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1 Proofs of propositions

Proposition 1. Let (l(t))t≥0 ∼ GP(0, κ) be a stationary continuous Gaussian process. Suppose
that κ(s) is non-increasing and that lims→∞ κ(s) = 0. Moreover, assume it exists K > 0 and α > 0
such that λ0(t) ≥ Ktα−1 for all t ≥ 1. Let S(t) be the random survival function associated with
(l(t))t≥0, then limt→∞ S(t) = 0 with probability 1.

Proof. Denote with P the probability associated with the gaussian process (l(t))t≥0 ∼ GP(0, κ) and
by E the corresponding expected values.

Remember our (random) hazard is given by λ(s) = λ0(s)σ(l(s)) ≥ Ksα−1σ(l(s)) ≥ 0 for s ≥ 1.
It is well-known that the survival function can be written as S(t) = e−

∫ t
0
λ(s)ds, then

S(t) = e−
∫ t
0
λ(s)ds ≤ e−

∫ 1
0
λ(s)−

∫ t
1
Ksα−1σ(l(s))ds ≤ e−

∫ t
1
Ksα−1σ(l(s))ds

for t ≥ 1.

We just need to prove that the latter term tends to 0 as t goes to infinity. Consider the stochastic
process (Xt)t≥0 given by Xt =

∫ t
1
Ktα−1σ(l(s))ds. We compute the expected value and variance

of Xt. By Tonelli’s Theorem we have that

E(Xt) = KE

(∫ t

1

sα−1σ(l(s))ds

)
= K

∫ t

1

sα−1E(σ(l(s)))ds

=
K(tα − 1)

2α
(1)

In the last equality we used that E(σ(l(s))) = 1/2 since the function f(x) = σ(x)− 1/2 is odd.

For the variance, we use Tonelli’s Theorem, again, to obtain

Var(Xt) = K2Var
(∫ t

1

σ(l(s))xα−1ds

)
= K2

∫ t

1

∫ t

1

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy (2)

We separate the last integral in two pieces, one integrating the region A = {t, s ∈ [1, t] : |t− s| < 1}
and its complement on [1, t]2
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In the region A we use that Cov(σ(l(x)), σ(l(y))) ≤
√

Var(σ(l(x)))Var(σ(l(y))) = Var(σ(l(0)))
since (l(t))t≥0 is stationary. Note that Var(σ(l(0))) ≤ 1 because 0 ≤ σ(x) ≤ 1 for all x Then∫

A

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤
∫
A

(xy)α−1dxdy (3)

a tedious computation gives us∫
A

Var(σ(l(x)))(xy)α−1dxdy ≤
∫
A

(xy)α−1dxdy ≤ C (t+ 1)2α−1

2α− 1
(4)

for some constant C > 0.

We claim the following inequality for all (t, s) ∈ Ac,

Cov(σ(l(x)), σ(l(y))) ≤ 2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
.

The proof of the above inequality is given in Lemma 1. Let C > 0 a large enough constant, then we
have∫

Ac
Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤

∫
Ac

2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
(xy)α−1dxdy

≤ C

∫ t

1

∫ t

x+1

κ(x− y)(xy)α−1dydx (5)

Using the change of variables w = x and z = x− y we get from equation (5) that∫
Ac

Cov(σ(l(x)), σ(l(y)))(xy)α−1dxdy ≤ C

∫ t

1

∫ t

z

κ(z)wα−1(w − z)α−1dwdz

≤ C

∫ t

1

∫ t

1

κ(z)w2α−2dwdz

≤ C
t2α−1

2α

∫ t

0

κ(z)dz (6)

Adding the integrals over A and Ac, we get that it exists a large constant C > 0, depending on α
such that for large enough t, it holds

Var(Xt) ≤ Ct2α−1
∫ t

0

κ(s)ds. (7)

Then for large enough t ≥ 0, by Chebyshev’s inequality and equations (1) and (7) it holds

P(|Xt −E(Xt)| ≥ E(Xt)/2) ≤
4Var(Xt)

E(Xt)2
= O

(
t2α−1

∫ t
0
κ(s)ds

t2α

)
=
o(t)

t
. (8)

In the last step we use that lims→∞ κ(s) = 0 which implies that
∫ t
0
κ(s)ds = o(t).

Let Bt be the event Bt = {|Xt −E(Xt)| ≥ E(Xt)/2}. Let (tn)n≥1 be an increasing sequence of
times, such that P(Btn) ≤ n−2 and tn →∞ as n tends to∞. Observe it is always possible to find
such tn because equation (8). Observe

∑
n≥1 P(Btn) ≤ ∞, then by using the Borel-Cantelli Lemma

it holds that exists some finite N ≥ 1 such that all event Btn does not hold for n ≥ N . Thus, for
n ≥ N the equation

|Xtn −E(Xtn)| ≤ E(Xtn)/2,

holds true, implying that
Xtn ≥ E(Xtn)/2.

Using the above equation, for n ≥ N we have

S(tn) ≤ e−Xtn ≤ e−E(Xtn )/2 ≤ e−ctn
α

,

for a small constant c > 0. Then since S(t) is decreasing it holds

lim
t→∞

S(t) = lim
n→∞

S(tn) ≤ lim
n→∞

e−ct
α
n = 0.
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Lemma 1. For any t, s such that |t− s| > 1 we have

Cov(σ(l(x)), σ(l(y))) ≤ 2
κ(|x− y|)E(σ(l(x)))2

κ(0)− κ(1)
.

Proof. Let |t− s| > 1. Using that xy ≤ x2+y2

2 we have

E(σ(l(t)σ(l(s))) =

∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
−κ(0)(x

2+y2)−2κ(t−s)xy
2(κ(0)2−κ(t−s)2)

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
− (κ(0)−κ(t−s))(x2+y2)

2(κ(0)2−κ(t−s)2)

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

≤
∫ ∞
−∞

∫ ∞
−∞

σ(x)σ(y)
exp

{
− (x2+y2)

2(κ(0)+κ(t−s))

}
2π(κ(0)2 − κ(t− s)2)1/2

dxdy

≤ κ(0) + κ(t− s)
κ(0)− κ(t− s)

E(σ(l))2 ≤ κ(0) + κ(t− s)
κ(0)− κ(1)

E(σ(l))2.

In the last inequality we use that k(s) is non-increasing. Finally, by deleting E(σ(l(0)))2 in both sides
of the above equation gives us the covariance of σ(l(t)) and σ(l(s)), which give us the corresponding
bound.
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2 Survival Function for E-SGP
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Figure 1: Exponential Model. First row: clean data, Second row: data with noisy covariates. Per
columns we have 25,50,100 and 150 data points per each group (shown in X-axis) and data is
increasing from left to right. Dots indicate data is generated from density p0, crosses, from p1. In
the first row a confidence interval for each curve is given. In the second row each curve for each
combination of noisy covariate is shown.

4


	Proofs of propositions
	Survival Function for E-SGP

