
Joint distribution optimal transportation for
domain adaptation

Supplementary Material

1 Illustration on a simple example
We illustrate the behavior of our method on a 3-class toy example (Figure 1). We
consider a classification problem using the hinge loss and H is a Reproducing Kernel
Hilbert Space. Source domain samples are drawn from three different 2D Gaussian
distributions with with different centers and standard deviations. The target domain is
obtained rotating the source distribution by π/4 radian. Two types of kernel are consid-
ered: linear and RBF. In Figure 1.a, one can observe on the first column of images that
using directly a classifier learned on the source domain leads to bad performances be-
cause of the rotation. We then show the iterations of the block coordinate descent which
allows one to recover the true labels of the target domain. It is also interesting to exam-
ine the impact of the α parameter on the success of the method. In Figure 1.b, we show
the evolution of classification accuracy for six different α in the case of RBF kernel.
Relying mostly on the label cost (α = {0.1}) leads to a deterioration of the final accu-
racy. Using only the input space distance (α = {50, 100}), which is equivalent to [2],
allows a performance gain. But it is clear that using both losses with α = {0.5, 1, 10}
leads to the best performance. Also note the small number of iterations required (< 10)
for achieving a steady state.
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Figure 1: Illustration on a toy example. (a): Decision boundaries for linear and RBF
kernels on selected iterations. The source domain is depicted with crosses, while the
target domain samples are class-colored circles. (b): Evolution of the accuracy along
15 iterations of the method for different values of the α parameter;
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Iter caltech→ amazon dslr→ amazon webcam→ caltech
0 89.14 80.9 75.6
1 91.75 86.22 80.23
2 91.44 86.95 81.75
3 91.54 87.68 82.64
4 91.44 87.68 83.26
5 91.65 88.0 83.35
6 91.86 88.1 83.17
7 92.17 87.89 83.08
8 92.28 87.58 83.26
9 92.28 87.58 83.26
10 92.28 87.68 83.35
11 92.28 87.79 83.44
12 92.28 87.79 83.44
13 92.28 87.79 83.44
14 92.28 87.79 83.44

Table 1: Accuracy of the estimated model along BCD iterations on Caltech-office
dataset

2 Block coordinate descent algorithm for solving JDOT
We give in algorithm 1 an overview of the block coordinate descent algorithm used for
solving JDOT.

Algorithm 1 Optimization with Block Coordinate Descent
Initialize function f0 and set k = 1
Set α and λ
while not converged do
γk ← Solve OT problem (3 in paper) with fixed fk−1

fk ← Solve learning problem (7 in paper) with fixed γk

k ← k + 1
end while

3 BCD iterations on real data
We report in Table 1, for a fixed set of parameter (no CV), the evolution of the empirical
error along the iterations of the 15 first iterations of the BCD on a real dataset. We can
see that generally the result stabilizes at around 10 iterations. We can also observe that
the increase in performance is not monotonic, contrary to the toy example.

4 Proof of Theorem 3.1
We first recall some hypothesis used for this theorem.

H ⊂ CΩ is the hypothesis class. L : C×C → R+ is the loss function measuring the
discrepancy between two labels. This loss is assumed to be symmetric, bounded and
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k-lipschitz in its second argument, i.e. there exists k such that for any y1, y2, y3 ∈ C:

|L(y1, y2)− L(y1, y3)| ≤ k|y2 − y3|.
Pt and Ps are respectively the target and source distributions over Ω × C, with

µt and µs the respective marginals over Ω. The expected loss in the target domain
errT (f) is defined for any f ∈ H as

errT (f)
def
= E

(x,y)∼Pt

L(y, f(x)).

We can similarly define errS(f) in the source domain and the expected inter function
loss errT (f, g) = E(x,y)∼Pt

L(g(x), f(x)).

The proxyPft over Ω×C ofPt w.r.t. to µt and f is defined as: Pft = (x, f(x))x∼µt
.

We consider the following transport loss function:

W1(Ps,Pft ) = inf
Π∈Π(Ps,Pf

t )

∫
(Ω×C)2

αd(xs,xt) + L(ys, yt)dΠ((xs, ys), (xt, yt)).

