
A Proof of query complexities

A.1 Properties of adaptive sequential testing in Procedure 2

Lemma 1. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0,
|Xi| ≤ 1. Let δ > 0. Then with probability at least 1 − δ, for all n ∈ N simultaneously
CheckSignificant({Xi}ni=1 , δ) in Procedure 2 returns false.

Proof. This is immediate by applying Proposition 1 to Xi − EXi.

Lemma 2. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi > ǫ > 0,

|Xi| ≤ 1. Let δ ∈ [0, 1
3 ], N ≥ ξ

ǫ2 ln
1
δ [ln ln]+

1
ǫ (ξ is an absolute constant specified in the proof).

Then with probability at least 1− δ, CheckSignificant
(

{Xi}Ni=1 , δ
)

in Procedure 2 returns true.

Proof. Let SN =
∑N

i=1 Xi. CheckSignificant
(

{Xi}Ni=1 , δ
)

returns false if and only if

SN ≤ D0

(

1 + ln 1
δ +

√

N
(

[ln ln]+N + ln 1
δ

)

)

.

Pr

(

SN ≤ D0

(

1 + ln
1

δ
+

√

N

(

[ln ln]+N + ln
1

δ

)

))

≤Pr

(

SN ≤ D0

(

1 + ln
1

δ
+
√

N [ln ln]+N +

√

N ln
1

δ

))

≤Pr

(

SN −NEXi ≤ D0

(

1 + ln
1

δ
+
√

N [ln ln]+N +

√

N ln
1

δ

)

−Nǫ

)

Suppose N = cξ
ǫ2 ln 1

δ [ln ln]+
1
ǫ for constant c ≥ 1 and ξ. ξ is set to be sufficiently large, such that (1)

ξ ≥ 4D2
0; (2) 2D0√

ξ
+D0

(

3 +
√

[ln ln]+ξ
)

+D0 −
√
ξ/2 ≤ −

√

1
2 ; (3) f(x) = D0

√

[ln ln]+x −
√
x/2 is decreasing when x > ξ. Here (2) is satisfiable since D0√

ξ
+ D0

√

[ln ln]+ξ −
√
ξ/2 →

−∞ as ξ → ∞, (3) is satisfiable since f ′(x) → −∞ as x → ∞. (2) and (3) together implies

2D0√
ξ
+D0

(

3 +
√

[ln ln]+cξ
)

+D0 −
√
cξ/2 ≤ −

√

1
2 .

1√
N

(

D0

(

1 + ln
1

δ
+
√

N [ln ln]+N +

√

N ln
1

δ

)

−Nǫ

)

=

√

ln
1

δ







D0ǫ(1 + ln 1
δ )

√

cξ[ln ln]+
1
ǫ ln

1
δ

+D0

√

√

√

√

[ln ln]+

(

cξ
ǫ2 ln 1

δ [ln ln]+
1
ǫ

)

ln 1
δ

+D0 −
√

cξ[ln ln]+
1

ǫ







Since [ln ln]+
1
ǫ , c, ln

1
δ ≥ 1 and ǫ < 1, we have

D0ǫ(1+ln 1
δ
)√

cξ[ln ln]+
1
ǫ
ln 1

δ

≤ 2D0√
ξ

.

Since [ln ln]+x ≥ 1 if x ≥ 1, we have [ln ln]+
1
ǫ ≤ 1

ǫ , and thus
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√

[ln ln]+

(

cξ

ǫ2
ln

1

δ
[ln ln]+

1

ǫ

)

=

√

ln

[

max

{

e, 2 ln
1

ǫ
+ ln cξ + ln ln

1

δ
+ ln[ln ln]+

1

ǫ

}]

≤
√

ln

[

max

{

e, 3 ln
1

ǫ
+ ln cξ + [ln ln]+

1

δ

}]

(a)

≤
√

ln

[

max

{

e, 9 ln
1

ǫ
ln cξ[ln ln]+

1

δ

}]

≤
√

3 + [ln ln]+
1

ǫ
+ [ln ln]+cξ + ln[ln ln]+

1

δ
(b)

≤
√
3 +

√

[ln ln]+cξ +

√

[ln ln]+
1

ǫ
+

√

ln[ln ln]+
1

δ

where (a) follows by a + b + c ≤ 3abc if a, b, c ≥ 1, and (b) follows by
√
∑

i xi ≤ ∑

i

√
xi if

xi ≥ 0.

Thus, we have

1√
N

(

D0

(

1 + ln
1

δ
+
√

N [ln ln]+N +

√

N ln
1

δ

)

−Nǫ

)

≤
√

ln
1

δ





2D0√
ξ

+D0

√
3 +

√

[ln ln]+cξ +
√

[ln ln]+
1
ǫ +

√

ln[ln ln]+
1
δ

√

ln 1
δ

+D0 −
√

cξ[ln ln]+
1

ǫ





(c)

≤
√

ln
1

δ

(

2D0√
ξ

+D0

(

3 +
√

[ln ln]+cξ
)

+D0 −
√

cξ/2

)

(d)

≤ −
√

ln
1

δ
/2

(c) follows by

√

ln 1
δ ≥ max

{

1,
√

ln[ln ln]+
1
δ

}

, D0 ≥ 1, and

√

[ln ln]+
1
ǫ

(

D0√
ln 1

δ

−
√
cξ

)

≤

D0 −
√
cξ ≤ −

√
cξ/2 if cξ ≥ 4D2

0 . (d) follows by our choose of ξ.

Therefore,

Pr

(

SN −NEXi ≤ D0

(

1 + ln
1

δ
+
√

N [ln ln]+N +

√

N ln
1

δ

)

−Nǫ

)

≤Pr

(

SN −NEXi ≤ −
√

N ln
1

δ
/2

)

which is at most δ by Hoeffding Bound.

