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1 Generalization beyond the AR(1) case

An AR(1) process models the calcium response to a spike as an instantaneous increase followed by
an exponential decay. This is a good description when the fluorescence rise time constant is small
compared to the length of a time-bin, e.g. when using GCaMP6f [1] and a low imaging frame rate.
For fast imaging rates and slow indicators such as GCaMP6s it is more accurate to explicitly model
the finite rise time. Typically we choose an AR(2) process, though more structured responses (e.g.
multiple decay time constants) can also be modeled with higher values for the order p.

For p > 1 the dynamics is not Markovian any more and the next value depends not only on the
current but on possibly multiple previous time steps. Due to the non-Markovian dynamics, following
along the lines of the AR(1) case, as we do here, just leads to a greedy, approximate solution; we
present an exact primal active set algorithm in the extended journal version [2], which is not as fast
as the greedy one, but still outperforms interior point methods.

For an AR(p) process the sparsity penalty λ‖s‖1 can again be expressed as µ>c, because

λ‖s‖1 = λ1>s = λ

T∑
t=1

T∑
k=1

Gk,tct = λ

T∑
t=1

(1−
min(p,T−t)∑

i=1

γi)ct =

T∑
t=1

µtct = µ>c, (S1)

with µt := λ(1−
∑min(p,T−t)
i=1 γi), by evaluating the column sums of G. We use matrix- and vector

notation to describe the dynamics of ct. Let the transition matrix A, multi time step calcium vectors
ζt, and vector e be defined as

A =

γ1 γ2 . . . γp
1 0 . . . 0

...
. . .

. . .
...

0 . . . 1 0

 ζt =

 ct
ct−1

...
ct−p+1

 e =

1
0

...
0

 (S2)

The calcium dynamics is given by ζt = Aζt−1 + ste. Analogously to the AR(1) case we derive an
algorithm that moves through the time series until it finds a violation of the constraint c′τ ≥ e>Aζ′τ−1
for some time τ , updates c′τ and c′τ−1, and backtracks further until the updates do not violate any
constraints at previous time steps. Note that we also implicitly have constraints on ζt, enforcing the
fact that ζt+1 is mostly a time-shifted version of ζt.

Assuming we need to backtrack by ∆t steps and introducing again t̂ = τ −∆t, the objective is to
minimize

∑τ
t=t̂(

1
2 (c′t − yt)2 + µtc

′
t) with respect to c′

t̂
under the active constraints ζt = Aζt−1 for

t = t̂+ 1, ..., τ . Plugging in the constraints on the dynamics the objective reads

minimize
c′
t̂

1

2

∆t∑
t=0

(e>Atζ′
t̂
− yt+t̂)

2 +

∆t∑
t=0

µt+t̂e
>Atζ′

t̂
(S3)
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Setting the derivative with respect to c′
t̂

to zero and solving for c′
t̂

yields

c′
t̂

=

∑∆t
t=0

(
yt+t̂ − µt+t̂ −

∑p
k=2(At)1,kc

′
t̂+1−k

)
(At)1,1∑∆t

t=0(At)2
1,1

(S4)

where (At)2
1,1 denotes the square of the entry in the first row and column in the matrix obtained as t-th

matrix power of A. Again, take note that these entries describe the calcium kernel h with components
h1+t = (At)1,1. Equation (S4) reduces to equation (8) for p = 1 where A is just a 1×1-matrix with
entry γ. The next values are updated according to c′

t̂+t
=
∑p
k=1 γkc

′
t̂+t−k for t = 1, ...,∆t.

We derive again an efficient formulation of the algorithm using pools. Considering the denominator
in equation (S4) as a weight in analogy to the AR(1) case and calculating the weighted sum upon
merging of pools is not valid for p > 1 because in general (At)1,1(Au)1,1 6= (At+u)1,1. Introducing
pools is still useful as it allows us to keep track of only a small number of p elements in each pool.
While for the case of AR(1) we only kept track of each group’s first element, we now keep track
of the first as well as the p− 1 last elements. In order to speed up the update in equation (S4), we
can precompute the powers of A and store (At)1,: in memory. Note that only the powers up to the
maximal inter-spike-interval are needed, which can be much smaller than T ; of course, for very large
values of t, (At)1,: ≈ 0, by the stability of A; thus for high powers the entries of (At)1,: can also
be well approximated by a quickly computable exponential function or simply be truncated. The
possible values of the denominator can be precomputed as well. The final algorithm for AR(2) is
summarized in Algorithm S1, with the extension to p > 2 being straight forward but tedious. It
includes a special treatment of the first pool discussed in the next section.

According to equation (S4) the solution is a linear function of µ, and hence of λ. Thus the hard noise
constraint for the RSS ‖c− y‖2 = σ2T is a quadratic equation in λ, that can be solved analytically,
under the assumption of invariant pool structure analogous to above case of AR(1), but involving more
lengthy expressions which we do not state explicitly. Updating all pools independently according to
equation (S4) can give rise to violated constraints, requiring us to rerun the algorithm, warm-started
by initializing with the current set of pools, as described in the main text. After 2-3 iterations no
pools need to be merged and the final solution has been found. We can again interleave an update
step for optimizing the parameters γi, as described in the main text.

