6 Supplemental Materials: Mathematical Proofs
This section shows the detailed proofs to the proposed theorems.

6.1 Basic Lemmas

The following lemma reveals the fact that the isomeric property is related to the invertibility of the
sub-matrices of a basis matrix.

Lemma 6.1. Ler Q C {1,2,--- ,m} x {1,2,--- ,n} and Uy € R™*" be the basis matrix of a

subspace embedded in R™. Denote the ith row of Uy as ul, i.e.,, Uy = [uf;ud’; - ;ul ). Define 6;;
as
_J L i) eq,
0ij _{ 0, otherwise. (10)

Then the matrices, > .| Sijuiul, V1 < j < n, are all invertible if and only if Uy is Q-isomeric.

Proof. Note that

dyju
(52‘11% m m
([Uo)as ) ([Uoli .) =[61ju1, 625Uz, , Gmjt] ]: = Z(CSU)QWWT = Z Gijuitsy -
. =1 =1
Ot

Now, it is easy to see that Y.~ §;ju;ul is invertible is equivalent to that ([Uplqs .)* ([Uo)qs .) is
positive definite, which is further equivalent to that rank ([Up]qs .) = rank (Up),Vj =1,--- ,n. O

The next lemma will be used multiple times in the proof.

Lemma 6.2. Ler Q C {1,2,--- ,m} x {1,2,--- ,n} and P be an orthogonal projection onto some
subspace of R™ ™. If | PP P|| < 1 then PPqP is an invertible operator.

Proof. Provided that |PPSP| < 1,Z+ > ;2 (PPaP) is well defined. Also, notice that
PPoP =P(Z - Pg)P =P(I - PPsP).
Thus, for any M € P, the following holds:
PPoP(Z+) (PPyP)")(M)
i=1

=P(Z-PPyP)(Z+ i(PPﬁP)i)(M)

=1

=P+ i(?%?)i — PPaP — i(PPéP)i)(M)

i=1 =2

=P(M) =M.
In a similar way, it could be also verified that (Z + > i (PPaP))PPoP(M) = M. As a
consequence, Z + Y-, (PPgP)* is the inverse operator of PPqP. O
Lemma 6.3. Ler Q C {1,2,--- ,m} x {1,2,--- ,n} and P be an orthogonal projection onto some

subspace of R™*". If ||PPaP|| < 1 then P N Pg = {0}.

Proof. Suppose that M € PN Pg.ie., M = P(M) = Pa(M). Then we have M = PP P (M)
and thus

IM||F = [PPGP(M)|r < [PPGPIIM|F < | M]|p.
Since |PPaP|| < 1, the last equality above can hold only when M = 0. O
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The following lemma is well-known.
Lemma 6.4 (Lemma 11 of [29]). For any matrices M, N, W and Z of consistent sizes, we have that

i

where the equality can hold if and only if N =0, W = 0and Z = 0.

> [[M].,
*

Proof. By Lemma 11 of [29],

w Z

H M N }H > ||[M, N]|l > || M|

The validity of the first equality requires that W = 0 and Z = 0. The second equality demands
N =0. O

6.2 Critical Lemmas

The following lemma (i.e., Theorem 3.1)) has a critical role in the proof.

Lemma 6.5 (Theorem. Let Lo e R™*"™ and Q C {1,2,--- ;m} x {1,2,--- ,n}. Let the SVD
of Lo be UgXo VL. Denote Py, (-) = UgUZ (-) and Py, (-) = (-)Vo VL. Then we have the following:

1. The linear operator Py, PaPu, is invertible if and only if Uy is Q-isomeric.

2. The linear operator Py, Po Py, is invertible if and only if Vy is Q7 -isomeric.
Proof. The above two claims are proved in the same way, and thereby we only present the proof to
first one. Since the operator Py, Pa Py, is linear and Py, is a linear space of finite dimension, the

sufficiency can be proved by showing that Py, Po Py, is an injection. That is, we need to prove that
the following linear system has no nonzero solution:

Pu,PaPu,(M) =0, s.t. M € Py,.
Assume that Py, PoPu, (M) = 0. Then we have
U Pa(UgUi M) = 0.
Denote the ith row and jth column of Uy and U] M as u! and b;, respectively. That is, Uy =

[wl;uls--;ulll and U'M = [by,ba, -+ ,by,). Define §;; as in (I0). Then the jth column of
UL Po(UgUT M) is given by

51ju¥1bj
Soulb; m
Uy ! :2 Tl = (> bijuiu] )b;.
. =1
Ot bj

By Lemmal6.1] the matrix 37", 6;;u;ul is invertible. Hence, U{ Po(UgUd M) = 0 implies that
b =0Yi=1,-,n
i.e., U M = 0. By the assumption of M € Py, M = 0.

