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1 Detailed Model Description

In this section, we are going to precisely define a non differentiable version model that we
use in the main paper. This model can be seen as a recurrent network. Indeed, it takes as
input an initial memory tape, performs a certain number of iterations and outputs a final
memory tape. The memory tape is an array of M cells, where a cell is an element holding a
single integer value. The internal state of this recurrent model are the memory, the registers
and the instruction register. The registers are another set of R cells that are internal to the
model. The instruction register is a single cell used in a specific way described later. These
internal states are notedMt = {mt

1,m
t
2, . . . ,m

t
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1, r
t
2, . . . , r

t
R} and IR

t for the
memory, the registers and the instruction register respectively.
Figure 1 of the main paper describes in more detail how the different elements interact with
each other. At each iteration, the Controller takes as input the value of the instruction
register IRt and outputs four values:

et, at, bt, ot = Controller(IRt). (1)

The first value et is used to select one of the instruction of the Machine to execute at this
iteration. The second and third values at and bt will identify which registers to use as the
first and second argument for the selected instruction. The fourth value ot identity the
output register where to write the result of the executed instruction. The Machine then
takes as input these four values and the internal state and computes the updated value of
the internal state and a stop flag:

Mt+1,Rt+1, IRt+1, stop = Machine(Mt,Rt, IRt, et, at, bt, ot). (2)

The stop flag is a binary flag. When its value is 1, it means that the model will stop the
execution and the current memory state will be returned.

The Machine The machine is a deterministic function that increments the instruction
register and executes the command given by the Controller to update the current internal
state. The set of instructions that can be executed by the Machine can be found in Figure
1b. Each instruction takes two values as arguments and returns a value. Additionally, some
of these instructions have side effects. This mean that they do not just output a value,
they perform another task. This other task can be for example to modify the content of
the memory. All the considered side effects can be found in Figure 1b. By convention,
instructions that don’t have a value to return and that are used only for their side-effect will
return a value of 0.

The Controller The Controller is a function that takes as input a single value and outputs
four different values. The Controller’s internal parameters, the initial values for the registers
and the initial value of the instruction register define uniquely a given Controller.
The usual choice in the literature is to use an LSTM network[1, 2, 3] as controller. Our
choice was to instead use a simpler model. Indeed, our Controller associates a command
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to each possible value of the instruction register. Since the instruction register’s value will
increase by one at each iteration, this will enforce the Controller to encode in its weights
what to do at each iteration. If we were using a recurrent controller the same instruction
register could potentially be associated to different sets of outputs and we would lose this
one to one mapping.
To make this clearer, we first rewrite the instruction register as an indicator vector with a 1
at the position of its value:

Ii =
{

1 if i = IRt

0 otherwise . (3)

In this case, we can write a single output at of the Controller as the result of a linear function
of I:

at = Wa ∗ I , (4)
whereWa is the 1xM matrix containing the value that need to be chosen as first arguments for
each possible value of the instruction register and ∗ represent a matrix vector multiplication.

1.1 Mathematical details of the differentiable model

In order to make the model differentiable, every value and every choice are replaced by
probability distributions over the possible choices. The main paper introduces how, using
convex combinations of probability, the execution of the Machine is made differentiable. We
present here the mathematical formulation of this procedure for the case of the side-effects,
which was eluded in the paper for space reasons.

STOP In the discrete model, the execution is halted when the STOP instruction is
executed. However, in the differentiable model, the STOP instruction may be executed
with a probability smaller than 1. To take this into account, when executing the model, we
keep track of the probability that the program should have terminated before this iteration
based on the probability associated to the STOP instruction at each iteration. Once this
probability goes over a threshold ηstop ∈]0, 1], the execution is halted.

READ The mechanism is entirely the same as the one used to compute the arguments
based on the registers and a probability distribution over the registers.

JEZ We note IRt+1
jez and IRt+1

njez the new value of IRt if we had respectively executed
or not the JEZ instruction. We also have et

jez the probability of executing this instruction at
iteration t. The new value of the instruction register is:

IRt+1 = IRt+1
njez · (1− et

jez) + IRt+1
jez · et

jez (5)

IRt+1
jez is himself computed based on several probability distribution. If we consider that

the instruction JEZ is executed with probabilistic arguments cond and label, its value is
given by

IRt+1
jez = label · cond0 + INC(IRt) · (1− cond0) (6)

With a probability equals to the one that the first argument is equal to zero, the new value
of IRt is label. With the complement, it is equal to the incremented version of its current
value, as the machine automatically increments the instruction register.

