
Supplementary Material

Scaled Least Squares Estimator for GLMs
We provide all technical details in the Supplementary Material. Section A provides the proofs the
main technical results. We provide additional experiments in Section B. In Section C, we state several
auxiliary lemmas that are used throughout the proofs.

A Proof of Main Results

In this section, we provide the details and the proofs of our technical results. For convenience, we
briefly state the following definitions.
Definition 2 (Sub-Gaussian). For a given constant , a random variable x 2 R is said to be
sub-Gaussian if it satisfies

sup

m�1
m

�1/2E [|x|m]

1/m  .

Smallest such  is the sub-Gaussian norm of x and it is denoted by kxk 2 . Similarly, a random vector
y 2 Rp is a sub-Gaussian vector if there exists a constant 0 such that

sup

v2Sp�1

khy, vik 2  

0
.

Definition 3 (Sub-exponential). For a given constant , a random variable x 2 R is called sub-
exponential if it satisfies

sup

m�1
m

�1E [|x|m]

1/m  .

Smallest such  is the sub-exponential norm of x and it is denoted by kxk 1 . Similarly, a random
vector y 2 Rp is a sub-exponential vector if there exists a constant 0 such that

sup

v2Sp�1

khy, vik 1  

0
.

We start with the proof of Theorem 1.

Proof of Theorem 1. For simplicity, we denote the whitened covariate by w = ⌃�1/2
x. Since w is

sub-Gaussian with norm , its j-th entry wj has bounded third moment. That is,

 = sup

kuk2=1
khu,wik 2

, (16)

�kwjk 2
= sup

m�1
m

�1/2E [|wj |m]

1/m
,

� 1p
3

E
⇥|wj |3

⇤1/3
,

where in the first step, we used u = ej , the j-th standard basis vector. Hence, we obtain a bound on
the third moment, i.e,

max

j
E
⇥|wj |3

⇤  3

3/2


3
. (17)

Using the normal equations, we write

E [yx] = E
h

x 

(1)
(hx,�i)

i

=⌃1/2E
h

w 

(1)
(hw,⌃1/2

�i)
i

, (18)

=⌃1/2E
h

w 

(1)
(hw, ˜�i)

i

,

where we defined ˜

� = ⌃1/2
�. By multiplying both sides with ⌃�1, we obtain

�

ols

= ⌃�1/2E
h

w 

(1)
(hw, ˜�i)

i

. (19)
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Now we define the partial sums W�i =
P

j 6=i
˜

�jwj = h˜�, wi � ˜

�iwi. We will focus on the i-th
entry of the above expectation given in (19). Denoting the zero biased transformation of wi by w

⇤
i ,

we have

E
h

wi 
(1)

(hw, ˜�i)
i

=E
h

wiE
h

 

(1)
⇣

˜

�iwi +W�i

⌘

�

�

wi

ii

, (20)

=

˜

�iE
h

 

(2)
(

˜

�iw
⇤
i +W�i)

i

,

=

˜

�iE
h

 

(2)
(

˜

�i(w
⇤
i � wi) + hw, ˜�i)

i

.

Let D be a diagonal matrix with diagonal entries Dii = E
h

 

(2)
(

˜

�i(w
⇤
i � wi) + hw, ˜�i)

i

. Using
(19) together with (20), we obtain the equality

�

ols

=⌃�1/2D˜

�, (21)

=⌃�1/2D⌃1/2
�.

