
6 Supplemental Materials: Mathematical Proofs

This section shows the detailed proofs to the proposed theorems.

6.1 Basic Lemmas

The following lemma reveals the fact that the isomeric property is related to the invertibility of the
sub-matrices of a basis matrix.
Lemma 6.1. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and U0 ∈ Rm×r be the basis matrix of a
subspace embedded in Rm. Denote the ith row of U0 as uTi , i.e., U0 = [uT1 ;uT2 ; · · · ;uTm]. Define δij
as

δij =

{
1, if (i, j) ∈ Ω,
0, otherwise. (10)

Then the matrices,
∑m

i=1 δijuiu
T
i , ∀1 ≤ j ≤ n, are all invertible if and only if U0 is Ω-isomeric.

Proof. Note that

([U0]Ωj ,:)
T ([U0]Ωj ,:) =[δ1ju1, δ2ju2, · · · , δmjum]


δ1ju

T
1

δ2ju
T
2

...
δmju

T
m

 =

m∑
i=1

(δij)
2uiu

T
i =

m∑
i=1

δijuiu
T
i .

Now, it is easy to see that
∑m

i=1 δijuiu
T
i is invertible is equivalent to that ([U0]Ωj ,:)

T ([U0]Ωj ,:) is
positive definite, which is further equivalent to that rank

(
[U0]Ωj ,:

)
= rank (U0), ∀j = 1, · · · , n.

The next lemma will be used multiple times in the proof.
Lemma 6.2. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and P be an orthogonal projection onto some
subspace of Rm×n. If ‖PP⊥ΩP‖ < 1 then PPΩP is an invertible operator.

Proof. Provided that ‖PP⊥ΩP‖ < 1, I +
∑∞

i=1(PP⊥ΩP)i is well defined. Also, notice that

PPΩP = P(I − P⊥Ω )P = P(I − PP⊥ΩP).

Thus, for any M ∈ P , the following holds:

PPΩP(I +

∞∑
i=1

(PP⊥ΩP)i)(M)

= P(I − PP⊥ΩP)(I +

∞∑
i=1

(PP⊥ΩP)i)(M)

= P(I +

∞∑
i=1

(PP⊥ΩP)i − PP⊥ΩP −
∞∑
i=2

(PP⊥ΩP)i)(M)

= P(M) = M.

In a similar way, it could be also verified that (I +
∑∞

i=1(PP⊥ΩP)i)PPΩP(M) = M . As a
consequence, I +

∑∞
i=1(PP⊥ΩP)i is the inverse operator of PPΩP .

Lemma 6.3. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and P be an orthogonal projection onto some
subspace of Rm×n. If ‖PP⊥ΩP‖ < 1 then P ∩ P⊥Ω = {0}.

Proof. Suppose that M ∈ P ∩ P⊥Ω , i.e., M = P(M) = P⊥Ω (M). Then we have M = PP⊥ΩP(M)
and thus

‖M‖F = ‖PP⊥ΩP(M)‖F ≤ ‖PP⊥ΩP‖‖M‖F ≤ ‖M‖F .

Since ‖PP⊥ΩP‖ < 1, the last equality above can hold only when M = 0.
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The following lemma is well-known.
Lemma 6.4 (Lemma 11 of [29]). For any matrices M,N,W and Z of consistent sizes, we have that∥∥∥∥[ M N

W Z

]∥∥∥∥
∗
≥ ‖M‖∗,

where the equality can hold if and only if N = 0, W = 0 and Z = 0.

Proof. By Lemma 11 of [29],∥∥∥∥[ M N
W Z

]∥∥∥∥
∗
≥ ‖[M,N ]‖∗ ≥ ‖M‖∗.

The validity of the first equality requires that W = 0 and Z = 0. The second equality demands
N = 0.

6.2 Critical Lemmas

The following lemma (i.e., Theorem 3.1) has a critical role in the proof.
Lemma 6.5 (Theorem 3.1). Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Let the SVD
of L0 be U0Σ0V

T
0 . Denote PU0

(·) = U0U
T
0 (·) and PV0

(·) = (·)V0V
T
0 . Then we have the following:

1. The linear operator PU0
PΩPU0

is invertible if and only if U0 is Ω-isomeric.

2. The linear operator PV0
PΩPV0

is invertible if and only if V0 is ΩT -isomeric.