Lemma 3. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi ≤ 0, |Xi| ≤
1. Let δ > 0. Then with probability at least 1 − δ, for all n simultaneously CheckSignificant-
Var({Xi}ni=1 , δ) in Procedure 2 returns false.

Proof. Define Yi = Xi − EXi. It is easy to check n
n−1

(

∑n
i=1 Y

2
i − 1

n (
∑n

i=1 Yi)
2
)

=

n
n−1

(

∑n
i=1 X

2
i − 1

n (
∑n

i=1 Xi)
2
)

. The result is immediate from Proposition 2.
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Lemma 4. Suppose {Xi}∞i=1 is a sequence of i.i.d. random variables such that EXi > τǫ, |Xi| ≤ 1,

Var (Xi) ≤ 2ǫ where 0 < ǫ ≤ 1, τ > 0. Let δ < 1, N = ξ
τǫ ln

2
δ (ξ is a constant specified in the

proof). Then with probability at least 1 − δ, CheckSignificant-Var
(

{Xi}Ni=1 , δ
)

in Procedure 2

returns true.

Proof. Let Yi = Xi − EXi, η be the constant η in Lemma 14. Set ξ = max(η, 16
τ + 8

3 ).

CheckSignificant-Var
(

{Xi}Ni=1 , δ
)

returns false if and only if
∑N

i=1 Xi ≤ q(N,Var, δ).

By applying Lemma 14 to Xi,
q(N,Var,δ)

N − EXi ≤ −τǫ/2 with probability at least 1− δ/2.

Applying Bernstein’s inequality to Yi, we have

Pr

(

1

N

N
∑

i=1

Yi ≤ −τǫ/2

)

≤ exp

(

−N (−τǫ)
2
/4

4ǫ+ 2τǫ/3

)

= exp

(

− ξ ln 2
δ

16/τ + 8/3

)

≤ δ/2

Thus, by a union bound,

Pr

(

N
∑

i=1

Xi ≤ q(N,Var, δ)

)

≤Pr

(

q(N,Var, δ)

N
− EXi ≥ −τǫ/2

)

+ Pr

(

q(N,Var, δ)

N
− EXi ≤ −τǫ/2 and

1

N

N
∑

i=1

Xi ≤
q(N,Var, δ)

N

)

≤δ/2 + Pr

(

q(N,Var, δ)

N
− EXi ≤ −τǫ/2 and

1

N

N
∑

i=1

Yi ≤
q(n,Var, δ)

N
− EXi

)

≤δ/2 + Pr

(

1

N

N
∑

i=1

Yi ≤ −τǫ/2

)

≤δ

A.2 The one-dimensional case

Proof of Theorem 1. Since θ̂ =
(

Llog 1
2ǫ

+Rlog 1
2ǫ

)

/2 and Rlog 1
2ǫ

− Llog 1
2ǫ

= 2ǫ,
∣

∣

∣θ̂ − θ∗
∣

∣

∣ > ǫ is

equivalent to θ∗ /∈ [Llog 1
2ǫ
, Rlog 1

2ǫ
]. We have

Pr
(∣

∣

∣θ̂ − θ∗
∣

∣

∣ > ǫ
)

= Pr
(

θ∗ /∈ [Llog 1
2ǫ
, Rlog 1

2ǫ
]
)

= Pr (∃k : θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

≤
log 1

2ǫ−1
∑

k=0

Pr (θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

For any k = 0, . . . , log 1
2ǫ − 1, define Qk =

{

(p, q) : p, q ∈ Q ∩ [0, 1] and q − p =
(

3
4

)k
}

where Q

is the set of rational numbers. Note that Lk, Rk ∈ Qk, and Q is countable. So we have
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Pr (θ∗ ∈ [Lk, Rk] and θ∗ /∈ [Lk+1, Rk+1])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Lk = p,Rk = q and θ∗ /∈ [Lk+1, Rk+1])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (θ∗ /∈ [Lk+1, Rk+1]|Lk = p,Rk = q) Pr (Lk = p,Rk = q)

Define event Ek,p,q to be the event Lk = p,Rk = q. To show Pr
(∣

∣

∣θ̂ − θ∗
∣

∣

∣ > ǫ
)

≤ δ
2 , it suffices to

show Pr (θ∗ /∈ [Lk+1, Rk+1]|Ek,p,q) ≤ δ
2 log 1

2ǫ

for any k = 0, . . . , log 1
2ǫ − 1, (p, q) ∈ Qk and p ≤

θ∗ ≤ q.

Conditioning on event Ek,p,q , event θ∗ /∈ [Lk+1, Rk+1] happens only if some calls of CheckSignifi-
cant and CheckSignificant-Var between Line 16 and 27 of Algorithm 1 return true incorrectly. In
other words, at least one of following events happens for some n:

• O
(1)
k,p,q: θ∗ ∈ [Lk, Uk] and CheckSignificant-Var(

{

A
(u)
i −A

(m)
i

}n

i=1
, δ
4 log 1

2ǫ

) returns true;

• O
(2)
k,p,q: θ∗ ∈ [Vk, Rk] and CheckSignificant-Var(

{

A
(v)
i −A

(m)
i

}n

i=1
, δ
4 log 1

2ǫ

) returns true;

• O
(3)
k,p,q: θ∗ ∈ [Lk, Uk] and CheckSignificant(

{

−B
(u)
i

}n

i=1
, δ
4 log 1

2ǫ

) returns true;

• O
(4)
k,p,q: θ∗ ∈ [Vk, Rk] and CheckSignificant(

{

B
(v)
i

}n

i=1
, δ
4 log 1

2ǫ

) returns true;

Note that since [Uk, Vk] ⊂ [Lk+1, Rk+1] for any k by our construction, if θ∗ ∈ [Uk, Vk] then
θ∗ ∈ [Lk+1, Rk+1]. Besides, event θ∗ ∈ [Lk, Uk] and event θ∗ ∈ [Vk, Rk] are mutually exclusive.