Now, using the Lipschitz continuity assumption of the variance function, we have
�

�

�

E
h

 

(2)
(

˜

�i(w
⇤
i � wi) + hw, ˜�i)

i

� E
h

 

(2)
(hw, ˜�i)

i

�

�

�

 k|˜�i|E [|w⇤
i � wi|] . (22)

In the following, we will use the properties of zero-biased transformations. Consider the quantity

r = sup

E [|w⇤
i � wi|]

E [|wi|3] (23)

where w

⇤
i has wi-zero biased distribution and the supremum is taken with respect to all random

variables with mean 0, standard deviation 1 and finite third moment, and w

⇤
i is achieving the minimal

`1 coupling to wi. It is shown in [Gol07] that ⇢ is upper bounded by 1.5. Then the right hand side of
(22) can be upper bounded by

k|˜�i|E [|w⇤
i � wi|] rkmax

i

n

|˜�i|E
⇥|wi|3

⇤

o

, (24)

1.5k

�

�

�

⌃1/2
�

�

�

�

1
3

3/2


3
,

8k

3k⌃1/2
�k1,

where in the second step we used the bound on the third moment given in (17). The last inequality
provides us with the following result,

max

i

�

�

�

�

Dii � 1

c 

�

�

�

�

 8k

3k⌃1/2
�k1. (25)

Finally, combining this with (19) and (21), we obtain
�

�

�

�

�

ols � 1

c 
�

�

�

�

�

1
=

�

�

�

�

⌃�1/2D⌃1/2
� � 1

c 
�

�

�

�

�

1
, (26)

=

�

�

�

�

⌃�1/2

✓

D� 1

c 
I

◆

⌃1/2
�

�

�

�

�

1
,

max

i

�

�

�

�

Dii � 1

c 

�

�

�

�

�

�

�

⌃1/2
�

�

�

1

�

�

�

⌃�1/2
�

�

�

1
k�k1 ,

8k

3
⇢(⌃1/2

)k⌃1/2k1 ⌧

2

r

2
p

,

where in the last step, we used the assumption that � is r-well-spread.

Proof of Proposition 2. For convenience, we denote the whitened covariates with wi = ⌃�1/2
xi.

We have E [wi] = 0, E
⇥

wiw
T
i

⇤

= I, and kwik 2
 . Also denote the sub-sampled covariance
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matrix with b⌃ =

1
|S|

P

i2S xix
T
i , and its whitened version as e⌃ =

1
|S|

P

i2S wiw
T
i . Further, define

ˆ

⇣ =

1
n

Pn
i=1 wiyi and ⇣ = E [wy]. Then, we have

ˆ

�

ols

=

b⌃
�1

⌃1/2
ˆ

⇣ and �

ols

= ⌃�1/2
⇣.

For now, we work on the event that b⌃ is invertible. We will see that this event holds with very high
probability. We write

�

�

�

⌃1/2
(

ˆ

�

ols � �

ols

)

�

�

�

2
=

�

�

�

⌃1/2
b⌃
�1

⌃1/2
ˆ

⇣ �⌃�1/2
⇣

�

�

�

2
, (27)

=

�

�

�

e⌃
�1

n

ˆ

⇣ � ⇣ +

⇣

I�⌃�1/2
b⌃⌃�1/2

⌘

⇣

o

�

�

�

2
,


�

�

�

e⌃
�1

�

�

�

2

n

�

�

�

ˆ

⇣ � ⇣

�

�

�

2
+

�

�

�

I� e⌃
�

�

�

2
k⇣k2

o

,

where we used the triangle inequality and the properties of the operator norm.

For the first term on the right hand side of (27), we write
�

�

�

e⌃
�1

�

�

�

2
=

1

�min(e⌃)

,

 1

1� �

,

where we assumed that such a � > 0 exists. In fact, when � < 0.5, we obtain a bound of 2 on the
right hand side, which also justifies the invertibility assumption of b⌃. By Lemma 5 and the following
remark, we have with probability at least 1� 2 exp {�p},

�

�

�

e⌃� I
�

�

�

2
 c

r

p

|S| ,

where c is a constant depending only on . When |S| > 4c

2
p, we obtain

�

�

�

�min(e⌃)� 1

�

�

�


�

�

�

e⌃� I
�

�

�

2
 0.5,

where the first inequality follows from the Lipschitz property of the eigenvalues.