Proof. The above two claims are proved in the same way, and thereby we only present the proof to
first one. Since the operator PU0

PΩPU0
is linear and PU0

is a linear space of finite dimension, the
sufficiency can be proved by showing that PU0

PΩPU0
is an injection. That is, we need to prove that

the following linear system has no nonzero solution:

PU0
PΩPU0

(M) = 0, s.t. M ∈ PU0
.

Assume that PU0PΩPU0(M) = 0. Then we have

UT
0 PΩ(U0U

T
0 M) = 0.

Denote the ith row and jth column of U0 and UT
0 M as uTi and bj , respectively. That is, U0 =

[uT1 ;uT2 ; · · · ;uTm] and UT
0 M = [b1, b2, · · · , bn]. Define δij as in (10). Then the jth column of

UT
0 PΩ(U0U

T
0 M) is given by

UT
0


δ1ju

T
1 bj

δ2ju
T
2 bj

...
δmju

T
mbj

 = (

m∑
i=1

δijuiu
T
i )bj .

By Lemma 6.1, the matrix
∑m

i=1 δijuiu
T
i is invertible. Hence, UT

0 PΩ(U0U
T
0 M) = 0 implies that

bj = 0,∀j = 1, · · · , n,

i.e., UT
0 M = 0. By the assumption of M ∈ PU0

, M = 0.

It remains to prove the necessity. Assume that U0 is not Ω-isomeric. By Lemma 6.1, there exists j
such that the matrix

∑m
i=1 δijuiu

T
i is singular and therefore has a nonzero null space. So, there exists

M1 6= 0 such that UT
0 PΩ(U0M1) = 0. Let M = U0M1. Then we have M 6= 0, M ∈ PU0

and

PU0PΩPU0(M) = 0.

This contradicts the assumption that PU0
PΩPU0

is invertible. As a consequence, U0 must be Ω-
isomeric.

By Lemma 6.2, ‖PU0
P⊥ΩPU0

‖ < 1 also leads to the invertibility of PU0
PΩPU0

. So, according to
Lemma 6.5, ‖PU0

P⊥ΩPU0
‖ < 1 should be related to the isomeric property. This is true, as shown in

the following lemma.
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Lemma 6.6. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Let the SVD of L0 be
U0Σ0V

T
0 . Denote PU0(·) = U0U

T
0 (·) and PV0(·) = (·)V0V

T
0 . Then we have the following:

1. ‖PU0
P⊥ΩPU0

‖ < 1 if and only if U0 is Ω-isomeric.

2. ‖PV0P⊥ΩPV0‖ < 1 if and only if V0 is ΩT -isomeric.

Proof. The necessity could be proved by Lemma 6.2 and Lemma 6.5, and thereby we on-
ly need to prove the sufficiency. Denote δij as in (10) and define a diagonal matrix Dj as
Dj = diag(δ1j , δ2j , · · · , δmj) ∈ Rm×m. Then we have

([U0]Ωj ,:)
T ([U0]Ωj ,:) = UT

0 D
T
j DjU0 = UT

0 DjU0.

By Lemma 6.1, UT
0 DjU0 is positive definite and therefore has positive singular values. Also, we

have ‖UT
0 DjU0‖ ≤ ‖Dj‖ ≤ 1. As a consequence,

σjI 4 UT
0 DjU0 4 I,

where σj > 0 is the minimal singular value of UT
0 DjU0. Denote the jth column of PU0

(M) as bj .
Then we have

‖[PU0P⊥ΩPU0(M)]:,j‖2=‖U0U
T
0 bj−U0(UT

0 DjU0)UT
0 bj‖2

= ‖(I− UT
0 DjU0)UT

0 bj‖2 ≤ ‖(I− UT
0 DjU0)‖‖UT

0 bj‖2
= (1− σj)‖UT

0 bj‖2 = (1− σj)‖bj‖2,∀j = 1, · · · , n,
which implies that

‖PU0
P⊥ΩPU0

(M)‖2F ≤
n∑

j=1

(1− σj)2‖bj‖22

≤ (1− σmin)2‖PU0
(M)‖2F ,

where σmin = minj{σj} > 0. Hence,

‖PU0
P⊥ΩPU0

‖ ≤ 1− σmin < 1.