WRITE The mechanism is fairly similar to the one of the JEZ instruction.
We note Mt+1

W RIT E and Mt+1
nW RIT E the new value of Mt if we had respectively executed or

not the WRITE instruction. We also have et
write the probability of executing this instruction

at iteration t. The new value of the memory matrix register is:

Mt+1 = Mt+1
nW RIT E · (1− e

t
write) + Mt+1

W RIT E · e
t
W RIT E (7)

As with the JEZ instruction, the value of Mt+1
W RIT E is dependent on the two probability

distribution given as input: addr and val. The probability that the i-th cell of the memory
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tape contains the value j after the update is:
M t+1

i,j = addri · valj + (1− addri) ·M t
i,j (8)

Note that this can done using linear algebra operations so as to update everything in one
global operation.

Mt+1 =
(
((1− addr)1T )⊗Mt

)
+ (addr valT ) (9)

2 Specification of the loss

This loss contains four terms that will balance the correctness of the learnt algorithm, proper
usage of the stop signal and speed of the algorithms. The parameters defining the models are
the weight of the Controller’s function and the initial value of the registers. When running
the model with the parameters θ, we consider that the execution ran for T time steps. We
consider the memory to have a size M and that each number can be an integer between
0 and M − 1. Mt was the state of the memory at the t-th step. T and C are the target
memory and the 0-1 mask of the elements we want to consider. All these elements are
matrices where for example Mt

i,j is the probability of the i-th entry of the memory to take
the value j at the step t. We also note pstop,t the probability outputted by the Machine that
it should have stopped before iteration t.

Correctness The first term corresponds to the correctness of the given algorithm. For a
given input, we have the expected output and a mask. The mask allows us to know which
elements in the memory we should consider when comparing the solutions. For the given
input, we will compare the values specified by the mask of the expected output with the
final memory tape provided by the execution. We compare them with the L2 distance in the
probability space. Using the notations from above, we can write this term as:

Lc(θ) =
∑
i,j

Ci,j(MT
i,j(θ)−Ti,j)2. (10)

If we optimised only this first term, nothing would encourage the learnt algorithm to use the
STOP instruction and halt as soon as it finished.

Halting To prevent programs to take an infinite amount of time without stopping, we
defined a maximum number of iterations Tmax after which the execution is halted. During
training, we also add a penalty if the Controller didn’t halt before this limit:

LsTmax
(θ) = (1− pstop−T (θ)) · [T == Tmax] (11)

Efficiency If we consider only the above mentioned losses, the program will make sure to
halt by itself but won’t do it as early as possible. We incentivise this behaviour by penalising
each iteration taken by the program where it does not stop:

Lt(θ) =
∑

t∈[1,T−1]

(1− pstop,t(θ)). (12)

Confidence Moreover, we want the algorithm to have a good confidence to stop when
it has found the correct output. To do so, we add the following term which will penalise
probability of stopping if the current state of the memory is not the expected one:

Lst(θ) =
∑

t∈[2,T ]

∑
i,j

(pstop,t(θ)− pstop,t−1(θ))Ci,j(Mt
i,j(θ)−Ti,j)2. (13)

The increase in probability (pstop,t − pstop,t−1) corresponds to the probability of stopping
exactly at iteration t. So, this is equivalent to the expected error made.

Total loss The complete loss that we use is then the following:
L(θ) = αLc(θ) + βLsTmax

(θ) + γLst(θ) + δLt(θ). (14)

3



3 Distributed representation of the program

For the most of out experiments, the learned weights are fully interpretable as they first in
the first type of interpretability. However, in some specific cases, under the pressure of our
loss encouraging a smaller number of iterations, an interesting behavior emerges.

Remarks It is interesting to note that the decompiled version is not straightforward to
interpret. Indeed when we reach a program that has non Dirac-delta distributions in its
weights, we cannot perform the inverse of the one-to-one mapping performed by the compiler.
In fact, it relies on this blurriness to be able to execute the program with a smaller number
of instruction. Notably, by having some blurriness on the JEZ instruction, the program can
hide additional instructions, by creating a distributed state. We now explain the mechanism
used to achieve this.