Next, we bound the difference between ˆ

⇣ and its expectation ⇣. We write the bounds on the sub-
exponential norm

kwyk 1
= sup

kvk2=1
sup

m�1
m

�1E [|hv, wiy|m]

1/m
, (28)

 sup

kvk2=1
sup

m�1
m

�1E
⇥|hv, wi|2m⇤1/2m E

⇥|y|2m⇤1/2m
,

 sup

kvk2=1
sup

m�1
m

�1/2E
⇥|hv, wi|2m⇤1/2m

sup

m�1
m

�1/2E
⇥|y|2m⇤1/2m

,

2 kwk 2
kyk 2

= 2�.

Hence, we have maxi kwiyi � E [wiyi]k 1
 4�. Further, let ej denote the j-th standard basis, and

notice that each entry of w is also sub-Gaussian with norm upper bounded by , i.e.,
 = kwk 2

= sup

kuk2=1
khu,wik 2

, (29)

�khej , wik 2
= kwjk 2

.

Also, we can write

2� � kwyk 1
= sup

kuk2=1
sup

m�1
m

�1E [|hu,wiy|m]

1/m
, (30)

� sup

kuk2=1
E [|hu,wiy|] ,

� sup

kuk2=1
E [hu,wiy] ,

= sup

kuk2=1
hu, ⇣i = k⇣k2 ,
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where in the last step, we used the fact that dual norm of `2 norm is itself.

Next, we apply Lemma 2 to ˆ

⇣ � ⇣, and obtain with probability at least 1� exp {�p}
�

�

�

ˆ

⇣ � ⇣

�

�

�

2
 c�

r

p

n

,

whenever n > c

2
p for an absolute constant c.

Combining the above results in (27), we obtain with probability at least 1� 3 exp {�p}
�

�

�

⌃1/2
(

ˆ

�

ols � �

ols

)

�

�

�

2
 2

⇢

c1�

r

p

n

+ c2�

r

p

|S|
�

 ⌘

r

p

|S| (31)

where ⌘ depends only on  and �, and |S| > ⌘p. Finally, we write
�

�

�

ˆ

�

ols � �

ols

�

�

�

2
�

�1/2
min

�

�

�

⌃1/2
(

ˆ

�

ols � �

ols

)

�

�

�

2
,

⌘�

�1/2
min

r

p

|S| ,

with probability at least 1� 3 exp {�p}, whenever |S| > ⌘p.

The following lemma – combined with the Proposition 2 – provides the necessary tools to prove
Theorem 2.
Lemma 1. For a given function  (2) that is Lipschitz continuous with k, and uniformly bounded by
b, we define the function f : R⇥ Rp ! R as

f(c,�) = c E
h

 

(2)
(hx,�ic)

i

,

and its empirical counterpart as

ˆ

f(c,�) = c

1

n

n
X

i=1

 

(2)
(hxi,�ic).

Assume that for some �, c̄ > 0, we have f(c̄,�

ols

) � 1 + �. Then, 9c > 0 satisfying the equation

1 = f(c ,�
ols

).

Further, assume that for some ˜

� > 0, we have � =

˜

�

p
p, and n and |S| sufficiently large, i.e.,

min

⇢

n

log(n)

,

|S|
p

�

> K

2
/

˜

�

2

for K = ⌘c̄max {b+ /µ̃, kc̄}. Then, with probability 1 � 5 exp {�p}, there exists a constant
ĉ 2 (0, c̄) satisfying the equation

1 = ĉ 
1

n

n
X

i=1

 

(2)
(hxi,

ˆ

�

olsiĉ ).

Moreover, if the derivative of z ! f(z,�

ols

) is bounded below in absolute value (i.e. does not change
sign) by � > 0 in the interval z 2 [0, c̄], then with probability 1� 5 exp {�p}, we have

|ĉ � c |  C

r

p

min {n/ log (n) , |S|/p} ,

where C = K/�.