We now recall the definition of the theorem with all the assumptions.

Theorem 4.1 Let H ⊂ CΩ be the hypothesis class where Ω is a compact mesurable
space of finite dimension accompanied with a metric d, and C is the output space.
Let f be any labeling function of ∈ H. Let Ps, Pt, Pft be three probability distri-
butions over Ω × C with bounded support, with Pft defined w.r.t. the marginal µt of
Pt and f , accompanied with a sample of Ns labeled source instances drawn from
Ps and Nt unlabeled instances drawn from µt and labeled by f , such that Ps and
Pft and the associated samples follow the assumptions of Theorem 5.1. Let Π∗ =
argminΠ∈Π(Ps,Pf

t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dΠ((xs, ys), (xt, yt)). Let f∗ be a

Lipschitz labeling function ofH, that verifies the φ-probabilistic transfer Lipschitzness
(PTL) assumption with respect to Π∗ and that minimizes the joint error errS(f∗) +
errT (f∗) w.r.t all compatible PTL functions with Π∗. We assume the instance space
X ⊆ Ω is bounded1 such that |f∗(x1) − f∗(x2)| ≤ M for all x1,x2 ∈ X 2. Let L be
any loss function symmetric, k-lipschitz and that satisfies the triangle inequality. Then,
there exists, c′ and N , such that for Ns > N and Nt > N , for all λ > 0, with α = kλ,
we have with probability at least 1− δ:

errT (f) ≤ W1(P̂s,
ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
Ns

+
1√
Nt

)
+errS(f∗) + errT (f∗) + kMφ(λ).

Proof

errT (f) =E(x,y)∼Pt
L(y, f(x))

≤E(x,y)∼Pt
L(y, f∗(x)) + L(f∗(x), f(x))

=E(x,y)∼Pt
L(f(x), f∗(x)) + errT (f∗) (1)

=E(x,y)∼Pf
t
L(f(x), f∗(x)) + errT (f∗) (2)

= errT f (f∗)− errS(f∗) + errS(f∗) + errT (f∗)

≤ |errT f (f∗)− errS(f∗)|+ errS(f∗) + errT (f∗) (3)
1Since the input space is bounded by say a constant K: ‖x‖ ≤ K, since f∗ is supposed l-Lipschitz,

then we have for any x1,x2: |f(x1)− f(x2)| ≤ l‖x1 − x2‖ ≤ 2lK = M .

3



Line (1) is due to the symmetry of the loss. Line (2) comes from the fact that:
E(x,y)∼Pt

L(f(x), f∗(x)) = E(x,f(x))∼Pf
t
L(f(x), f∗(x))

def
= errT f (f∗(x)).

Now, we have

|errT f (f∗)− errS(f∗)|

=

∣∣∣∣∫
Ω×C
L(y, f∗(x))(Pft (X = x, Y = y)− Ps(X = x, Y = y))dxdy

∣∣∣∣
=

∣∣∣∣∫
Ω×C
L(y, f∗(x))d(Pft − Ps)

∣∣∣∣
≤

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (4)

=

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(yft , f

∗(xs))+

L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t ))

≤
∫

(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(yft , f

∗(xs))
∣∣∣

+
∣∣∣L(yft , f

∗(xs))− L(ys, f
∗(xs))

∣∣∣dΠ∗((xs, ys), (xt, y
f
t ))

≤
∫

(Ω×C)2
k |f∗(xt)− f∗(xs)|+∣∣∣L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (5)

≤ k ∗M ∗ φ(λ) +

∫
(Ω×C)2

kλd(xt,xs) +∣∣∣L(yft , f
∗(xs))− L(ys, f

∗(xs))
∣∣∣dΠ∗((xs, ys), (xt, y

f
t )) (6)

≤
∫

(Ω×C)2
αd(xs,xt) + L(yft , ys)dΠ∗((xs, ys), (xt, y

f
t )) + k ∗M ∗ φ(λ) (7)

≤
∫

(Ω×C)2
αd(xs,xt) + L(ys, y

f
t )dΠ∗((xs, ys), (xt, y

f
t )) + k ∗M ∗ φ(λ) (8)

= W1(Ps,Pft ) + k ∗M ∗ φ(λ). (9)