Creating a distributed state Consider the following program and assume that the initial
value of IR is 0:
Initial Registers:
R1 = 0;R2 = 1;R3 = 4, R4 = 0

Program:
0 : R1 = READ (R1, R4)
1 : R4 = JEZ (R1, R3)
2 : R4 = WRITE(R1, R1)
3 : R4 = WRITE(R1, R3)

If you take this program and execute it for three iterations, it will: read the first value of
the tape into R1. Then, if this value is zero, it will jump to State 4, otherwise it will just
increment IR. This means that depending on the value that was in R1, the next instruction
that will be executed will be different (in this case, the difference between State 3 and State
4 is which registers they will be writing from). This is our standard way of implementing
conditionals.
Imagine that, after learning, the second instruction in our example program has 0.5 probability
of being a JEZ and 0.5 probability of being a ZERO. If the content of R1 is a zero, according
to the JEZ, we should jump to State 4, but this instruction is executed with a probability
of 0.5. We also have 0.5 probability of executing the ZERO instruction, which would lead to
State 3.
Therefore, IR is not a Dirac-delta distribution anymore but points to State 3 with probability
0.5 and State 4 with probability 0.5.

Exploiting a distributed state To illustrate, we will discuss how the Controller computes
a for a model with 3 registers. The Table 1 show an example of some weights for such a
controller.

R1 R2 R3
State 1 20 5 -20
State 2 -20 5 20

Table 1: Controller Weights

If we are in State 1, the output of the controller is going to be
out = softmax([20, 5,−20]) = [0.9999..., 3e−7, 4e−18] (15)

If we are in State 2, the output of the controller is going to be
out = softmax([−20, 5, 20]) = [4e−18, 3e−7, 0.9999...] (16)

In both cases, the output of the controller is therefore going to be almost discrete. In State
1, R1 would be chosen and in State 2, R3 would be chosen.
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However, in the case where we have a distributed state with probability 0.5 over State 1 and
0.5 over State 2, the output would be:

out = softmax(0.5 ∗ [−20, 5, 20] + 0.5[20, 5,−20])
= softmax([0, 10, 0])
= [4e−5, 0.999, 4e−5].

(17)

Note that the result of the distributed state is actually different from the result of the discrete
states. Moreover it is still a discrete choice of the second register.
Because this program contains distributed elements, it is not possible to perform the one-to-
one mapping between the weights and the lines of code. Though every instruction executed
by the program, except for the JEZ, are binary. This means that this model can be translated
to a regular program that will take exactly the same runtime, but will require more lines of
codes than the number of lines in the matrix.

4 Alternative Learning Strategies

A critique that can be made to this method is that we will still initialise close to a local
minimum. Another approach might be to start from a random initialisation but adding a
penalty on the value of the weights such that they are encourage to be close to the generic
algorithm. This can be seen as L2 regularisation but instead of pushing the weights to 0, we
push then with the value corresponding to the generic algorithm. If we start with a very
high value of this penalty but use an annealing schedule where its importance is very quickly
reduced, this is going to be equivalent to the previous method.

5 Possible Extension

5.1 Making objective function differentiable

These experiments showed that we can transform any program that perform a mapping
between an input memory tape to an output memory tape to a set of parameters and execute
it using our model. The first point we want to make here is that this means that we take
any program and transform it into a differentiable function easily. For example, if we want
to learn a model that given a graph and two nodes a and b, will output the list of nodes to
go through to go from a to b in the shortest amount of time. We can easily define the loss of
the length of the path outputted by the model. Unfortunately, the function that computes
this length from the set of nodes is not differentiable. Here we could implement this function
in our model and use it between the prediction of the model and the loss function to get an
end to end trainable system.

5.2 Beyond mimicking and towards open problems

It would even be possible to generalise our learning procedure to more complex problems
for which we don’t have a ground truth output. For example, we could consider problems
where the exact answer for a given input is not computable or not unique. If the goodness
of a solution can be computed easily, this value could be used as training objective. Any
program giving a solution could be used as initialisation and our framework would improve
it, making it generate better solutions.

6 Example tasks

This section will present the programs that we use as initialisation for the experiment section.

6.1 Access

In this task, the first element in the memory is a value k. Starting from the second element,
the memory contains a zero-terminated list. The goal is to access the k-th element in the
list that is zero-indexed. The program associated with this task can be found in Listing 1.
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� �
1 var k = 0
2 k = READ (0)
3 k = INC(k)
4 k = READ(k)
5 WRITE (0, k)
6 STOP ()� �

Listing 1: Access Task

Example input: 6 9 1 2 7 9 8 1 3 5
Output: 1 9 1 2 7 9 8 1 3 5

6.2 Copy

In this task, the first element in the memory is a pointer p. Starting from the second element,
the memory contains a zero-terminated list. The goal is to copy this list at the given pointer.
The program associated with this task can be found in Listing 2.� �

1 var read_addr = 0
2 var read_value = 0
3 var write_addr = 0
4

5 write_addr = READ (0)
6 l_loop : read_value = READ( read_addr )
7 JEZ(read_value , l_stop )
8 WRITE (write_addr , read_value )
9 read_addr = INC( read_addr )

10 write_addr = INC( write_addr )
11 JEZ (0, l_loop )
12

13 l_stop : STOP ()� �
Listing 2: Copy Task

Example input: 9 11 3 1 5 14 0 0 0 0 0 0 0 0 0
Output: 9 11 3 1 5 14 0 0 0 11 3 1 5 14 0

6.3 Increment

In this task, the memory contains a zero-terminated list. The goal is to increment each value
in the list by 1. The program associated with this task can be found in Listing 3.� �

1 var read_addr = 0
2 var read_value = 0
3

4 l_loop : read_value = READ( read_addr )
5 JEZ(read_value , l_stop )
6 read_value = INC( read_value )
7 WRITE (read_addr , read_value )
8 read_addr = INC( read_addr )
9 JEZ (0, l_loop )

10

11 l_stop : STOP ()� �
Listing 3: Increment Task

Example input: 1 2 2 3 0 0 0
Output: 2 3 3 4 0 0 0
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6.4 Reverse

In this task, the first element in the memory is a pointer p. Starting from the second element,
the memory contains a zero-terminated list. The goal is to copy this list at the given pointer
in the reverse order. The program associated with this task can be found in Listing 4.� �

1 var read_addr = 0
2 var read_value = 0
3 var write_addr = 0
4

5 write_addr = READ( write_addr )
6 l_count_phase : read_value = READ( read_addr )
7 JEZ(read_value , l_copy_phase )
8 read_addr = INC( read_addr )
9 JEZ (0, l_count_phase )

10

11 l_copy_phase : read_addr = DEC( read_addr )
12 JEZ(read_addr , l_stop )
13 read_value = READ( read_addr )
14 WRITE (write_addr , read_value )
15 write_addr = INC( write_addr )
16 JEZ (0, l_copy_phase )
17

18 l_stop : STOP ()� �
Listing 4: Reverse Task

Example input: 5 7 2 13 14 0 0 0 0 0 0 0 0 0 0
Output: 5 7 2 13 14 14 13 2 7 0 0 0 0 0 0

6.5 Permutation

In this task, the memory contains two zero-terminated list one after the other. The first
contains a set of indices. the second contains a set of values. The goal is to fill the first list
with the values in the second list at the given index. The program associated with this task
can be found in Listing 5.� �

1 var read_addr = 0
2 var read_value = 0
3 var write_offset = 0
4

5 l_count_phase : read_value = READ( write_offset )
6 write_offset = INC( write_offset )
7 JEZ(read_value , l_copy_phase )
8 JEZ (0, l_count_phase )
9

10 l_copy_phase : read_value = DEC( read_addr )
11 JEZ(read_value , l_stop )
12 read_value = ADD( write_offset , read_value )
13 read_value = READ( read_value )
14 WRITE (read_addr , read_value )
15 read_addr = INC( read_addr )
16 JEZ (0, l_copy_phase )
17 l_stop : STOP ()� �

Listing 5: Permutation Task

Example input: 2 1 3 0 13 4 6 0 0 0 0 0 0 0 0
Output: 4 13 6 0 13 4 6 0 0 0 0 0 0 0 0
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6.6 Swap

In this task, the first two elements in the memory are pointers p and q. Starting from the
third element, the memory contains a zero-terminated list. The goal is to swap the elements
pointed by p and q in the list that is zero-indexed. The program associated with this task
can be found in Listing 6.� �

1 var p = 0
2 var p_val = 0
3 var q = 0
4 var q_val = 0
5

6 p = READ (0)
7 q = READ (1)
8 p_val = READ(p)
9 q_val = READ(q)

10 WRITE (q, p_val)
11 WRITE (p, q_val)
12 STOP ()� �

Listing 6: Swap Task

Example input: 1 3 7 6 7 5 2 0 0 0
Output: 1 3 7 5 7 6 2 0 0 0

6.7 ListSearch

In this task, the first three elements in the memory are a pointer to the head of the linked
list, the value we are looking for v and a pointer to a place in memory where to store the
result. The rest of the memory contains the linked list. Each element in the linked list is two
values, the first one is the pointer to the next element, the second is the value contained in
this element. By convention, the last element in the list points to the address 0. The goal is
to return the pointer to the first element whose value is equal to v. The program associated
with this task can be found in Listing 7.� �

1 var p_out = 0
2 var p_current = 0
3 var val_current = 0
4 var val_searched = 0
5

6 val_searched = READ (1)
7 p_out = READ (2)
8 l_loop : p_current = READ( p_current )
9 val_current = INC( p_current )

10 val_current = READ( val_current )
11 val_current = SUB( val_current , val_searched )
12 JEZ( val_current , l_stop )
13 JEZ (0, l_loop )
14 l_stop : WRITE (p_out , p_current )
15 STOP ()� �

Listing 7: ListSearch Task

Example input: 11 10 2 9 4 3 10 0 6 7 13 5 12 0 0
Output: 11 10 5 9 4 3 10 0 6 7 13 5 12 0 0

8



6.8 ListK

In this task, the first three elements in the memory are a pointer to the head of the linked
list, the number of hops we want to do k in the list and a pointer to a place in memory
where to store the result. The rest of the memory contains the linked list. Each element in
the linked list is two values, the first one is the pointer to the next element, the second is
the value contained in this element. By convention, the last element in the list points to
the address 0. The goal is to return the value of the k-th element of the linked list. The
program associated with this task can be found in Listing 8.� �

1 var p_out = 0
2 var p_current = 0
3 var val_current = 0
4 var k = 0
5

6 k = READ (1)
7 p_out = READ (2)
8 l_loop : p_current = READ( p_current )
9 k = DEC(k)

10 JEZ(k, l_stop )
11 JEZ (0, l_loop )
12 l_stop : p_current = INC( p_current )
13 p_current = READ( p_current )
14 WRITE (p_out , p_current )
15 STOP ()� �

Listing 8: ListK Task

Example input: 3 2 2 9 15 0 0 0 1 15 17 7 13 0 0 11
Output: 3 2 17 9 15 0 0 0 1 15 17 7 13 0 0 11
10 0 0 0
10 0 0 0

6.9 Walk BST

In this task, the first two elements in the memory are a pointer to the head of the BST and a
pointer to a place in memory where to store the result. Starting at the third element, there
is a zero-terminated list containing the instructions on how to traverse in the BST. The rest
of the memory contains the BST. Each element in the BST has three values, the first one is
the value of this node, the second is the pointer to the left node and the third is the pointer
to the right element. By convention, the leafs points to the address 0. The goal is to return
the value of the node we get at after following the instructions. The instructions are 1 or
2 to go respectively to the left or the right. The program associated with this task can be
found in Listing 9.
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� �
1 var p_out = 0
2 var p_current = 0
3 var p_instr = 0
4 var instr = 0
5

6 p_current = READ (0)
7 p_out = READ (1)
8 instr = READ (2)
9

10 l_loop : JEZ(instr , l_stop )
11 p_current = ADD(p_current , instr)
12 p_current = READ( p_current )
13 p_instr = INC( p_instr )
14 JEZ (0, l_loop )
15

16 l_stop : p_current = READ( p_current )
17 WRITE (p_out , p_current )
18 STOP ()� �

Listing 9: WalkBST Task

Example input: 12 1 1 2 0 0 15 0 9 23 0 0 11 15 6
Output: 12 10 1 2 0 0 15 0 9 23 0 0 11 15 6
8 0 24 0 0 0 0 0 0 10 0 0 0 0 0
8 0 24 0 0 0 0 0 0 10 0 0 0 0 0

6.10 Merge

In this task, the first three elements in the memory are pointers to respectively, the first list,
the second list and the output. The two lists are zero-terminated sorted lists. The goal is to
merge the two lists into a single sorted zero-terminated list that starts at the output pointer.
The program associated with this task can be found in Listing 10.
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� �
1 var p_first_list = 0
2 var val_first_list = 0
3 var p_second_list = 0
4 var val_second_list = 0
5 var p_output_list = 0
6 var min = 0
7

8 p_first_list = READ (0)
9 p_second_list = READ (1)

10 p_output_list = READ (2)
11

12 l_loop : val_first_list = READ( p_first_list )
13 val_second_list = READ( p_second_list )
14 JEZ( val_first_list , l_first_finished )
15 JEZ( val_second_list , l_second_finished )
16 min = MIN( val_first_list , val_second_list )
17 min = SUB( val_first_list , min)
18 JEZ(min , l_first_smaller )
19

20 WRITE ( p_output_list , val_first_list )
21 p_output_list = INC( p_output_list )
22 p_first_list = INC( p_first_list )
23 JEZ (0, l_loop )
24