Proof of Lemma 1. First statement is obvious. We notice that f(c,�ols

) is a continuous function in
its first argument with f(0,�

ols

) = 0 and f(c̄,�

ols

) � 1 + �. Hence, there exists c > 0 such that
f(c ,�

ols

) = 1. If there are many solutions to the above equation, we choose the one that is closest
to zero. The condition on the derivative will guarantee the uniqueness of the solution.
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Next, we will show the existence of ĉ using a uniform concentration given by Lemma 3. Define the
ellipsoid centered around �

ols with radius �,

B�
⌃(�

ols

) =

n

� :

�

�⌃1/2
(� � �

ols

)

�

�

2
 �

o

,

and the event E that ˆ�ols falls into B�
⌃(�

ols

), i.e.,

E =

n

ˆ

�

ols 2 B�
⌃(�

ols

)

o

.

By Proposition 2 and the inequality given in (31), whenever |S| > ⌘pmax

�

1, ⌘/�

2
 

, we obtain

P
�EC

�  3 exp {�p} ,
where EC denotes the complement of the event E , and ⌘ is a constant depending only on  and �.
For any c 2 [0, c̄], on the event E , we have

�

�

�

ˆ

f(c,

ˆ

�

ols

)� f(c,

ˆ

�

ols

)

�

�

�

 sup

�2B�
⌃(�ols)

�

�

�

ˆ

f(c,�)� f(c,�)

�

�

�

.

Hence, we obtain the following inequality

P
 

sup

c2[0,c̄]

�

�

�

ˆ

f(c,

ˆ

�

ols

)� f(c,

ˆ

�

ols

)

�

�

�

> ✏

!

P
 

sup

c2[0,c̄]

�

�

�

ˆ

f(c,

ˆ

�

ols

)� f(c,

ˆ

�

ols

)

�

�

�

> ✏; E
!

+ P
�EC

�

,

P
 

sup

c2[0,c̄]
sup

�2B�
⌃(�ols)

�

�

�

ˆ

f(c,�)� f(c,�)

�

�

�

> ✏

!

+ 3 exp {�p} .

In the following, we will use Lemma 3 for the first term in the last line above. Denoting by w, the
whitened covariates, we have hx,�i = hw,⌃1/2

�i. Therefore,

sup

c2[0,c̄]
sup

�2B�
⌃(�ols)

�

�

�

ˆ

f(c,�)� f(c,�)

�

�

�

 c̄ sup

c2[0,c̄]
sup

�2B�
⌃(�ols)

�

�

�

�

�

1

n

n
X

i=1

 

(2)
(hwi,⌃

1/2
�ic)� E

h

 

(2)
(hw,⌃1/2

�ic)
i

�

�

�

�

�

.

Next, define the ball centered around ˜

�

ols

= ⌃1/2
�

ols, with radius � as B�(
˜

�

ols

) = ⌃1/2B�
⌃(�

ols

).
We have � 2 B�

⌃(�
ols

) if and only if ⌃1/2
� 2 B�(

˜

�

ols

). Then, the right hand side of the above
inequality can be written as

c̄ sup

c2[0,c̄]
sup

�2B�(�̃ols)

�

�

�

�

�

1

n

n
X

i=1

 

(2)
(hwi,�ic)� E

h

 

(2)
(hw,�ic)

i

�

�

�

�

�

,

= c̄ sup

�2Bc̄�(�̃ols)

�

�

�

�

�

1

n

n
X

i=1

 

(2)
(hwi,�i)� E

h

 

(2)
(hw,�i)

i

�

�

�

�

�

.

Then, by Lemma 3, we obtain

P
 

sup

c2[0,c̄]

�

�

�

ˆ

f(c,

ˆ

�

ols

)� f(c,

ˆ

�

ols

)

�

�

�

> c

0
c̄(b+ /µ̃)

r

p

n/ log (n)

!

 5 exp {�p} (32)

whenever np > 51max

�

�,�

�1
 

where � = (b+ /µ̃)

2
/(c

0
�

2
k

2
c̄

2
µ̃

2
).