Conditioning on event Ek,p,q , suppose for now θ∗ ∈ [Lk, Uk].

Pr
(

O
(1)
k,p,q | Ek,p,q

)

=Pr

(

∃n : CheckSignificant-Var(
{

D
(u,m)
i

}n

i=1
,

δ

4 log 1
2ǫ

) returns true | θ∗ ∈ [Lk, Uk], Ek,p,q

)

On event θ∗ ∈ [Lk, Uk] and Ek,p,q, the sequences
{

A
(u)
i

}

and
{

A
(m)
i

}

are i.i.d., and E

[

A
(u)
i −

A
(m)
i | θ∗ ∈ [Lk, Uk], Ek,p,q

]

≤ 0. By Lemma 3, the probability above is at most δ
4 log 1

2ǫ

.

Likewise,

Pr
(

O
(3)
k,p,q | Ek,p,q

)

=Pr

(

∃n : CheckSignificant(
{

−B
(u)
i

}n

i=1
,

δ

4 log 1
2ǫ

) returns true | θ∗ ∈ [Lk, Uk], Ek,p,q

)

On event θ∗ ∈ [Lk, Uk] and Ek,p,q, the sequence
{

B
(u)
i

}

is i.i.d., and

E

[

−B
(u)
i | θ∗ ∈ [Lk, Uk], Ek,p,q

]

≤ 0. By Lemma 1, the probability above is at most

δ
4 log 1

2ǫ

.

Thus, Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ δ
2 log 1

2ǫ

when θ∗ ∈ [Lk, Uk]. Similarly, when

θ∗ ∈ [Vk, Rk], we can show Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ Pr
(

O
(2)
k,p,q | Ek,p,q

)

+

Pr
(

O
(4)
k,p,q | Ek,p,q

)

≤ δ
2 log 1

2ǫ

.
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Therefore, Pr (θ∗ /∈ [Lk+1, Rk+1] | Ek,p,q) ≤ δ
2 log 1

2ǫ

, and thus Pr
(∣

∣

∣θ̂ − θ∗
∣

∣

∣ > ǫ
)

≤ δ/2.

Proof of Theorem 2. Define Tk to be the number of iterations of the loop at Line 6,

T =
∑log 1

2ǫ−1

k=0 Tk. For any numbers m1,m2, . . . ,mlog 1
2ǫ−1, we have:

Pr (T ≥ m) ≤ Pr
(∣

∣

∣θ̂ − θ∗
∣

∣

∣ > ǫ
)

+ Pr





∣

∣

∣θ̂ − θ∗
∣

∣

∣ < ǫ and T ≥
log 1

2ǫ−1
∑

k=0

mk





≤ δ

2
+ Pr



T ≥
log 1

2ǫ−1
∑

k=0

mk and

∣

∣

∣θ̂ − θ∗
∣

∣

∣ < ǫ



 (1)

≤ δ

2
+

log 1
2ǫ−1
∑

k=0

Pr
(

Tk ≥ mk and

∣

∣

∣θ̂ − θ∗
∣

∣

∣ < ǫ
)

≤ δ

2
+

log 1
2ǫ−1
∑

k=0

Pr (Tk ≥ mk and θ∗ ∈ [Lk, Rk])

The first and the third inequality follows by union bounds. The second follows by Theorem 1. The

last follows since

∣

∣

∣θ̂ − θ∗
∣

∣

∣ < ǫ is equivalent to θ∗ ∈ [Llog 1
2ǫ
, Rlog 1

2ǫ
], which implies θ∗ ∈ [Lk, Rk]

for all k = 0, . . . , log 1
2ǫ − 1.

We define Qk as in the previous proof. For all k = 0, . . . , log 1
2ǫ − 1,

Pr (Tk ≥ mk and θ∗ ∈ [Lk, Rk])

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Tk ≥ mk, Lk = p,Rk = q)

=
∑

(p,q)∈Qk:p≤θ∗≤q

Pr (Tk ≥ mk|Lk = p,Rk = q) Pr (Lk = p,Rk = q)

Thus, in order to prove the query complexity of Algorithm 1 is O
(

∑log 1
2ǫ−1

k=0 mk

)

, it suffices to show

that Pr (Tk ≥ mk | Lk = p,Rk = q) ≤ δ
2 log 1

2ǫ

for any k = 0, . . . , log 1
2ǫ − 1, (p, q) ∈ Qk and p ≤

θ∗ ≤ q.

For each k, p, q, define event Ek,p,q to be the event Lk = p,Rk = q. Define lk = q − p =
(

3
4

)k
, Nk

to be Θ̃
(

1
f(lk/4)

l−2β
k

)

. The logarithm factor of Nk is to be specified later. Define S
(u)
n and S

(v)
n to

be the size of array B(u) and B(v) before Line 16 respectively.

To show Pr (Tk ≥ Nk | Ek,p,q) ≤ δ
2 log 1

2ǫ

, it suffices to show that on event Ek,p,q, with probability

at least 1− δ
2 log 1

2ǫ

, if n = Nk then at least one of the two calls to CheckSignificant between Line 22

and Line 27 will return true.

On event Ek,p,q, if θ∗ ∈ [Lk,Mk] (note that on event Ek,p,q, Lk and Mk are deterministic), then

|Vk − θ∗| ≥ lk
4 . We will show

p1 := Pr

(

CheckSignificant

(

{

B
(v)
i

}S
(v)
Nk

i=1
,

δ

4 log 1
2ǫ

)

returns false | Ek,p,q

)

≤ δ

2 log 1
2ǫ

To prove this, we will first show that S
(v)
Nk

, the length of the array B(v), is large with high probability,

and then apply Lemma 2 to show that CheckSignificant will return true if S
(v)
Nk

is large.
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By definition, S
(v)
Nk

=
∑Nk

i=1 A
(v)
i . By Condition 2, E

[

A
(v)
i | Ek,p,q

]

=

Pr (Y 6=⊥| X = Vk, Ek,p,q) ≥ f
(

lk
4

)

.