Lemma 6.5 and Lemma 6.6 imply that ‖PU0P⊥ΩPU0‖ < 1 is a sufficient and necessary condition
for PU0

PΩPU0
to be invertible. In fact, this is true for any orthogonal projections, as stated in the

following lemma.
Lemma 6.7. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and P be an orthogonal projection onto some
r-dimensional subspace of Rm×n. Then the linear operator, PPΩP , is an invertible operator if and
only if ‖PP⊥ΩP‖ < 1.

Proof. The sufficiency has been proven by Lemma 6.2, and thus we only need to prove that
‖PP⊥ΩP‖ < 1 is necessary. Let vec(·) denote the vectorization of a matrix formed by stack-
ing the columns of the matrix into a single column vector. Suppose that the basis matrix associated
with the operator P is given by P ∈ Rmn×r, PTP = I; namely,

vec(P(M)) = PPT vec(M),∀M ∈ Rm×n.

Denote δij as in (10) and define a diagonal matrix D as

D = diag(δ11, δ21, · · · , δij , · · · , δmn) ∈ Rmn×mn.

Notice that

P(M) = P(

m∑
i=1

n∑
j=1

〈M, eie
T
j 〉eieTj )

=

m∑
i=1

n∑
j=1

〈M, eie
T
j 〉P(eie

T
j ),
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where ei is the ith standard basis and 〈·〉 denotes the inner product between two matrices. With this
notation, it is easy to see that

[vec(P(e1e
T
1 )), vec(P(e2e

T
1 )),· · ·,vec(P(eme

T
n ))]=PPT .

Similarly, we have

PPΩP(M) =

m∑
i=1

n∑
j=1

〈P(M), eie
T
j 〉(δijP(eie

T
j )),

and thereby

vec(PPΩP(M)) = PPTDPPT vec(M).

For PPΩP to be invertible, the matrix PTDP must be positive definite. To show this, let’s assume
that PTDP is singular. Then there exists a vector, z ∈ Rmn, z 6= 0, that satisfies PTDPz = 0. Let
vec(M) = Pz. Then we have PPTDPPT vec(M) = PPTDPz = 0. By z 6= 0, vec(M) 6= 0.
Hence, there exists M ∈ P and M 6= 0 such that PPΩP(M) = 0. This contradicts the assumption
that PPΩP is invertible.

Denote the minimal singular value of PTDP as σmin > 0. Then we have

‖PP⊥ΩP(M)‖2F = ‖vec(PP⊥ΩP(M))‖22
= ‖PPT (I−D)PPT vec(M)‖22
= ‖(I− PTDP )PT vec(M)‖22
≤ (1− σmin)2‖PT vec(M)‖22
= (1− σmin)2‖P(M)‖2F ,

which gives that ‖PP⊥ΩP‖ ≤ 1− σmin < 1.

The following lemma has been used in our discussions.
Lemma 6.8. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and P be an orthogonal projection onto some
subspace of Rm×n. Then the operator, PPΩP , is invertible if and only if P ∩ P⊥Ω = {0}.

Proof. The necessity has been proven by Lemma 6.7 and Lemma 6.3. So, it suffices to prove that
P ∩ P⊥Ω = {0} can lead to the invertibility of the operator PPΩP . Consider a nonzero matrix
M ∈ P . Then we have

‖M‖2F = ‖P(M)‖2F = ‖PΩP(M) + P⊥ΩP(M)‖2F = ‖PΩP(M)‖2F + ‖P⊥ΩP(M)‖2F ,

which gives that

‖PP⊥ΩP(M)‖2F ≤ ‖P⊥ΩP(M)‖2F = ‖M‖2F − ‖PΩP(M)‖2F .

By P ∩ P⊥Ω = {0}, PΩP(M) 6= 0. Thus,

‖PP⊥ΩP‖2 ≤ 1− inf
‖M‖F =1

‖PΩP(M)‖2F < 1.

Again, by Lemma 6.7, the operator PPΩP is invertible.