25 l_first_smaller : WRITE ( p_output_list , val_second_list )
26 p_output_list = INC( p_output_list )
27 p_second_list = INC( p_second_list )
28 JEZ (0, l_loop )
29

30 l_first_finished : p_first_list = ADD( p_second_list , 0)
31 val_first_list = ADD( val_second_list , 0)
32

33 l_second_finished : WRITE ( p_output_list , val_first_list )
34 p_first_list = INC( p_first_list )
35 p_output_list = INC( p_output_list )
36 val_first_list = READ( p_first_list )
37 JEZ( val_first_list , l_stop )
38 JEZ (0, l_second_finished )
39

40 l_stop : STOP ()� �
Listing 10: Merge Task

Example input: 3 8 11 27 17 16 1 0 29 26 0 0 0 0 0
Output: 3 8 11 27 17 16 1 0 29 26 0 29 27 26 17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0

6.11 Dijkstra

In this task, we are provided with a graph represented in the input memory as follow. The
first element is a pointer pout indicating where to write the results. The following elements
contain a zero-terminated array with one entry for each vertex in the graph. Each entry is a
pointer to a zero-terminated list that contains a pair of values for each outgoing edge of the
considered node. Each pair of value contains first the index in the first array of the child node
and the second value contains the cost of this edge. The goal is to write a zero-terminated
list at the address provided by pout that will contain the value of the shortest path from the
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first node in the list to this node. The program associated with this task can be found in
Listings 11 and 12.
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� �
1 var min = 0
2 var argmin = 0
3

4 var p_out = 0
5 var p_out_temp = 0
6 var p_in = 1
7 var p_in_temp = 1
8

9 var nnodes = 0
10

11 var zero = 0
12 var big = 99
13

14 var tmp_node = 0
15 var tmp_weight = 0
16 var tmp_current = 0
17 var tmp = 0
18

19 var didsmth = 0
20

21 p_out = READ(p_out)
22 p_out_temp = ADD(p_out , zero)
23

24 tmp_current = INC(zero)
25 l_loop_nnodes :tmp = READ( p_in_temp )
26 JEZ(tmp , l_found_nnodes )
27 WRITE (p_out_temp , big)
28 p_out_temp = INC( p_out_temp )
29 WRITE (p_out_temp , tmp_current )
30 p_out_temp = INC( p_out_temp )
31 p_in_temp = INC( p_in_temp )
32 nnodes = INC( nnodes )
33 JEZ(zero , l_loop_nnodes )
34

35 l_found_nnodes :WRITE (p_out , zero)
36 JEZ(zero , l_find_min )
37 l_min_return : p_in_temp = ADD(p_in , argmin )
38 p_in_temp = READ( p_in_temp )
39

40 l_loop_sons : tmp_node = READ( p_in_temp )
41 JEZ(tmp_node , l_find_min )
42 tmp_node = DEC( tmp_node )
43 p_in_temp = INC( p_in_temp )
44 tmp_weight = READ( p_in_temp )
45 p_in_temp = INC( p_in_temp )
46

47 p_out_temp = ADD(p_out , tmp_node )
48 p_out_temp = ADD(p_out_temp , tmp_node )
49 tmp_current = READ( p_out_temp )
50 tmp_weight = ADD(min , tmp_weight )
51

52 tmp = MIN( tmp_current , tmp_weight )
53 tmp = SUB( tmp_current , tmp)
54 JEZ(tmp , l_loop_sons )
55 WRITE (p_out_temp , tmp_weight )
56 JEZ(zero , l_loop_sons )� �

Listing 11: Dijkstra Algorithm (Part 1)

13



� �
57 l_find_min : p_out_temp = DEC(p_out)
58 tmp_node = DEC(zero)
59 min = ADD(big , zero)
60 argmin = DEC(zero)
61

62 l_loop_min : p_out_temp = INC( p_out_temp )
63 tmp_node = INC( tmp_node )
64 tmp = SUB(tmp_node , nnodes )
65 JEZ(tmp , l_min_found )
66

67 tmp_weight = READ( p_out_temp )
68

69 p_out_temp = INC( p_out_temp )
70 tmp = READ( p_out_temp )
71 JEZ(tmp , l_loop_min )
72

73 tmp = MAX(min , tmp_weight )
74 tmp = SUB(tmp , tmp_weight )
75 JEZ(tmp , l_loop_min )
76 min = ADD(tmp_weight , zero)
77 argmin = ADD(tmp_node , zero)
78 JEZ(zero , l_loop_min )
79

80 l_min_found :tmp = SUB(min , big)
81 JEZ(tmp , l_stop )
82 p_out_temp = ADD(p_out , argmin )
83 p_out_temp = ADD(p_out_temp , argmin )
84 p_out_temp = INC( p_out_temp )
85 WRITE (p_out_temp , zero)
86 JEZ(zero , l_min_return )
87

88 l_stop :STOP ()� �
Listing 12: Dijkstra Algorithm (Part 2)

Example omitted for space reasons

7 Learned optimisation: Case study

Here we present an analysis of the optimisation achieved by the ANC. We take the example
of the ListK task and study the difference between the learned program and the initialisation
used.