On event Ek,p,q,
{

A
(v)
i

}

is a sequence of i.i.d. random variables. By the multiplicative Chernoff

bound, Pr
(

S
(v)
Nk

≤ 1
2Nkf

(

lk
4

)

| Ek,p,q

)

≤ exp
(

−Nkf
(

lk
4

)

/8
)

.

Now,

p1 ≤Pr

(

CheckSignificant

(

{

B
(v)
i

}S
(v)
Nk

i=1
,

δ

4 log 1
2ǫ

)

returns false, S
(v)
Nk

≥ 1

2
Nkf

(

lk
4

)

| Ek,p,q

)

+ Pr

(

S
(v)
Nk

<
1

2
Nkf

(

lk
4

)

| Ek,p,q

)

By Condition 2 and |Vk − θ∗| ≥ lk
4 , E

[

B
(v)
i | Ek,p,q

]

≥ C
(

lk
4

)β
. On event Ek,p,q,

{

B
(v)
i

}

is a

sequence of i.i.d. random variables. Thus, On event Ek,p,q, by Lemma 2, with probability at least

1 − δ
4 log 1

2ǫ

, CheckSignificant will return true if 1
2Nkf

(

lk
4

)

= Θ
(

1

l2β
k

ln ln 1/ǫ
δ [ln ln]+

1

l2β
k

)

. We

have already proved Pr
(

S
(v)
Nk

≤ 1
2Nkf

(

lk
4

)

| Ek,p,q

)

≤ exp
(

−Nkf
(

lk
4

)

/8
)

. By setting Nk =

Θ
(

1
f(lk/4)

l−2β
k ln ln 1/ǫ

δ [ln ln]+
1

l2β
k

)

, we can ensure p1 is at most δ/2 log 1
2ǫ .

Now we have proved on event Ek,p,q , if θ∗ ∈ [Lk,Mk], then

Pr

(

CheckSignificant

(

{

B
(v)
i

}S
(v)
Nk

i=1
,

δ

4 log 1
2ǫ

)

returns true | Ek,p,q

)

≥ 1− δ

2 log 1
2ǫ

Likewise, on event Ek,p,q , if θ∗ ∈ [Mk, Rk], then

Pr

(

CheckSignificant

(

{

−B
(u)
i

}S
(u)
Nk

i=1
,

δ

4 log 1
2ǫ

)

returns true | Ek,p,q

)

≥ 1− δ

2 log 1
2ǫ

Therefore, we have shown Pr (Tk ≥ Nk | Ek,p,q) ≤ δ
2 log 1

2ǫ

for any k, p, q. By (1), with probability

at least 1− δ, the number of samples queried is at most

log 1
2ǫ−1
∑

k=0

O

(

1

f(
(

3
4

)k
/4)

(

3

4

)−2βk

ln
ln 1/ǫ

δ
[ln ln]+

(

3

4

)−2kβ
)

=O

(

ǫ−2β

f(ǫ/2)
ln

1

ǫ

(

ln
1

δ
+ ln ln

1

ǫ

)

[ln ln]+
1

ǫ

)

Proof of Theorem 3. For each k in Algorithm 1 at Line 3, Let lk = Rk − Lk. Let Nk =

η 1
f(lk/4)

ln
4 log 1

2ǫ

δ , where η is a constant to be specified later. As with the previous proof, it suffices

to show Pr (Tk ≥ Nk | Ek,p,q) ≤ δ
2 log 1

2ǫ

where event Ek,p,q is defined to be Lk = p,Rk = q, Tk is

the number of iterations at the loop at Line 6.

On event Ek,p,q , we will show that the loop at Line 6 will terminate after n = Nk with probability at

least 1− δ
2 log 1

2ǫ

.

Suppose for now θ∗ ∈ [Mk, Rk]. Let Zi = A
(u)
i − A

(m)
i , ζ = θ∗ − Mk. Clearly, |Zi| ≤ 1.

On event Ek,p,q, sequence {Zi} is i.i.d.. By Condition 3, E [Zi | Ek,p,q] = f(ζ + lk
4 ) − f(ζ) ≥
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cf(ζ + lk
4 ) since ζ ≤ 2

3 (ζ + lk
4 ). Var [Zi|Ek,p,q] = Var

[

A
(u)
i | Ek,p,q

]

+ Var
[

A
(m)
i | Ek,p,q

] (a)

≤

E

[

A
(u)
i | Ek,p,q

]

+ E

[

A
(m)
i | Ek,p,q

]

= f(ζ + lk
4 ) + f(ζ)

(b)

≤ 2f(ζ + lk
4 ) where (a) follows by

Ai ∈ {0, 1} and (b) follows by the monotonicity of f . Thus, on event Ek,p,q, by Lemma 4,

if we set η sufficiently large (independent of lk, ǫ, δ), then with probability at least 1 − δ
4 log 1

2ǫ

CheckSignificant-Var
(

{Zi}Nk

i=1 ,
δ

4 log 1
2ǫ

)

in Procedure 2 returns true.

Similarly, we can show that on event Ek,p,q , if θ∗ ∈ [Lk,Mk], by Lemma 4, with probability at least

1− δ
4 log 1

2ǫ

, CheckSignificant-Var

(

{

A
(v)
i −A

(m)
i

}Nk

i=1
, δ
4 log 1

2ǫ

)

returns true.

Therefore, the loop at Line 6 will terminate after n = Nk with probability at least 1 − δ
4 log 1

2ǫ

on

event Ek,p,q. Therefore, with probability at least 1 − δ, the number of samples queried is at most
∑log 1

2ǫ−1

k=0
1

f(( 3
4 )

k
/4)

ln ln 1/ǫ
δ = O

(

1
f(ǫ/2) ln

1
ǫ

(

ln 1
δ + ln ln 1

ǫ

)

)

.