2 Initial calcium fluorescence

Thus far we have not explicitly taken account of elevated initial calcium fluorescence levels due to
previous spiking activity. For the case p = 1 positive fluorescence values c1 capture initial calcium
fluorescence that decays exponentially. Positive values c1 lead via s = Gc to a positive spike s1.
Instead of attributing the elevated fluorescence to a spike at time t = 1, a positive s1 more likely
accounts for previous spiking activity. Therefore we remove the initial spike by setting s1 = 0.

For p = 2 we can model the effect of prior spiking activity as an exponential decay, too. Because
the validity of the constraint ct ≥

∑p
i=1 γict−i can only be evaluated if t > p, for p > 1 the first

pool stays thus far merely at its initialization (y1 − µ1, y1 − µ1, 1, 1), and the noisy raw data value
is taken as true c1. Instead, we suggest to use the first pool to model the exponential decay due to
previous spiking activity. Given c1 = v1 the fluorescence values ct for t = 1, ..., l1 are then given by
dt−1c1 with decay variable d = 1

2 (γ1 +
√
γ2

1 + 4γ2) [3]. The first pool is merged with the second
one whenever the constraint v2 ≥ dl1v1 is violated, cf. Algorithm S1.

3 Weighted regression

For sake of generality we consider the case of weighted regression with weights θ.

minimize
c

1

2

∑
t

θt(ct − yt)2 + λ
∑
t

st subject to s = Gc ≥ 0 (S5)

These weights could be used to give lower weight to time points with higher variance for het-
eroscedastic data, for example for the Poissonian statistics of photon counts where the variance of the
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Algorithm S1 Fast greedy online deconvolution algorithm for AR(2) processes with positive jumps
Require: data y, AR parameters γ1, γ2, regularization parameter λ, upper bound on inter-spike-interval ISImax

1: for t = 0, ..., ISImax do . precompute
2: (αt, βt) = (At)†1,:, δt+1 =

∑t
k=0 α

2
k, εt+1 =

∑t
k=0 αkβk

3: let yt ← yt − λ
(
1−

∑min(2,T−t)
i=1 γi

)
∀t, i← 1 and d = 1

2
(γ1 +

√
γ2
1 + 4γ2)

4: initialize pools as P = {(vt, ut, tt, lt)}Tt=1 ← {(yt, yt, t, 1)}Tt=1

5: while i < |P| do . iterate until end
6: while i < |P| and (vi+1 ≥ αlivi + βliui−1 if i > 1 else v2 ≥ du1) do . move forward
7: i← i+ 1
8: if i == |P| then break
9: while i > 0 and (vi+1 < αlivi + βliui−1 if i > 1 else v2 < du1) do . track back

10: li ← li + li+1

11: vi ←
∑li−1

k=0
αkyti+k−εliui−1

δli
if i > 1 else max

(
0,

∑l1
t=1 d

t−1yt∑l1−1
t=0 d2t

)
. Eq. (S4,8)

12: ui ← αli−1vi + βli−1ui−1 if i > 1 else dl1−1v1
13: remove Pi+1

14: i← i− 1
15: i← i+ 1
16: for (v, u, t̂, l) in P do . construct solution for all t
17: ct̂ ← v
18: for t = t̂+ 1, ..., t̂+ l − 1 do
19: ct ← γ1ct−1 + γ2ct−2 if t̂ > 1 else dct−1

20: return c
† The elements of the matrix powers At can be efficiently computed using the equivalent expression as
difference of two exponentials well known in the AR / linear systems literature [3]: (At)1,1 = dt+1−rt+1

d−r and

(At)1,2 = γ2
dt−rt
d−r , with decay variable d = 1

2
(γ1 +

√
γ2
1 + 4γ2) and rise variable r = 1

2
(γ1 −

√
γ2
1 + 4γ2).

fluorescence increases with its mean. Further, instead of the linear relationship between fluorescence
and calcium concentration (Eq. 2) we could have a nonlinear observation model

yt = f(ct) + εt (S6)

where the nonlinear function f can include saturation effects. It is often taken to be the Hill equation,
i.e., f(c) = acn

cn+kd
+ b, with Hill coefficient n, dissociation constant kd, scaling factor a and baseline

b [4]. Applying Newton’s algorithm to optimize for s (or equivalently c) results for each Newton
step in a weighted constrained regression problem as in equation (S5).