Also, by the Lipschitz condition for  (2), we have for any c 2 [0, c̄], and �1,�2,

|f(c,�1)� f(c,�2)| kc

2E
h

�

�

�

hw,⌃1/2
(�1 � �2)i

�

�

�

i

kc̄

2E [kwk2]
�

�

�

⌃1/2
(�1 � �2)

�

�

�

2

kc̄

2p
p

�

�

�

⌃1/2
(�1 � �2)

�

�

�

2

14



Applying the above bound for �1 =

ˆ

�

ols and �2 = �

ols, we obtain with probability 1� 3 exp {�p}
�

�

�

f(c,

ˆ

�

ols

)� f(c,�

ols

)

�

�

�

 ⌘kc̄

2 p

p|S| , (33)

where the last step follows from Proposition 2 and the inequality given in (31).

Combining this with the previous bound, and taking into account that µ = µ̃

p
p, for any c 2 [0, c̄],

with probability 1� 5 exp {�p}, we obtain
�

�

�

ˆ

f(c,

ˆ

�

ols

)� f(c,�

ols

)

�

�

�

c

0
c̄(b+ /µ̃)

r

p

n/ log (n)

+ ⌘kc̄

2 p

p|S|
K

r

p

min {n/ log (n) , |S|/p}
where K = ⌘c̄max {b+ /µ̃, kc̄}. Here, ⌘ depends only on  and �.

In particular, for c = c̄ we observe that

ˆ

f(c̄,

ˆ

�

ols

) �f(c̄,�

ols

)�K

r

p

min {n/ log (n) , |S|/p}
�1 + � �K

r

p

min {n/ log (n) , |S|/p} .

Therefore, for sufficiently large n and |S| satisfying

min

⇢

n

log(n)

,

|S|
p

�

> K

2
/

˜

�

2

we obtain ˆ

f(c̄,

ˆ

�

ols

) > 1. Since this function is continuous and ˆ

f(0,

ˆ

�

ols

) = 0, we obtain the existence
of ĉ 2 [0, c̄] with probability at least 1� 5 exp {�p}.

Now, since ĉ and c satisfy the equations ˆ

f(ĉ ,
ˆ

�

ols

) = f(c ,�
ols

) = 1 (with high probability), by
the inequality given in (32), with probability at least 1� 5 exp {�p}, we obtain

�

�

�

1� f(ĉ ,
ˆ

�

ols

)

�

�

�

=

�

�

�

ˆ

f(ĉ ,
ˆ

�

ols

)� f(ĉ ,
ˆ

�

ols

)

�

�

�

c

0
c̄(b+ /µ̃)

r

p

n/ log(n)

.

Also, by the same argument in (33), and Proposition 2, we get
�

�

�

f(ĉ ,
ˆ

�

ols

)� f(ĉ ,�
ols

)

�

�

�

kc̄

2p
p

�

�

�

⌃(

ˆ

�

ols � �

ols

)

�

�

�

2

⌘kc̄

2 p

p|S| .

Now, using the Taylor’s series expansion of c ! f(c,�

ols

) around c , and the assumption on the
derivative of f with respect to its first argument, we obtain

� |ĉ � c | 
�

�

f(ĉ ,�
ols

)� f(c ,�
ols

)

�

�


�

�

�

f(ĉ ,�
ols

)� f(ĉ ,
ˆ

�

ols

)

�

�

�

+

�

�

�

f(ĉ ,
ˆ

�

ols

)� 1

�

�

�

⌘kc̄

2 p

p|S| + c

0
c̄(b+ /µ̃)

r

p

n/ log(n)

K

r

p

min {n/ log (n) , |S|/p}
with probability at least 1� 5 exp {�p}. Here, the constant K is the same as before

K = ⌘c̄max {b+ /µ̃, kc̄} .
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Proof of Theorem 2. We have
�

�

�

ˆ

�

sls � �

glm

�

�

�

1
=

�

�

�

ĉ 
ˆ

�

ols � �

glm

�

�

�

1
, (34)

 �

�

c �
ols � �

glm

�

�

1 +

�

�

�

ĉ 
ˆ

�

ols � c �
ols

�

�

�

1
,

where we used the triangle inequality for the `1 norm. The first term on the right hand side can be
bounded using Theorem 1. We write

�

�

c �
ols � �

glm

�

�

1  ⌘1
1

p

, (35)

for ⌘1 = 8kc̄

3
⇢(⌃1/2

)k⌃1/2k1(⌧/r)

2.

