¢(A«,C). To derive the third inequality, we
use qz@k(é\k,C), #(A\s,C) € [0,1] and N, > T — ZkT LN, We use Lemmato derive the
O

fourth inequality while we use Lemma [7] for the last one.
L Proof of Lemma

Lemma 9. We have Q < Q =d-In(T -d)/In(1 4+ A) almost surely.
Proof. We have:

det(Mp) - (1 + A)? < det(Mr)

by definition of Q. The second inequality is obtained using ||z, < 1 (which implies that
dlg — zyx] is positive semidefinite) and the fact that det(B + C) > det(B) for positive
semidefinite matrices B and C'. Taking logarithms yields the claim. O

M Proof of Theorem [4]

At any round ¢t € N, we bid:

by = min(1, min(1, max x230)/At). (10)

Tt
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Theorem 4. Bidding according to incurs a regret Rp 7 = O(d- m[lfiQXTQ*] F(A)NT),
where f(A)=1/In(1+ A) + 1+ A.

Proof. For any master phase ¢ € {0, -- ,Q}, we denote by t, € N the round at which
phase ¢ starts. For any master phase g € {0,---,Q}, any phase k € {0,--- ,kr}, and any
A > 0, we denote by éq,k(xcq) the empirical estimate of ¢(X,Cq) using all Nj samples
obtained during the k-th phase of the binary search that runs during the ¢-th master
phase. We also use the shorthand notations £ = {6, € N/_,C;} and:

Eq = Mo {1806 (Ag ks Cg) = 9y Co)l < 4C - I, |6(Ag s Cq) = S(Ag,ns Co)| < 3C - [T},
for any ¢ € {0,---,Q}. Using the same analysis as in the proof of Theorem |3 with
C = {6.} (see (9)), we derive:

T T
1
RB;T <T- R()‘*’ {9*}) - ZE[:EIH* : lthPt] + ; : E[(Zpt : ]lthPt - B)Jr] + O(
t=1

t=1

VT
e
(11)
We first study the third term in (LI). Observe that, along the same lines as what is done
in the proof of Theorem [3] we have:

T T
E((Y " pe-To,2p — B)4] E[O_pi - L>p, — B)4 - 1g] + T - PE]
) Q_ kq
<SED Y Ni-[605(Agk: Co) = $(Agu,Co)l - Lu] + 1
q=0 k=0
Q kg Q
<ED Y AN, O L[]+ T PEEN E]+0(1)
q=0 k=0 q=0
210 Lz _
< T-ZZQ’“ ‘I (T) +210*(T) - (Q + 1) + 0O(1)
q=0 k=0
< PC VT (1) (Q + 1)+ 2W7(T) - (Q +1) + O()
d-C )
=0 r VT -1n*(T - d))
. d-C
=0 iy VD)

We use the same analysis as in the proof of Theorem [3] along with Lemma [2] to derive the
second inequality. We use Lemma [§ for the fourth inequality and we use Lemma [J] to get
the final asymptotic bound. We move on to study the second term in . Denoting by
0, an arbitrary element of argmaxgcc 6, we have:

T
Z]E[x-trg* : ]]'thPt] =

t=1 t=

[M]=

E[min(1, max z;0) - 1p,>p,]

Tt

=

M=

- E[ (min(L gnax x-tra) - 53{9*) . ]]'thPt}
t=1 Tt
T T ~
> Y B[RO, Cr,)] — B[ [210; — 270 - 1o, >p,]
t=1 t=1

E[R(\:,Cy,)] +O(d-VA-T),

M=

>

o~
I

1
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where the last inequality is obtained in the proof of Theorem [2 Hence, what remains to
be done to get the regret bound is to upper bound:

T
AM{Q } ZE At’ Tt
t=1

First note that:

z;
1 q
< - -E| Ny, - |¢(2\q7kacq) - QS(Aq,*ch)H
q=0 k=0
1 Q Q ET
= (T-PE+ Y T-PEENE+Y D 3N, C L))
r q=0 =0 k=0
g%-(l—i—anQ(T) @+1) g-ﬁ In(T) - (Q +1))

We derive the second inequality using Lemma [d] We derive the fourth inequality using
Lemma [2| and Lemma (8| in the same fashion as done for the third term in . We
conclude that all that is left to be done is to upper bound:

Q
T- ()‘*» {9 } Z q+1 - t (Aq,*ch)L

q=0

which we do next. Using Lemma EI, observe that, conditioned on F; 1 and assuming that
0. € Cqy, R(A\g.x,Cy) is almost surely larger than ERopr(B,T)/T — 1/(r - VT) — 1/T by
definition of A, . when C = C,. Note that bidding b, = min(z{0. /A, 1) at any time period
t is a valid algorithm for this problem that yields an expected total reward:

Z vr - 1,5, ]
1

> T - Elmin(1 X70)-1 ——E
= [mln(,gé%f ) XTG*EA*.P] r [(

N

pt 15,5, — B)4]

o~
Il

1

1
> T . E[min(1,max X'0) - 1 ——E
= [min( ,96%): ) XTG*Z)\*~P] , [

T
> 7 Efmin(1, max X70) - Txrg, > p] - vT
€Cq - T

M=

P15y, =T 0(As, {0.1)]]
1

~
Il

where the expectations are all conditioned on F;, 1 and the inequalities hold almost surely.
The first inequality is derived in the same fashion as done in the proof of Theorem
to derive @D The second inequality is a consequence of B = - T and ¢(\., {0+}) < B.
The third inequality is obtained with Khintchine’s inequality (by symmetrization) since
pe € [0,1] and (p; - 13,5, )een is an ii.d. stochastic process with mean ¢(\., {0.}). We
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conclude that:

2 1
R(Ag,+,Cq) = E[min(1, feféacfX 0) - Lxvg,>x,-p|Ft,—1] — VT T
2 1
>E[XT0, -1 . _1] - - =
> E| XT0, 5. -P|Fty—1] T T
2 1
=R\ {0:}) — ——=— 5
(edb) = 1
almost surely as long as 6, € C,;. This implies that:
Q
()\*7{9 } Z q+1 ™ (Aq,*acq)]
q=0
Q
= E[Z(thrl - tq) (R(A, {0:}) — R(/\q’*’ Cqm
q=0
SE g — 1) (154 2 4 L
>~ ~ q+1 — E - \/7 T
<T-P[E]+ 2@ +1
T
VT
= O _—
5,
where we use Lemma [2] for the last step. This concludes the proof. O
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