For an AR(1) process introducing weights changes equation (7) to

minimize
c′
t̂

1

2

∆t∑
t=0

θt+t̂(γ
tc′
t̂
− yt+t̂)

2 +

∆t∑
t=0

µt+t̂γ
tc′
t̂

(S7)

and its solution is a modification of equation (8) by adding the weights

c′
t̂

=

∑∆t
t=0(θt+t̂yt+t̂ − µt+t̂)γt∑∆t

t=0 θt+t̂γ
2t

(S8)

We merely need to initialize each pool as (vt, wt, tt, lt) = (yt − µt

θt
, θt, t, 1) for each time step t and

the updates according to equations (9-11) guarantee that equation (S8) holds for all values vi = c′ti
as we prove in the next section.

For an AR(p) process introducing weights changes equation (S4) to

c′
t̂

=

∑∆t
t=0

(
θt+t̂

(
yt+t̂ −

∑p
k=2(At)1,kc

′
t̂+1−k

)
− µt+t̂

)
(At)1,1∑∆t

t=0 θt+t̂(A
t)2

1,1

(S9)

and the same modified initialization holds.

3



4 Validity of updates according to equations (9-11)

Theorem 1. The updates according to equations (9-11) guarantee that equations (8, S8) hold for all
values vi = c′ti .

Proof. We will prove above theorem by induction.

Assumption: Let for the denominator and numerator of equation (S8) hold

wi =

li−1∑
t=0

θt+tiγ
2t (S10)

and

wivi =

li−1∑
t=0

(θt+tiyt+ti − µt+ti) γt (S11)

Base case: Pools are initialized as (vt, wt, tt, lt) = (yt − µt

θt
, θt, t, 1) for all t, such that equations

(S10, S11) hold.

Induction step: Consider two pools (vi, wi, ti, li) and (vi+1, wi+1, ti+1, li+1) that satisfy equations
(S10, S11) and are merged to pool (v′i, w

′
i, t
′
i, l
′
i) according to equations (9-11).

w′i = wi + γ2liwi+1 =

li−1∑
t=0

θt+tiγ
2t +

li+1−1∑
t=0

θt+ti+1γ
2liγ2t

=

li+li+1−1∑
t=0

θt+tiγ
2t =

l′i−1∑
t=0

θt+t′iγ
2t

where we used ti+1 = ti + li. Thus after the update equation (S10) holds for the merged pool too.
Now it just remains to show this also for the values:

w′iv
′
i = wivi + γliwi+1vi+1

=

li−1∑
t=0

(θt+tiyt+ti − µt+ti) γt +

li+1−1∑
t=0

(
θt+ti+1yt+ti+1 − µt+ti+1

)
γliγt

=

li+li+1−1∑
t=0

(θt+tiyt+ti − µt+ti) γt =

l′i−1∑
t=0

(
θt+t′iyt+t′i − µt+t′i

)
γt

5 Online spike inference with limited lag

For an exact solution of the nonnegative deconvolution problem of an AR(1) process OASIS needs
to backtrack to the most recent spike. Such delays could be too long for some interesting closed
loop experiments; therefore we were interested in how well the method performs if backtracking is
limited to just few frames. We varied the lag in the online estimator, i.e. the number of future samples
observed before assigning a spike at time zero, for different signal-to-noise ratios (SNR). For each
lag we chose the sparsity parameter λ such that the noise constraint ‖c− y‖2 ≤ σ2T was tight. This
yielded increasing values of λ for smaller lags, compensating for the fact that limiting backtracking
to fewer frames also imposes fewer constraints (ct ≥ γct−1) on the dynamics.

The obtained results are depicted in Figure S1. For realistic SNR (3-5, though [1] report even higher
values, cf. Fig. 4C) and sample rates (30 Hz), lags of 3-5 yielded similar results as offline estimation.
The exact number depends on the noise; however, the main effect of noise was to reduce the optimal
performance attainable even with batch processing, as the asymptotic values in Figure S1A reveal. In
the extended journal version [2] we show how the results further improve by introducing a positive
threshold smin on the spike size.
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Figure S1: Varied lag in the online estimator. (A) Performance of spike inference as function of
lag for various noise levels (i.e., inverse SNR). We used correlation of the inferred spike train as
similarity measure and compared to ground truth as well as to the optimally recoverable activity
when the lag is unlimited as in offline processing. (B) Inferred trace for increasing lag using the data
depicted in Fig. 4A with high noise level (σ = 0.3). The gray lines indicate the true spike times.

6 Supplementary video

The supplementary video illustrates OASIS for an AR(1) process. As in Figure 2, red lines depict
true spike times and the shaded background shows how the time points are gathered in pools. The
pool currently under consideration is indicated by the blue crosses. The upper panel shows how the
calcium fluorescence trace c′ develops while the algorithm runs, cf. Figure 2. The video additionally
shows the deconvolved trace s′ = Gc′ (Eq. 3) in the lower panel. The algorithm sweeps through the
time series and enforces the constraint s′ ≥ 0.

7 Code availability

We provide a Python implementation of our algorithm online (https://github.com/j-friedrich/OASIS).
The code is readily usable on new data and includes example scripts that produce all figures of this
paper.
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