For the second term, we write
�

�

�

ĉ 
ˆ

�

ols � c �
ols

�

�

�

1
=

�

�

�

ĉ 
ˆ

�

ols ± ĉ �
ols � c �

ols

�

�

�

1
, (36)


�

�

�

ĉ 
ˆ

�

ols � ĉ �
ols

�

�

�

1
+

�

�

ĉ �
ols � c �

ols

�

�

1 ,

 |ĉ |
�

�

�

ˆ

�

ols � �

ols

�

�

�

1
+ |ĉ � c |

�

�

�

ols

�

�

1 ,

where the first step follows from triangle inequality. By Lemma 1, for sufficiently large n and |S|,
with probability 1� 5 exp {�p}, the constant ĉ exists and it is in the interval (0, c̄]. By the same
lemma, with probability 1� 5 exp {�p}, we have

|ĉ � c |  ⌘4

r

p

min {n/ log (n) , |S|/p} , (37)
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Finally, combining all these inequalities with the last line of (34), we have with probability 1 �
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Proof of Corollary 1. The normal equations for the lasso minimization yields
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where s 2 @
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. It is well-known that under the orthogonal design where the covariates have

i.i.d. entries, the above equation reduces to
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where soft( · ;�) denotes the soft thresholding operator at level �. For any � 2 Rp, let supp(�)
denote the support of �, i.e., the set {i 2 [p] : �i 6= 0}. We have
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i | > �. If this condition is satisfied
for any entry in the support of �glm, the corresponding lasso coefficient will be non-zero. Therefore,
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� )

under this assumption. Combining this with the previous result, we conclude the proof.
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B Additional Experiments

In this section, we provide additional experiments. The setting is the same as in Section 5. The only
difference is the sampling distribution of the datasets, which are stated in the title of each plot. As in
Section 5, SLS estimator outperforms its competitors by a large margin in terms of the computation
time.

Ra
nd

om
	st
ar
t	

O
LS
	st
ar
t	

Logis0c	Regression	 Poisson	Regression	

(a)	

(b)	

(c)	 (e)	 (g)	

(d)	 (f)	 (h)	

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Ber( ± 1)

0.20

0.22

0.24

0 10 20 30
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Ber( ± 1)

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0.10

0.15

0.20

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

2.0

2.5

3.0

3.5

4.0

4.5

0 10 20 30 40 50
Time (sec)

lo
g(

Te
st

 E
rro

r)

PEG
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covariates ~ Exp{1}

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

0

5

10

15

0.0 2.5 5.0 7.5 10.0
Time (sec)

lo
g(

Te
st

 E
rro

r)

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covertype dataset

2.0

2.5

3.0

3.5

4.0

4.5

0 10 20 30 40 50
Time (sec)

lo
g(

Te
st

 E
rro

r)

PEG
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covariates ~ Exp{1}

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

0

5

10

15

0.0 2.5 5.0 7.5 10.0
Time (sec)

lo
g(

Te
st

 E
rro

r)

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covertype dataset

0

2

4

6

0 10 20 30 40 50
Time (sec)

lo
g(

Te
st

 E
rro

r)

PEG
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covariates ~ Norm(0,1)

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

0

5

10

15

0.0 2.5 5.0 7.5 10.0
Time (sec)

lo
g(

Te
st

 E
rro

r)

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covertype dataset

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0

2

4

6

0 10 20 30 40 50
Time (sec)

lo
g(

Te
st

 E
rro

r)