7.1 Representation

The representation chosen is under the form of the intermediary representation described in
Figure (2b) of the main paper. Based on the parameters of the Controller, we can recover the
approximate representation described in Figure (2b) of the main paper: 1For each possible
"discrete state" of the instruction register, we can compute the commands outputted by the
controller. We report the most probable value for each distribution, as well as the probability
that the compiler would assign to this value. If no value has a probability higher than 0.5,
we only report a neutral token (R-, -, NOP).

7.2 Biased ListK

Figure 1 represents the program that was used as initialisation to the optimisation problem.
This is the direct result from the compilation performed by the Neural Compiler of the
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program described in Listing 8. A version with a probability of 1 for all necessary instructions
would have been easily obtained but not amenable to learning.
Figure 2 similarly describes the program that was obtained after learning.
As a remainder, the bias introduced in the ListK task is that the linked list is well organised
in memory. In the general case, the element could be in any order. An input memory tape to
the problem of asking for the third element in the linked list containing {4, 5, 6, 7} would be:
9 3 2 0 0 11 5 0 7 5 4 7 6 0 0 0 0 0 0 0

or
5 3 2 0 0 7 4 15 5 0 7 0 0 0 0 9 6 0 0 0

In the biased version of the task, all the elements are arranged in order and contiguously
positioned on the tape. The only valid representation of this problems is:
3 3 2 5 4 7 5 9 6 0 7 0 0 0 0 0 0 0 0 0

7.3 Solutions

Because of the additional structure of the problem, the bias in the data, a more efficient
algorithm to find the solution exists. Let us dive into the comparison of the two different
solutions.
Both use their first two states to read the parameters of the given instance of the task.
Which element of the list should be returned is read at line (0:) and where to write the
returned value is read at line (1:). Step (2:) to (6:) are dedicated to putting the address of
the k-th value of the linked list into the registers R1. Step (7:) to (9:) perform the same
task in both solution: reading the value at the address contained in R1, writing it at the
desired position and stopping.
The difference between the two programs lies in how they put the address of the k-th value
into R1.

Generic The initialisation program, used for initialisation, works in the most general case
so needs to perform a loop where it put the address of the next element in the linked list in
R1 (2:), decrement the number of jumps remaining to be made (3:), checking whether the
wanted element has been reached (4:) and going back to the start of the loop if not (5:).
Once the desired element is reached, R1 is incremented so as to point on the value of the
linked list element.

Specific On the other hand, in the biased version of the problem, the position of the
desired value can be analytically determined. The function parameters occupy the first three
cells of the tape. After those, each element of the linked list will occupy two cells (one for
the pointer to the next address and one for the value). Therefore, the address of the desired
value is given by

R1 = 3 + (2 ∗ (k − 1) + 1)− 1 + 1
= 3 + 2 ∗ k − 1 (18)

(the -1 comes from the fact that the address are 0-indexed and the final +1 from the fact
that we are interested in the position of the value and not of the pointer.)
The way this is computed is as follows:

- R1 = 3 + k by adding the constant 3 to the registers R2 containing K. (2:)
- R2 = k − 1 (3:)
- R1 = 3 + 2 ∗ k − 1 by adding the now reduced value of R2. (6:)

The algorithm implemented by the learned version is therefore much more efficient for the
biased dataset, due to its capability to ignore the loop.
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7.4 Failure analysis

An observation that can be made is that in the learned version of the program, Step (4:)
and (5:) are not contributing to the algorithms. They execute instructions that have no
side effect and store the results into the registers R7 that is never used later in the execution.
The learned algorithm could easily be more efficient by not performing these two operations.
However, such an optimisation, while perhaps trivial for a standard compiler, capable of
detecting unused values, is fairly hard for our optimisers to discover. Because we are only
doing gradient descent, the action of "moving some instructions earlier in the program" which
would be needed here to make the useless instructions disappear, is fairly hard, as it involves
modifying several rows of the program at once in a coherent manner.