Consider a twinned problem of (7); namely,

min
A
‖A‖∗ , s.t. PΩ(AX − L0) = 0, (11)

where X ∈ Rp×n is supposed to be given. Similar to Theorem 3.4, we have the following lemma to
guarantee the success of the above convex program.
Lemma 6.9. Let X ∈ Rp×n be a given matrix and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. If
LT

0 ∈ span{XT } and XT is ΩT -isomeric then A0 = L0X
+ is the unique minimizer to the problem

in (11).
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Proof. Denote the SVDs of L0, X and L0X
+ as U0Σ0V

T
0 , U1Σ1V

T
1 and U2Σ2V

T
2 , respectively.

By LT
0 ∈ span{XT }, V0 = V1V

T
1 V0 and thus

A0X = L0X
+X = L0V1V

T
1 = L0.

That is, A0 = L0X
+ is feasible to (11). By standard convexity arguments [30], A0 = L0X

+ is an
optimal solution to the problem in (11) if there exists a matrix W (Lagrange multiplier) that obeys

PΩ(W )XT ∈ ∂‖L0X
+‖∗,

where ∂(·) is the subgradient of a function. By Lemma 3.1, V1 is ΩT -isomeric. Then Lemma 6.5
gives that PV1

PΩPV1
is an invertible operator. Hence, we could define W as

W = PV1
(PV1
PΩPV1

)−1(U2V
T
2 (XT )+).

With this notation, it can be calculated that

PΩ(W )XT = PV1
PΩ(W )XT

= PV1
PΩPV1

(PV1
PΩPV1

)−1(U2V
T
2 (XT )+)XT

= U2V
T
2 (XT )+XT = U2V

T
2 U1U

T
1 .

Since (L0X
+)T ∈ span{X}, we have

V T
2 U1U

T
1 = V T

2 , i.e., V2 ⊆ U1.

As a result,

PΩ(W )XT = U2V
T
2 U1U

T
1 = U2V

T
2 ∈ ∂‖L0X

+‖∗,

which gives that L0X
+ is an optimal solution to the convex optimization problem in (11).

It remains to prove that the optimal solution to (11) is unique. We shall consider a feasible perturbation
A = L0X

+ + ∆ and show that the objective strictly increases whenever ∆ 6= 0. We have

0 = PΩ(AX − L0) = PΩ(L0X
+X − L0 + ∆X),

which gives that

PΩ(∆X) = 0, i.e., ∆X ∈ P⊥Ω .

We also have ∆X ∈ PV1
, and thus ∆X ∈ PV1

∩ P⊥Ω . However, by Lemma 6.6 and Lemma 6.3,
PV1
∩ P⊥Ω = {0}. As a consequence,

∆X = 0, i.e., ∆T ∈ U⊥1 ⊆ V ⊥2 ,

where U⊥1 ⊆ V ⊥2 follows from V2 ⊆ U1. Then we have

‖L0X
+ + ∆‖∗ = ‖

[
UT

2

(U⊥2 )T

]
(L0X

+ + ∆)[V2, V
⊥
2 ]‖∗

=

∥∥∥∥[ UT
2 L0X

+V2 UT
2 ∆V ⊥2

0 (U⊥2 )T ∆V ⊥2

]∥∥∥∥
∗
.

By Lemma 6.4,

‖L0X
+ + ∆‖∗ ≥

∥∥UT
2 L0X

+V2

∥∥
∗ = ‖L0X

+‖∗,

where the equality can hold if and only if

UT
2 ∆V ⊥2 = 0 and (U⊥2 )T ∆V ⊥2 = 0.

This gives that ∆V ⊥2 = 0, i.e., ∆T ∈ V2. However, we have already proven that ∆T ∈ V ⊥2 . Thus,
‖L0X

+ + ∆‖∗ is strictly greater than ‖L0X
+‖∗ unless ∆ = 0. In other words, A0 = L0X

+ is the
unique minimizer to (11).
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6.3 Proof to Theorem 3.2

Proof. Let the SVD of L0 be U0Σ0V
T
0 . Denote PU0(·) = U0U

T
0 (·), PV0(·) = (·)V0V

T
0 and

PT0(·) = PU0(·) +PV0(·)−PU0PV0(·). Suppose that L0 is incoherent, rank (L0) ≤ δn2/(c log n1)
and Ω is a 2D index set sampled using a Bernoulli model,

Pr((i, j) ∈ Ω) = ρ0 > δ.