It remains to prove the necessity. Assume that U is not Q-isomeric. By Lemma[6.1] there exists j

such that the matrix Y/ | &;;u;u is singular and therefore has a nonzero null space. So, there exists

M # 0 such that U{PQ(UOMl) = 0. Let M = UyM;. Then we have M # 0, M € Py, and
Puv, PaPu, (M) = 0.

This contradicts the assumption that Py, PoPy, is invertible. As a consequence, Uy must be 2-
isomeric. ]

By Lemma | PuyPaPu, || < 1 also leads to the invertibility of Py, PoPy,. So, according to

Lemma | Ps P Pus, || < 1 should be related to the isomeric property. This is true, as shown in
the following lemma.
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Lemma 6.6. Let Ly € R™*" and Q C {1,2,---,m} x {1,2,--- ;n}. Let the SVD of Ly be
UoXo VL. Denote Py, (-) = UgUZ () and Py, (-) = (-\)VoVii. Then we have the following:

1. ||Pu,PaPu, || < 1ifand only if Uy is Q-isomeric.
2. [Py, PaPy, || < 1ifand only if Vy is QT -isomeric.

Proof. The necessity could be proved by Lemma and Lemma [6.5] and thereby we on-
ly need to prove the sufficiency. Denote §;; as in and define a diagonal matrix D; as
D; = diag(d1,062;, - ,0m;) € R™*™. Then we have

([Woles )" ([Ulgs,.) = Ug DF D;Uo = Uy D;Usp.
By Lemma UF D;Uy is positive definite and therefore has positive singular values. Also, we
have ||UF D;Us| < ||Dj|| < 1. As a consequence,
I Ui DjUs <1

where o; > 0 is the minimal singular value of Ud D;Uy. Denote the jth column of Py, (M) as b;.
Then we have

1TPuyPa Puo (M) jll2=1UoUq b;—Uo(Ug D;Uo)Uq byl

= [[(T = Uy D;Uo)Uq bjlla < (T = Ug D;Uo)l|Ug bjl2

= (1= 0)|Ug bjlla = (1 = a)[[bjll2, Vi = 1,--- ,n
which implies that

1Pu, Pe Puy (M| < Z (L= a)?[1bsl5

<@1- Umm)zl\PUo(M II%
where 0,5, = min;{o;} > 0. Hence,
||,PUOP§J51PUO|| S 1 - 0’77Lin < 1'
O

Lemma and Lemma imply that ||Py, P Pr, || < 1is a sufficient and necessary condition
for Py, PaPu, to be invertible. In fact, this is true for any orthogonal projections, as stated in the
following lemma.

Lemma 6.7. Let Q2 C {1,2,--- ,m} x {1,2,--- ,n} and P be an orthogonal projection onto some
r-dimensional subspace of R™*™. Then the linear operator, PPqP, is an invertible operator if and

only if |PPaP| < 1.

Proof. The sufﬁc1ency has been proven by Lemma [6.2] and thus we only need to prove that
H’PPé‘PH < 1 is necessary. Let vec(-) denote the vectorization of a matrix formed by stack-
ing the columns of the matrix into a single column vector. Suppose that the basis matrix associated
with the operator P is given by P € R™"*" PT P = I; namely,

vec(P(M)) = PPTvec(M),YM € R™ ",
Denote §;; as in (]m) and define a diagonal matrix D as
D = diag(011,021, - ,0ij, ;Ompn) € RTXMT
Notice that

m

= P(Z Z(M, eie] Jeiel )

=1 j=1

~.



where e; is the ith standard basis and (-) denotes the inner product between two matrices. With this
notation, it is easy to see that

[vec(P(erel)), vec(P(egel)), - - vec(P(emel))]=PPT.

Similarly, we have

PPoP(M Z Z ) (6i;P(esel)),

=1 j=1

and thereby
vec(PPoP(M)) = PPTDPP vec(M).