A.3 The d-dimensional case

To prove the d-dimensional case, we only need to use a union bound to show that with high probability
all calls of Algorithm 1 succeed, and consequently the output boundary g produced by polynomial
interpolation is close to the true underlying boundary due to the smoothness assumption of g∗.

Proof of Theorem 8. For q ∈
{

0, 1, . . . , M
γ − 1

}d−1

, define the “polynomial interpolation” version

of g∗ as

g∗q (x̃) =
∑

l∈Iq∩L
g∗(l)Qq,l(x̃)

Recall that we choose M = O
(

ǫ−1/γ
)

.

By Theorem 1, each run of Algorithm 1 at the line 3 of Algorithm 3 will return a gl such that
∣

∣gl − g∗q (l)
∣

∣ ≤ ǫ with probability at least 1− δ/2Md−1.

‖g − g∗‖
=

∑

q∈{0,...,M/γ−1}d−1

‖(gq − g∗)1{x̃ ∈ Iq}‖

≤
∑

q∈{0,...,M/γ−1}d−1

∥

∥

(

gq − g∗q
)

1{x̃ ∈ Iq}
∥

∥+
∥

∥

(

g∗q − g∗
)

1{x̃ ∈ Iq}
∥

∥

∥

∥

(

g∗q − g∗
)

1{x̃ ∈ Iq}
∥

∥ =

ˆ

Iq

∣

∣g∗q (x̃)− g∗(x̃)
∣

∣ dx̃

= O

(

ˆ

Iq

M−γdx̃

)

= O
(

M−γ−d+1
)

The second equality follows from Lemma 3 of [6] that |gq(x̃)− g∗(x̃)| = O (M−γ) since g∗ is
γ-Hölder smooth.
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∥

∥

(

gq − g∗q
)

1{x̃ ∈ Iq}
∥

∥

=
∑

l∈Iq∩L

∣

∣gl − g∗q (l)
∣

∣ ‖Qq,l‖

≤
∑

l∈Iq∩L
ǫ ‖Qq‖

=O(ǫM−d+1)

Therefore, overall we have ‖g − g∗‖ ≤ O
(

M−γ−d+1 + ǫM−d+1
)

(

M
γ

)d−1

= O(ǫ).

Proof of Theorem 9. By Theorem 2, each run of Algorithm 1 at the line 3 of Algorithm 3 will make

Õ
(

d
f(ǫ/2)ǫ

−2β
)

queries with probability at least 1 − δ/Md−1, thus by a union bound, the total

number of queries made is Õ
(

d
f(ǫ/2)ǫ

−2β− d−1
γ

)

with probability at least 1− δ.

Proof of Theorem 10. The proof is similar to the previous proof.

B Proof of lower bounds

First, we introduce some notations for this section. Given a labeler L and an active learning algorithm
A, denote by Pn

L,A the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution

PL(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge of

{(Xj , Yj)}i−1
j=1. We will drop the subscripts from Pn

L,A and PL(Y |X) when it is clear from the

context. For a sequence {Xi}∞i=1 denote by Xn the subsequence {X1, . . . , Xn}.

Definition 1. For any distributions P,Q on a countable support, define KL-divergence as

dKL (P,Q) =
∑

x
P (x) ln P (x)

Q(x) . For two random variables X,Y , define the mutual information

as I(X;Y ) = dKL (P (X,Y ) ‖ P (X)P (Y )).

We will use Fano’s method shown as below to prove the lower bounds.

Lemma 5. Let Θ be a class of parameters, and {Pθ : θ ∈ Θ} be a class of probability distributions
indexed by Θ over some sample space X . Let d : Θ × Θ → R be a semi-metric. Let V =
{θ1, . . . , θM} ⊆ Θ such that ∀i 6= j, d(θi, θj) ≥ 2s > 0. Let P̄ = 1

M

∑

θ∈V Pθ. If dKL

(

Pθ ‖ P̄
)

≤
δ for any θ ∈ V , then for any algorithm θ̂ that given a sample X drawn from Pθ outputs θ̂(X) ∈ Θ,
the following inequality holds:

sup
θ∈Θ

Pθ

(

d(θ, θ̂(X)) ≥ s
)

≥ 1− δ + ln 2

lnM

Proof. For any algorithm θ̂, define a test function Ψ̂ : X → {1, . . . ,M} such that Ψ̂(X) =

argmini∈{1,...,M} d(θ̂(X), θi). We have

sup
θ∈Θ

Pθ

(

d(θ, θ̂(X)) ≥ s
)

≥ max
θ∈V

Pθ

(

d(θ, θ̂(X)) ≥ s
)

≥ max
i∈{1,...,M}

Pθi

(

Ψ̂(X) 6= i
)

Let V be a random variable uniformly taking values from V , and X be drawn from PV . By Fano’s
Inequality, for any test function Ψ : X → {1, . . . ,M}

max
i∈{1,...,M}

Pθi (Ψ(X) 6= i) ≥ 1− I(V ;X) + ln 2

lnM

The desired result follows by the fact that I(V ;X) = 1
M

∑

θ∈V dKL

(

Pθ ‖ P̄
)

.
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B.1 The one dimensional case

Proof of Theorem 5. 2 Without lose of generality, let C = C ′ = 1 (C is defined in Condition 2). Let

ǫ ≤ 1
4 min

{

(

1
2

)1/β
,
(

4
5

)1/α
, 1
4

}

. We will prove the desired result using Lemma 5.