Under these conditions, Theorem 4.1 of [4] has proven that

‖PT0
P⊥ΩPT0

‖ < 1− ρ0 + δ < 1

holds with high probability. Note that
PU0PT0(M) = PU0(PU0(M) + PV0(M)− PU0PV0(M))

= PU0(M)

and
PT0
PU0

(M)=PU0
PU0

(M)+PV0
PU0

(M)−PU0
PV0
PU0

(M)

= PU0
(M).

Hence,
‖PU0

P⊥ΩPU0
‖ = ‖PU0

PT0
P⊥ΩPT0

PU0
‖

≤ ‖PT0P⊥ΩPT0‖ < 1.

By Lemma 6.6, U0 is Ω-isometric. Then it follows from Lemma 3.1 that L0 is Ω-isometric. Similarly,
it could be proved that LT

0 is ΩT -isometric with high probability.

6.4 Proof to Theorem 3.3

Proof. By y0 ∈ S0 ⊆ span{A}, y0 = AA+y0. By y0 = [yb; yu] and A = [Ab;Au],

yb = AbA
+y0.

That is, x0 = A+y0 is a feasible solution to the problem in (6). Provided that yb ∈ Rk and the
dictionary matrix A is k-isomeric, Definition 3.1 gives that

rank (Ab) = rank (A) ,

which implies that the rows of Ab can linearly represent the rows of A, i.e.,

span{AT
b } = span{AT }.

Since A+y0 ∈ span{AT }, it follows that there exists a dual vector w ∈ Rp obeying

AT
b w = A+y0, i.e., AT

b w ∈ ∂
1

2
‖A+y0‖22.

By standard convexity arguments [30], x0 = A+y0 is an optimal solution to (6). Since ‖ · ‖22 is
strongly convex, the optimal solution to (6) is unique.

6.5 Proof to Theorem 3.4

Proof. Denote the SVD of A as UΣV . By L0 ∈ span{A}, AX0 = AA+L0 = UUTL0 = L0; that
is, X0 = A+L0 is a feasible solution to (7). By Lemma 3.1 and Lemma 6.5, the operator PUPΩPU

is invertible. As a consequence, we could define a matrix W as

W = PU (PUPΩPU )−1((AT )+X0).

Then it can be calculated that
ATPΩ(W ) = ATPUPΩ(W )

= ATPUPΩPU (PUPΩPU )−1((AT )+X0)

= AT (AT )+X0 = V V TX0

= X0 ∈ ∂
1

2
‖X0‖2F ,

where V V TX0 = X0 is concluded from the fact that X0 = A+L0 ∈ span(AT ). Since ‖X‖2F
is a strongly convex function of X , it follows form the standard convexity arguments [30] that
X0 = A+L0 is the unique optimal solution to the problem in (7).
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6.6 Proof to Theorem 3.5

Proof. Since A0 = U0Σ
1
2
0 Q

T and X0 = QΣ
1
2
0 V

T
0 , we have the following: 1) A0X0 = L0; 2) L0 ∈

span{A0} and A0 is Ω-isomeric; 3) LT
0 ∈ span{XT

0 } and XT
0 is ΩT -isomeric. By Theorem 3.4,

X0 = QΣ
1
2
0 V

T
0 = A+

0 L0 = arg min
X
‖X‖2F , s.t. PΩ(A0X − L0) = 0,

A0 = U0Σ
1
2
0 Q

T = L0X
+
0 = arg min

A
‖A‖2F , s.t. PΩ(AX0 − L0) = 0.

Hence, (A0, X0) is a critical point to the problem in (8).

6.7 Proof to Theorem 3.6

Proof. Since A0 = U0Σ
2
3
0 Q

T and X0 = QΣ
1
3
0 V

T
0 , we have the following: 1) A0X0 = L0; 2) L0 ∈

span{A0} and A0 is Ω-isomeric; 3) LT
0 ∈ span{XT

0 } and XT
0 is ΩT -isomeric. By Theorem 3.4,

X0 = QΣ
1
3
0 V

T
0 = A+

0 L0

= arg min
X

1

2
‖X‖2F , s.t. PΩ(A0X − L0) = 0.

By Lemma 6.9,

A0 = U0Σ
2
3
0 Q

T = L0X
+
0

= arg min
A
‖A‖∗, s.t. PΩ(AX0 − L0) = 0.

Hence, (A0, X0) is a critical point to the problem in (9).
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