Dual Space Gradient Descent for Online Learning

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews Supplemental


Trung Le, Tu Nguyen, Vu Nguyen, Dinh Phung


One crucial goal in kernel online learning is to bound the model size. Common approaches employ budget maintenance procedures to restrict the model sizes using removal, projection, or merging strategies. Although projection and merging, in the literature, are known to be the most effective strategies, they demand extensive computation whilst removal strategy fails to retain information of the removed vectors. An alternative way to address the model size problem is to apply random features to approximate the kernel function. This allows the model to be maintained directly in the random feature space, hence effectively resolve the curse of kernelization. However, this approach still suffers from a serious shortcoming as it needs to use a high dimensional random feature space to achieve a sufficiently accurate kernel approximation. Consequently, it leads to a significant increase in the computational cost. To address all of these aforementioned challenges, we present in this paper the Dual Space Gradient Descent (DualSGD), a novel framework that utilizes random features as an auxiliary space to maintain information from data points removed during budget maintenance. Consequently, our approach permits the budget to be maintained in a simple, direct and elegant way while simultaneously mitigating the impact of the dimensionality issue on learning performance. We further provide convergence analysis and extensively conduct experiments on five real-world datasets to demonstrate the predictive performance and scalability of our proposed method in comparison with the state-of-the-art baselines.