First, we construct V and Pθ. For any k ∈ {0, 1, 2, 3}, let PLk
(Y | X) be the distribution of the

labeler Lk’s response with the ground truth θk = kǫ:

PLk
(Y =⊥ |x) = 1−

∣

∣

∣

∣

x− 1

2
− kǫ

∣

∣

∣

∣

α

PLk
(Y = 0|x) =







(

x− 1
2 − kǫ

)α
(

1−
(

x− 1
2 − kǫ

)β
)

/2 x > 1
2 + kǫ

(

1
2 + kǫ− x

)α
(

1 +
(

1
2 + kǫ− x

)β
)

/2 x ≤ 1
2 + kǫ

PLk
(Y = 1|x) =







(

x− 1
2 − kǫ

)α
(

1 +
(

x− 1
2 − kǫ

)β
)

/2 x > 1
2 + kǫ

(

1
2 + kǫ− x

)α
(

1−
(

1
2 + kǫ− x

)β
)

/2 x ≤ 1
2 + kǫ

Clearly, PLk
complies with Conditions 1, 2 and 3.

Define Pn
k to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution

PLk
(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge of

{(Xj , Yj)}i−1
j=1.

Define P̄L = 1
4

∑

j PLj
and P̄n = 1

4

∑

j P
n
k . We take Θ to be [0, 1], and d(θ1, θ2) = |θ1 − θ2| in

Lemma 5. To use Lemma 5, we need to bound dKL

(

Pn
k ‖ P̄n

)

for k ∈ {0, 1, 2, 3}.

For any k ∈ {0, 1, 2, 3} ,

dKL

(

Pn
k ‖ P̄n

0

)

=EPn
k

(

ln
Pn
k ({(Xi, Yi)}ni=1)

P̄n ({(Xi, Yi)}ni=1)

)

=EPn
k

(

ln
Pn
k (X1)P

n
k (Y1 | X1)P

n
k (X2 | X1, Y1) · · ·Pn

k (Yn | X1, Y1, . . . , Xn)

P̄n (X1) P̄n (Y1 | X1) P̄n (X2 | X1, Y1) · · · P̄n (Yn | X1, Y1, . . . , Xn)

)

(a)
=EPn

k

(

ln
Πn

i=1PLk
(Yi|Xi)

Πn
i=1P̄L (Yi|Xi)

)

(2)

=

n
∑

i=1

EPn
k

(

EPn
k

(

ln
PLk

(Yi|Xi)

P̄L (Yi|Xi)
| Xn

))

≤n max
x∈[0,1]

dKL

(

PLk
(Y | x) ‖ P̄L(Y | x)

)

(a) follows by the fact that Pn
k (Xi+1 | X1, Y1, . . . Xi, Yi) = P̄n (Xi+1 | X1, Y1, . . . , Xi, Yi) since

Xi+1 is drawn by the same active learning algorithm based solely on the knowledge of {(Xj , Yj)}ij=1

regardless of the labeler’s response distribution, and the fact that Pn
k (Yi | X1, Y1, . . . , Xi) =

PLk
(Yi|Xi) and P̄n (Yi | X1, Y1, . . . , Xi) = P̄L (Yi|Xi) by definition.

For any k ∈ {1, 2, 3}, x ∈ [0, 1],

P̄L(· | x) ≥
PL0

(· | x) + PLk
(· | x)

4
(3)

For any k ∈ {0, 1, 2, 3}, x ∈ [0, 1], y ∈ {1,−1,⊥}
2Actually we can use Le Cam’s method to prove this one dimensional case (which only needs to construct 2

distributions instead of 4 here), but this proof can be generalized to the multidimensional case more easily.
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(

P̄L(Y = y | x)− PLk
(Y = y | x)

)2

=





∑

j

1

4

(

PLj
(Y = y | x)− PL0

(Y = y | x)
)

+ (PL0
(Y = y | x)− PLk

(Y = y | x))





2

≤





5

16

∑

j>0

(

PLj
(Y = y | x)− PL0(Y = y | x)

)2
+ 5 (PL0(Y = y | x)− PLk

(Y = y | x))2




≤6
∑

j>0

(

PLj
(Y = y | x)− PL0

(Y = y | x)
)2

(4)

where the first inequality follows by
(

∑4
i=0 ai

)2

≤ 5
∑4

i=0 a
2
i by letting aj =

1
4

(

PLj
(Y = y | x)− PL0

(Y = y | x)
)

for j = 0, . . . , 3 and a4 = PL0
(Y = y | x)− PLk

(Y = y |
x), and noting that a0 = 0 under this setting.

Thus,

dKL

(

PLk
(Y | x) ‖ P̄L(Y | x)

)

≤
∑

y

1

P̄L(Y = y | x)
(

PLk
(Y = y | x)− P̄L(Y = y | x)

)2

≤24
∑

j>0

∑

y

1

PLj
(y | x) + PL0

(y | x)
(

PLj
(Y = y | x)− PL0

(Y = y | x)
)2

≤O(ǫα)

The first inequality follows from Lemma 10. The second inequality follows by (3) and (4). The last
inequality follows by applying Lemma 11 to PL0

(· | x) and PLj
(· | x) and the assumption α ≤ 2.

Therefore, we have dKL

(

Pn
k ‖ P̄n

0

)

= nO(ǫα). By setting n = ǫ−α, we get dKL

(

Pn
k ‖ P̄n

0

)

≤ O (1),
and thus by Lemma 5,

sup
θ

Pθ

(

d(θ, θ̂(X)) ≥ Ω (ǫ)
)

≥ 1− O (1) + ln 2

ln 4
= O (1)

B.2 The d-dimensional case

Again, we will use Lemma 5 to prove the lower bounds for d-dimensional cases. We first construct

{Pθ : θ ∈ Θ} using a similar idea with [6], and then use Lemma 12 to select a subset Θ̃ ⊂ Θ to apply
Lemma 5.

Proof of Theorem 6. Again, without lose of generality, let C = 1. Recall that for x = (x1, . . . , xd) ∈
Rd, we have defined x̃ to be (x1, . . . , xd−1). Define m =

(

1
ǫ

)1/γ
. L =

{

0, 1
m , . . . , m−1

m

}d−1
,

h(x̃) = Πd−1
i=1 exp

(

− 1
1−4x2

i

)

1
{

|xi| < 1
2

}

, φl(x̃) = Km−γh(m(x̃−l)− 1
2 ) where l ∈ L. It is easy

to check φl(x̃) is (K, γ)-Hölder smooth and has bounded support [l1, l1+
1
m ]×· · ·×[ld−1, ld−1+

1
m ],

which implies that for different l1, l2 ∈ L, the support of φl1 and φl2 do not intersect.