PEG
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covariates ~ Norm(0,1)

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x {Exp(1)−1}

0

5

10

15

0.0 2.5 5.0 7.5 10.0
Time (sec)

lo
g(

Te
st

 E
rro

r)

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Poi−Reg / Covertype dataset

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Time (sec)

Te
st

 E
rro

r

SLS
NR
NS
BFGS
LBFGS
GD
AGD

Log−Reg / Covariates ~ Σ x Norm(0,1)

Figure 3: Additional experiments comparing the performance of SLS to that of MLE obtained with
various optimization algorithms on several datasets. SLS is represented with red straight line. The
details are provided in Table 2

Table 2: Details of the experiments shown in Figure 3.

MODEL LOGISTIC REGRESSION POISSON REGRESSION
DATASET ⌃⇥BER(±1) ⌃⇥NORM(0,1) ⌃⇥{EXP(1)-1} ⌃⇥NORM(0,1)
SIZE n = 6.0⇥105 , p=300 n = 6.0⇥105 , p=300 n = 6.0⇥105 , p=300 n = 6.0⇥105 , p=300
INITIALIZE RND OLS RND OLS RND OLS RND OLS
PLOT (A) (B) (C) (D) (E) (F) (G) (H)
METHOD# TIME IN SECONDS / NUMBER OF ITERATIONS (TO REACH MIN TEST ERROR)
SLS 6.61/3 2.97/3 9.38/5 4.25/4 14.68/4 2.99/4 6.66/10 4.13/10
NR 222.21/6 84.08/3 186.33/6 115.76/4 218.1/6 218.9/4 364.63/9 363.4/9
NS 40.68/10 11.57/3 53.06/9 19.52/4 39.22/6 59.61/4 51.48/10 39.8/10
BFGS 125.83/33 35.41/9 155.3/48 24.78/8 46.61/20 48.71/12 92.84/36 74.22/38
LBFGS 142.09/38 44.41/12 444.62/143 21.79/7 96.53/39 50.56/12 296.4/111 228.1/117
GD 409.9/134 79.45/22 1773.1/509 135.62/44 569.1/211 124.31/48 792.3/344 1041.1/366
AGD 177.3/159 43.76/12 359.56/95 53.73/18 157.9/57 63.16/16 74.74/32 62.21/32
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C Auxiliary Lemmas

Lemma 2 (Sub-exponential vector concentration). Let x1, x2, ..., xn be independent centered sub-
exponential random vectors with maxi kxik 1 = . Then we have
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!

 exp {�p} . (41)

whenever n > 4c

2
p for an absolute constant c.

Proof of Lemma 2. For a vector z 2 Rp, we have kzk2 = supkuk2=1 hu, zi since the dual of `2 norm
is itself. Therefore, we write
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.

Now, let N✏ be an ✏-net over Sp�1
= {u 2 Rp

: kuk2 = 1}, and observe that

max

u2N✏

hu, xi �(1� ✏) sup

kuk2=1
hu, xi,

=(1� ✏)kxk2,
with |N✏|  (1 + 2/✏)

p. Hence, we may write
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For any u 2 Sp�1, we have khu, xiik 1
 . Then, by the Bernstein-type inequality for sub-

exponential random variables [Ver10], we have
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for an absolute constant c. Therefore, the probability on the left hand side of (41) can be bounded by
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whenever t < /(1� ✏). Choosing ✏ = 0.5 and for an absolute constant c0 > 3.24/c and letting

t = c

0
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n

,

we conclude the proof.

Lemma 3. Let B(

˜

�) denote the ball centered around ˜

� with radius �, i.e.,
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�) =
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.

For i = 1, ..., n, let xi 2 Rp be i.i.d. centered sub-Gaussian random vectors with norm bounded by 
and E [kxk2] = µ̃

p
p. Given a function g : R ! R that is uniformly bounded by b > 0, and Lipschitz

continuous with k,
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2
). Above, c is an absolute constant.
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Proof of Lemma 3. Let E [kxk2] = µ = µ̃

p
p and for ✏ > 0, � 2 B(

˜

�) and w 2 Rp define the
bounding functions

l�(w) =g(hw,�i)� ✏kwk2/4µ,
u�(w) =g(hw,�i) + ✏kwk2/4µ.