R1 = 0 (0.88)
R2 = 1 (0.88)
R3 = 2 (0.88)
R4 = 6 (0.88)
R5 = 0 (0.88)
R6 = 2 (0.88)
R7 = - (0.05)

Initial State: 0 (0.88)

0: R2 (0.96) = READ (0.93) [ R2 (0.96) , R- (0.14) ]
1: R3 (0.96) = READ (0.93) [ R3 (0.96) , R- (0.14) ]
2: R1 (0.96) = READ (0.93) [ R1 (0.96) , R- (0.14) ]
3: R2 (0.96) = DEC (0.93) [ R2 (0.96) , R- (0.14) ]
4: R7 (0.96) = JEZ (0.93) [ R2 (0.96) , R4 (0.96) ]
5: R7 (0.96) = JEZ (0.93) [ R5 (0.96) , R6 (0.96) ]
6: R1 (0.96) = INC (0.93) [ R1 (0.96) , R- (0.14) ]
7: R1 (0.96) = READ (0.93) [ R1 (0.96) , R- (0.14) ]
8: R7 (0.96) = WRIT (0.93) [ R3 (0.96) , R1 (0.96) ]
9: R7 (0.96) = STOP (0.93) [ R- (0.14) , R- (0.14) ]
10: R- (0.16) = NOP (0.11) [ R- (0.16) , R- (0.16) ]
11: R- (0.16) = NOP (0.11) [ R- (0.18) , R- (0.16) ]
12: R- (0.17) = NOP (0.1) [ R- (0.17) , R- (0.17) ]
13: R- (0.16) = NOP (0.11) [ R- (0.17) , R- (0.16) ]
14: R- (0.17) = NOP (0.11) [ R- (0.16) , R- (0.16) ]
15: R- (0.16) = NOP (0.1) [ R- (0.16) , R- (0.17) ]
16: R- (0.17) = NOP (0.11) [ R- (0.16) , R- (0.18) ]
17: R- (0.18) = NOP (0.1) [ R- (0.18) , R- (0.17) ]
18: R- (0.17) = NOP (0.1) [ R- (0.16) , R- (0.16) ]
19: R- (0.15) = NOP (0.11) [ R- (0.16) , R- (0.17) ]

Figure 1: Initialisation used for the learning of the ListK task.
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R1 = 3 (0.99)
R2 = 1 (0.99)
R3 = 2 (0.99)
R4 = 10 (0.53)
R5 = 0 (0.99)
R6 = 2 (0.99)
R7 = 7 (0.99)

Initial State: 0 (0.99)

0: R2 (0.99) = READ (0.99) [ R2 (1) , R1 (0.97) ]
1: R6 (0.99) = READ (0.99) [ R3 (0.99) , R6 (0.5) ]
2: R1 (1) = ADD (0.99) [ R1 (0.99) , R2 (1) ]
3: R2 (1) = DEC (0.99) [ R2 (1) , R1 (0.99) ]
4: R7 (0.99) = MAX (0.99) [ R2 (0.99) , R1 (0.51) ]
5: R7 (0.99) = INC (0.99) [ R6 (0.7) , R1 (0.89) ]
6: R1 (1) = ADD (0.99) [ R1 (0.99) , R2 (1) ]
7: R1 (0.99) = READ (0.99) [ R1 (0.99) , R1 (0.53) ]
8: R7 (0.99) = WRIT (0.99) [ R6 (1) , R1 (0.99) ]
9: R7 (0.9) = STOP (0.99) [ R6 (0.98) , R1 (0.99) ]
10: R2 (0.99) = STOP (0.96) [ R1 (0.52) , R1 (0.99) ]
11: R1 (0.98) = ADD (0.73) [ R4 (0.99) , R2 (0.99) ]
12: R3 (0.98) = ADD (0.64) [ R6 (0.99) , R1 (0.99) ]
13: R3 (0.87) = STOP (0.65) [ R3 (0.52) , R1 (0.99) ]
14: R3 (0.89) = STOP (0.62) [ R6 (0.99) , R2 (0.62) ]
15: R3 (0.99) = STOP (0.65) [ R3 (0.99) , R2 (0.71) ]
16: R3 (0.99) = NOP (0.45) [ R6 (0.99) , R1 (0.99) ]
17: R2 (0.99) = INC (0.56) [ R6 (0.7) , R1 (0.98) ]
18: R3 (0.99) = STOP (0.65) [ R3 (0.99) , R1 (0.99) ]
19: R3 (0.98) = STOP (0.98) [ R2 (0.62) , R1 (0.79) ]

Figure 2: Learnt program for the listK task
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