For PPqP to be invertible, the matrix PT D P must be positive definite. To show this, let’s assume
that PTDP is singular. Then there exists a vector, z € R™", z 2 0, that satisfies PTDPz =0. Let
vec(M) = Pz. Then we have PPTDPPTvec(M) = PPTDPz = 0. By z # 0, vec(M) # 0.
Hence, there exists M € P and M # 0 such that PPoP (M) = 0. This contradicts the assumption
that PPqP is invertible.

Denote the minimal singular value of PTDP as 0,,;, > 0. Then we have
[PPaP(M)|7 = [vec(PPaP(M))3
= |PPT(1 — D)PP vec(M)||3
= ||(1 — PTDP) P vec(M)|3
< (1= omin) || PT vec(M)|13
= (1 = omin)*|P(M) |7,
which gives that |PPaP| < 1 — opmin < 1. O

The following lemma has been used in our discussions.

Lemma 6.8. Let Q2 C {1,2,--- ,m} x {1,2,--- ,n} and P be an orthogonal projection onto some
subspace of R™*™. Then the operator, PPqP, is invertible if and only if P N Pg = {0}.

Proof. The necessity has been proven by Lemma[6.7]and Lemma[6.3] So, it suffices to prove that
P N Pg = {0} can lead to the invertibility of the operator PPoP. Consider a nonzero matrix
M € P. Then we have

IM||% = [PM)|E = [PaP(M) + PoP(M)|[E = [PaP(M)|E + [|PoP(M)l[%,
which gives that

IPPaP(M)|IE < 1P PM)IIF = IM % — | PaP(M)][.

By PN Pg = {0}, PoP(M) # 0. Thus,
IPPaPI* <1- inf [[PoP(M)|F <1.

Again, by Lemmal6.7] the operator PPq P is invertible. O

Consider a twinned problem of (E); namely,

s.t. Po(AX — Lg) =0, (11)

min 4],

where X € RP*" is supposed to be given. Similar to Theorem [3.4] we have the following lemma to
guarantee the success of the above convex program.

Lemma 6.9. Let X € RP*™ be a given matrix and @ C {1, 2,--- ,m} x {1,2,--- ,n}.
LY € span{X7T} and X7T is QT -isomeric then Ag = Lo X is the unique minimizer to the problem
in
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Proof. Denote the SVDs of Lo, X and Lo Xt as UgXoVy, U131 V{L and UpXo V!, respectively.
By LT € span{XT}, Vj = V1 VI'V; and thus

ApX = LoX X = Lo V' = L.

That is, Ay = Lo X is feasible to (@) By standard convexity arguments [30], Ag = Lo X T is an
optimal solution to the problem in (TT)) if there exists a matrix W (Lagrange multiplier) that obeys

Po(W)XT € 9| LoX ™.,

where J(-) is the subgradient of a function. By Lemma Vi is QT -isomeric. Then Lemma
gives that Py, PoPy, is an invertible operator. Hence, we could define W as

W = Py, (Pv, PoPy,) (UaVy (XT)F).

‘With this notation, it can be calculated that

Pa(W)XT = Py, Po(W)XT

= Pv, PoPv, (Pv, PaPyv,) (U Vs (XT)T)XT

= UL,V (XY XxT =,V Uy Ut
Since (Lo X )T € span{X}, we have

Vi Ul =VE e, Vo C UL
As a result,
Po(W)XT = U,V UL = UV € 9| Lo X,

which gives that Lo X is an optimal solution to the convex optimization problem in (TT).

It remains to prove that the optimal solution to (TT)) is unique. We shall consider a feasible perturbation
A = LoX™ + A and show that the objective strictly increases whenever A # 0. We have

0=Pa(AX — Ly) = Po(LoXTX — Ly + AX),
which gives that
Po(AX) =0, ie, AX € Pg.

We also have AX € Py, and thus AX € Py, N Pé—. However, by Lemma and Lemma
Py, NPa = {0}. As a consequence,

AX =0, ie, AT c U} C V5,

where Ui~ C V5- follows from V, C Uy. Then we have

UT
12X+ Al =1 (e | (Zax® + BT VL
| vFLoxtve  UFAVEH
N 0 (Uz)"AVs- ],

By Lemmal6.4]
ILoX* + Alle > UL LoX*Va|, = [LoX .,
where the equality can hold if and only if
UFAVZE = 0and (USH)TAVS = 0.