Let Ω = {0, 1}md−1

. For any ω ∈ Ω, define gω(x̃) =
∑

l∈L ωlφl(x̃). For each ω ∈ Ω, define the
conditional distribution of labeler Lω’s response as follows:

For xd ≤ A, PLω
(y =⊥ |x) = 1 − f(A), PLω

(y 6= I(xd > gω(x̃))|x, y 6=⊥) =
1
2

(

1− |xd − gω(x̃)|β
)

;
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For xd ≥ A, PLω
(y =⊥ |x) = 1− f(xd), PLω

(y 6= I(xd > gω(x̃))|x, y 6=⊥) = 1
2

(

1− xβ
d

)

.

Here, A = cmaxφ(x̃) = c′ǫ for some constants c, c′.

It can be easily verified that PLω
satisfies Conditions 1 and 2. Note that gω(x̃) can be seen as the

underlying decision boundary for labeler PLω
.

Define Pn
ω

to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution
PLω

(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge of

{(Xj , Yj)}i−1
j=1.

By Lemma 12, when ǫ is small enough so that md−1 is large enough, there is a subset
{

ω
(1), . . . ,ω(M)

}

⊂ Ω such that
∥

∥

ω
(i) − ω

(j)
∥

∥

0
≥ md−1/12 for any 0 ≤ i < j ≤ M and

M ≥ 2m
d−1/48. Define Pn

i = Pn
ω

(i) , P̄
n = 1

M

∑M
i=1 P

n
i .

Next, we will apply Lemma 5 to
{

ω
(1), . . . ,ω(M)

}

with d(ω(i),ω(j)) = ‖g
ω

(i) − g
ω

(j)‖. We will

lower-bound d(ω(i),ω(j)) and upper-bound dKL

(

Pn
i ‖ P̄n

)

.

For any 1 ≤ i < j ≤ M ,

‖g
ω

(i) − g
ω

(j)‖

=
∑

l∈{1,...,m}d−1

∣

∣

∣ω
(i)
l − ω

(j)
l

∣

∣

∣Km−γ−(d−1) ‖h‖

≥md−1/12 ∗Km−γ−(d−1) ‖h‖
=Km−γ ‖h‖ /12
=Θ (ǫ)

By the convexity of KL-divergence, dKL

(

Pn
i ‖ P̄n

)

≤ 1
M

∑M
j=1 dKL

(

Pn
i ‖ Pn

j

)

, so it suffices to

upper-bound dKL

(

Pn
i ‖ Pn

j

)

for any i, j.

For any 1 < i, j ≤ M ,

dKL

(

Pn
i ‖ Pn

j

)

≤n max
x∈[0,1]d

dKL

(

Pn
L

ω
(i)
(Y | x) ‖ Pn

L
ω

(j)
(Y | x)

)

=n max
x∈[0,1]d

Pn
L

ω
(i)
(Y 6=⊥| x)dKL

(

Pn
L

ω
(i)
(Y | x, Y 6=⊥) ‖ Pn

L
ω

(j)
(Y | x, Y 6=⊥)

)

The inequality follows as (2) in the proof of Theorem 5. The equality follows since Pω(y =⊥ |x) is
the same for all ω ∈ Ω.

If xd ≥ A, then Pn
L

ω
(i)
(Y | x, Y 6=⊥) = Pn

L
ω

(j)
(Y | x, Y 6=⊥), so

dKL

(

Pn
L

ω
(i)
(Y | x, Y 6=⊥) ‖ Pn

L
ω

(j)
(Y | x, Y 6=⊥)

)

= 0. If xd < A, then Pn
L

ω
(i)
(Y 6=⊥| x) =

f(A). Therefore,

dKL

(

Pn
i ‖ Pn

j

)

≤ nf(A) max
x∈[0,1]d

dKL

(

Pn
L

ω
(i)
(Y | x, Y 6=⊥) ‖ Pn

L
ω

(j)
(Y | x, Y 6=⊥)

)

.

Apply Lemma 10 to Pn
L

ω
(i)
(Y | x, Y 6=⊥) and Pn

L
ω

(i)
(Y | x, Y 6=⊥), and noting they are bounded

above by a constant, we have max
x∈[0,1]d dKL

(

Pn
L

ω
(i)
(Y | x, Y 6=⊥) ‖ Pn

L
ω

(j)
(Y | x, Y 6=⊥)

)

=

O
(

A2β
)

. Thus,

dKL

(

Pn
i ‖ Pn

j

)

≤ nf(A)O
(

A2β
)

= nf(c′ǫ)O(ǫ2β)

By setting n = 1
f(c′ǫ)ǫ

−2β− d−1
γ , we get dKL

(

Pn
i ‖ Pn

j

)

≤ O
(

ǫ−
d−1
γ

)

. The desired results follows

by Lemma 5.
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The proof of Theorem 7 follows the same structure.

Proof of Theorem 7. As in the proof of Theorem 6, let C = C ′ = 1, and define m =
(

1
ǫ

)1/γ
.

L =
{

0, 1
m , . . . , m−1

m

}d−1
, h(x̃) = Πd−1

i=1 exp
(

− 1
1−4x2

i

)

1
{

|xi| < 1
2

}

, φl(x̃) = Km−γh(m(x̃−
l) − 1

2 ) where l ∈ L. Let Ω = {0, 1}md−1

. For any ω ∈ Ω, define gω(x̃) =
1
2 +

∑

l∈L ωlφl(x̃),
which can be seen as a decision boundary. A = maxφ(x̃) = c′ǫ for some constants c′.