Line (4) is a consequence of the duality form of the Kantorovitch-Rubinstein theorem
saying that for any coupling Π ∈ Π(Ps, P

f
t ), we have:∣∣∣∣∫

Ω×C
L(y, f∗(x))d(Pft − Ps)

∣∣∣∣
=

∣∣∣∣∣
∫

(Ω×C)2
L(yft , f

∗(xt))− L(ys, f
∗(xs))dΠ((xs, ys), (xt, y

f
t ))

∣∣∣∣∣
≤

∫
(Ω×C)2

∣∣∣L(yft , f
∗(xt))− L(ys, f

∗(xs))
∣∣∣dΠ((xs, ys), (xt, y

f
t )).

Since the inequality is true for any coupling, it is then also true for Π∗. Inequality
(5) is due to the k-lipschitzness of the loss L in its second argument. Inequality (6)
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uses the fact that f∗ and Π∗ verify the probabilistic transfer Lipschitzness property
with probability 1− φ(λ), additionally, taking into account that the deviation between
2 instances with respect to f∗ is bounded by M we have the additional term kMφ(λ)
that covers the regions where the PTL does not hold. (7) is obtained by the symmetry
of d, the use of triangle inequality on L and by replacing kλ by α. Other inequalities
above are due the use of triangle inequality or properties of the absolute value. The last
line (9) is due to the definition of Π∗.

Now, note that by the use of triangle inequality:

W1(Ps,Pft ) ≤ W1(Ps, P̂s) +W1(P̂s,
ˆPft ) +W1(

ˆPft ,P
f
t ) (10)

≤ W1(P̂s,
ˆPft ) +

√
2

c′
log(

2

δ
)

(
1√
Ns

+
1√
Nt

)
. (11)

Indeed, the cost function D((xs, ys), (xt, yt)) = αd(x1,x2) +L(y1, y2) defines a dis-
tance over (Ω × L)2, assuming that Ps and Pft have bounded support and the fact
that our loss function is bounded, we can apply Theorem 5.1 (presented below) on

W1(Ps, P̂s) and W1(
ˆPft ,Pt) above (with probability δ/2 each). The two settings may

have different constants N and c′ and and we consider the maximum N and the mini-
mum c′ that comply with both cases.

Combining inequalities (3), (9), inequality (11) and the use of the union bound, the
theorem holds with probability at least 1− δ for any f ∈ H. �

Note that, additionally to the analysis in the paper, a link can be made with classic
generalization bounds when the two distributions are equal, i.e. Ps = Pt. Indeed, if
we can choose f∗ as the true labeling function on source/target domains such that f∗

is strongly φ-lipschitz w.r.t. Π∗ (i.e. φ(λ) is almost 0), then the bound is similar to a
classic generalization bound: terms involving f∗ are null and using the same sample
for source and target d(x1,x2) = 0 w.r.t the best alignment. Thus, it remains only the
label loss which corresponds to a classic supervised learning loss.

5 Empirical concentration result for Wasserstein dis-
tance

We give now the result from Bolley and co-authors used in the previous section.

Theorem 5.1 (from [1], Theorem 1.1.) Let µ be a probability measure in Z so that
for some α > 0 we have for any z′

∫
Rd e

αdist(z,z′)2dµ < ∞ and µ̂ = 1
N

∑N
i=1 δzi

be the associated empirical measure defined on a sample of independent variables
{zi}Ni=1 drawn from µ. Then, for any d′ > dim(Z) and c′ < c, there exists some
constant N0 depending on d′ and some square exponential moments of µ such that for
any ε > 0 and N ≥ N0 max(ε−(d′+2), 1),

P [W1(µ, µ̂) > ε] ≤ exp

(
−c
′

2
Nε2

)
where c′ can be calculated explicitly.

Note that c is such that µ verifies for any measure ν the Talagrand (transport) in-

equality T1(c) : W1(µ, ν) ≤
√

2
cH(ν|µ) with H is the relative entropy. T1(c) holds
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when for some α > 0 and for any z′:
∫
Rd e

αdist(z,z′)2dµ(z) < ∞, and c can be found
explicitly [1].
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