A Pseudo-Bayesian Algorithm for Robust PCA

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex »Metadata »Paper »Reviews »Supplemental »

Authors

Tae-Hyun Oh, Yasuyuki Matsushita, In Kweon, David Wipf

Abstract

Commonly used in many applications, robust PCA represents an algorithmic attempt to reduce the sensitivity of classical PCA to outliers. The basic idea is to learn a decomposition of some data matrix of interest into low rank and sparse components, the latter representing unwanted outliers. Although the resulting problem is typically NP-hard, convex relaxations provide a computationally-expedient alternative with theoretical support. However, in practical regimes performance guarantees break down and a variety of non-convex alternatives, including Bayesian-inspired models, have been proposed to boost estimation quality. Unfortunately though, without additional a priori knowledge none of these methods can significantly expand the critical operational range such that exact principal subspace recovery is possible. Into this mix we propose a novel pseudo-Bayesian algorithm that explicitly compensates for design weaknesses in many existing non-convex approaches leading to state-of-the-art performance with a sound analytical foundation.