This gives that AV;- = 0, i.e., AT € V,. However, we have already proven that AT € V-, Thus,
[[ILo X + All. is strictly greater than || Lo X T || unless A = 0. In other words, Ag = Lo X is the
unique minimizer to (TT). O
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6.3 Proof to Theorem

Proof. Let the SVD of Lo be UpXoV. Denote Py, (-) = UgUL (-), Py, (-) = ()VoVi and
Pr,(-) = Pu, (-) + Py, () — Pu, Py, (+). Suppose that Ly is incoherent, rank (Lg) < dng/(clogny)
and (2 is a 2D index set sampled using a Bernoulli model,

Pr((4,5) € Q) = po > 0.
Under these conditions, Theorem 4.1 of [4] has proven that
|Pry PaPrll <1—po+d<1
holds with high probability. Note that
PUOPTO (M) = PUO (PUO (M) + PVO (M) - PUOPVO (M))

= PUO (M)
and
PTOPUO (M):PUOPUO (M)+PV0PU0 (M)flonIPVo,PUo (M)
= Py, (M).
Hence,

1PuePé Pus | = | Puy Pry P Pro Pus ||
< ||PT0,P§%7)TOH <1

By Lemmal6.6] U is Q-isometric. Then it follows from Lemma [3.1]that L is Q-isometric. Similarly,
it could be proved that L{ " is Q7 -isometric with high probability. O

6.4 Proof to Theorem

Proof. By yg € Sp C span{A}, yo = AATyo. By yo = [yp; yu] and A = [Ap; Ay],
yp = ApATyo.

That is, 79 = ATy is a feasible solution to the problem in (6). Provided that y, € R” and the
dictionary matrix A is k-isomeric, Definition [3.1] gives that

rank (A4,) = rank (4),
which implies that the rows of A can linearly represent the rows of A, i.e.,
span{A]'} = span{A”}.
Since A*yg € span{ AT}, it follows that there exists a dual vector w € RP obeying
. 1
Al'w = ATy, ie., ATw e 8§|\A+y0||§.

By standard convexity arguments [30], zo = AT yg is an optimal solution to (). Since || - |3 is
strongly convex, the optimal solution to (6) is unique. O

6.5 Proof to Theorem 3.4]

Proof. Denote the SVD of A as ULV. By Lo € span{A}, AXg = AATLy =UUT Ly = Lo; that
is, Xo = A" Ly is a feasible solution to (7). By Lemma3.1|and Lemma the operator Py Pq Py
is invertible. As a consequence, we could define a matrix W as

W =Py (PuPaPu) ' (A7) Xo).
Then it can be calculated that
ATPo(W) = ATPyPo(W)
= ATPyPaPu(PuPaPu)”  ((AT) T Xo)
= AT (AT X, =VVTX,
= Xo € 03| %ol
where VVT X, = X is concluded from the fact that Xo = A+ Ly € span(AT). Since || X||%

is a strongly convex function of X, it follows form the standard convexity arguments [30] that
Xo = AT Ly is the unique optimal solution to the problem in (7). O
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6.6 Proof to Theorem

1 1
Proof. Since Ay = UpXg QT and Xy = QX V', we have the following: 1) AgXo = Lo;2) Lo €
span{Ag} and Ay is Q-isomeric; 3) LY € span{ X'} and X7 is QT -isomeric. By Theorem (3.4}

1
Xo=QxVy = Af Ly = arg min | X%, s.t. Pa(AoX — Lg) =0,
1
A= U2 QT = Lo X = argmf{n | A%, s.t. Pa(AXy — L) = 0.
Hence, (A, X) is a critical point to the problem in (). O

6.7 Proof to Theorem

2 1
Proof. Since Ag = UpSd QT and X = QX Vi, we have the following: 1) 49X = Lo;2) Lo €
span{Ag} and Ay is Q-isomeric; 3) LY € span{ X'} and X is Q7 -isomeric. By Theorem 3.4}

Xo = Qe VT = Af Lo
1
= argn}}n §||X||%, s.t. Pa(ApX — Ly) = 0.

By Lemmal6.9]
Ao = UoSi QT = Lo Xy
= argmf}n | A, s.t. Pa(AXo — Lo) = 0.
Hence, (A, Xj) is a critical point to the problem in (9). O
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