Let N� be a net over B(

˜

�) in the sense that for any �1 2 B(
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�), 9�2 2 N� such that k�1 � �2k2 
�. We fix �⇤ = ✏/(4kµ) and write 8�1 2 B, 9�2 2 N�⇤ ,
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2. and a lower bound of the form:

g(hw,�1i) �g(hw,�2i)� k |hw,�1 � �2i| ,
�g(hw,�2i)� k kwk2 �⇤,

=l�2(w),

where the second steps in the above inequalities follow from the Cauchy-Schwarz inequality. These
functions are called bracketing functions in the context of empirical process theory.

Hence, we can write that 8�1 2 B(
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�), 9�2 2 N�⇤ such that
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The above inequalities translate to the following conclusion: Whenever the following event happens,
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Therefore, using the union bound on the above events, we may obtain
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Note that the right hand side of the above inequality has two terms both of which are of the same
form. For simplicity, we bound only the first one. The bound for the second one follows from the
exact same steps.
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The relation between sub-Gaussian and sub-exponential norms [Ver10] allows us to write

kkxk2k2 2
 kkxk22k 1 

p
X

i=1

kx2
i k 1 , (43)

2

p
X
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kxik2 2
 2

2
p,

where the second step follows from the triangle inequality. Hence, we conclude that kxk2 � E [kxk2]
is a centered sub-Gaussian random variable with norm upper bounded by 3

p
p.

For ✏ < 4/3, we notice that the random variable u�(x) = g(hx,�i)+ ✏kxk2/4µ is also sub-Gaussian
with norm

ku�(x)k 2  b+

✏

4µ̃

3

 b+ /µ̃,

and consequently, the centered random variable u�(x)� E [u�(x)] has the sub-Gaussian norm upper
bounded by 2b+ 2/µ̃.

Then, by the Hoeffding-type inequality for the sub-Gaussian random variables, we obtain
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for an absolute constant c > 0.

By the same argument above, one can obtain the same result for the function l�(x). Using Hoeffding
bounds in (42) along with the union bound over the net, we immediately obtain
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Using a standard covering argument over the net N�⇤ as given in Lemma 4, we have
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Lemma 4 ([EM15]). Let B ⇢ Rp be the ball of radius � centered around some � 2 Rp and N✏ be
an ✏-net over B. Then,
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.
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Proof of Lemma 4. The set B can be contained in a p-dimensional cube of size 2�. Consider a grid
over this cube with mesh width 2✏/

p
p. Then B can be covered with at most (2�/(2✏/pp))

p many
cubes of edge length 2✏/

p
p. If ones takes the projection of the centers of such cubes onto B and

considers the circumscribed balls of radius ✏, we may conclude that B can be covered with at most
✓

2�

2✏/

p
p

◆p

many balls of radius ✏.

Lemma 5 (Corollary 5.50 of [Ver10]). Let w1, w2, ..., wn be isotropic random vectors with sub-
Gaussian norm upper bounded by . Then for every t > 0, with probability at least 1�2 exp

��c1t
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,
the empirical covariance e⌃ satisfies,
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and n > C

2
p. Here, C only depends on .

Lemma 6 (Corollary 5.52 of [Ver10]). Let x1, x2, ..., xn be random vectors with mean 0 and
covariance ⌃ supported on a centered Euclidean ball of radius

p
R, i.e., kxik2  p

R. For ✏ 2 (0, 1)

and c > 0 an absolute constant, with probability at least 1� 1/p

2, the empirical covariance matrix
satisfies

�

�

�

b⌃�⌃
�

�

�

2
 ✏ k⌃k2 ,

for n > cR log(p)/(✏
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