Let g+(x̃) = g(1,1,...,1)(x̃) =
∑

l∈L φl(x̃), g−(x̃) = g(0,0,...,0)(x̃) = 0. In other words, g+ is the
“highest” boundary, and g− is the “lowest” boundary.

For each ω ∈ Ω, define the conditional distribution of labeler Lω’s response as follows:

PLω
(y =⊥ |x) = 1− |xd − gω(x̃)|α

PLω
(y 6= I(xd > gω(x̃))|x, y 6=⊥) =

1

2

(

1− |xd − gω(x̃)|β
)

It can be easily verified that PLω
satisfies Conditions 1, 2, and 3.

Let P+(· | x) = PL(1,1,...,1)
(· | x), P−(· | x) = PL(0,0,...,0)

(· | x). By the construction of g, for any

x ∈ [0, 1]d, any ω ∈ Ω, PLω
(· | x) equals either P+(· | x) or P−(· | x).

Define Pn
ω

to be the distribution of n samples {(Xi, Yi)}ni=1 where Yi is drawn from distribution
PLω

(Y |Xi) and Xi is drawn by the active learning algorithm based solely on the knowledge of

{(Xj , Yj)}i−1
j=1.

By Lemma 12, when ǫ is small enough so that md−1 is large enough„ there is a subset Ω′ =
{

ω
(1), . . . ,ω(M)

}

⊂ Ω such that (i) (well-separated)
∥

∥

ω
(i) − ω

(j)
∥

∥

0
≥ md−1/12 for any 0 ≤ i <

j ≤ M , M ≥ 2m
d−1/48; and (ii) (well-balanced) for any j = 1, . . . ,md−1, 1

24 ≤ 1
M

∑M
i=1 ω

(i)
j ≤

3
24 .

Define Pn
i = Pn

ω
(i) , P̄

n = 1
M

∑M
i=1 P

n
i . Define PLi

= PL
ω

(i)
, P̄L = 1

M

∑M
i=1 PLi

. By the

well-balanced property, for any x ∈ [0, 1]d, P̄L(· | x) is between 1
24P+(· | x) + 23

24P−(· | x) and
3
24P+(· | x) + 21

24P−(· | x). Therefore

P̄L(· | x) ≥
1

24
(P+(· | x) + P−(· | x)) (5)

Moreover, since PLi
(· | x) can only take P+(· | x) or P−(· | x) for any x,
∣

∣PLi
(· | x)− P̄L(· | x)

∣

∣ ≤ |P+(· | x)− P−(· | x)| (6)

Next, we will apply Lemma 5 to
{

ω
(1), . . . ,ω(M)

}

with d(ω(i),ω(j)) = ‖g
ω

(i) − g
ω

(j)‖. We

already know from the proof of Theorem 6 ‖g
ω

(i) − g
ω

(j)‖ = Ω(ǫ).

For any 0 < i ≤ M , dKL

(

Pn
i ‖ P̄n

0

)

≤ nmax
x∈[0,1]d dKL

(

PLi
(Y | x) ‖ P̄L(Y | x)

)

. For any

x ∈ [0, 1]d,

dKL

(

PLi
(Y | x) ‖ P̄L(Y | x)

)

≤
∑

y

1

P̄L(Y = y | x)
(

PLi
(Y = y | x)− P̄L(Y = y | x)

)2

≤
∑

y

24

P+(y | x) + P−(y | x) (P+(Y = y | x)− P−(Y = y | x))2

≤O(Aα)

The first inequality follows from Lemma 10. The second inequality follows by (5) and (6). The last
inequality follows by applying Lemma 11 to P+(· | x) and P−(· | x), setting the ǫ in Lemma 11 to
be gω(x̃), and using gω(x̃) ≤ A and the assumption α ≤ 2.
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Therefore, we have

dKL (P
n
i ‖ Pn

0 ) ≤ nO (Aα) = nO(ǫα)

By setting n = ǫ−α− d−1
γ , we get dKL (P

n
i ‖ Pn

0 ) ≤ O
(

ǫ−
d−1
γ

)

. Thus by Lemma 5,

sup
θ

Pθ

(

d(θ, θ̂(X)) ≥ Ω (ǫ)
)

≥ 1−
O
(

ǫ−
d−1
γ

)

+ ln 2

ǫ−
d−1
γ /48

= O (1)

, from which the desired result follows.

C Technical lemmas

C.1 Concentration bounds

In this subsection, we define Y1, Y2, . . . to be a sequence of i.i.d. random variables. Assume

Y1 ∈ [−2, 2], EY1 = 0, Var(Y1) = σ2 ≤ 4. Define Vn = n
n−1

(

∑n
i=1 Y

2
i − 1

n (
∑n

i=1 Yi)
2
)

. It is

easy to check EVn = nσ2.

We need following two results from [21]

Lemma 6. ([21], Theorem 2) Take any 0 < δ < 1. Then there is an absolute constant D0 such that
with probability at least 1− δ, for all n simultaneously,

∣

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

∣

≤ D0

(

1 + ln
1

δ
+

√

nσ2 [ln ln]+ (nσ2) + nσ2 ln
1

δ

)

Lemma 7. ([21], Lemma 3) Take any 0 < δ < 1. Then there is an absolute constant K0 such that
with probability at least 1− δ, for all n simultaneously,

nσ2 ≤ K0

(

1 + ln
1

δ
+

n
∑

i=1

Y 2
i

)

We note that Proposition 1 is immediate from Lemma 6 since Var(Yi) ≤ 4.

Lemma 8. Take any 0 < δ < 1. Then there is an absolute constant K3 such that with probability at
least 1− δ, for all n ≥ ln 1

δ simultaneously,

nσ2 ≤ K3

(

1 + ln
1

δ
+ Vn

)

Proof. By Lemma 7, with probability at least 1− δ/2, for all n,

nσ2 ≤ K0

(

n
∑

i=1

Y 2
i + ln

2

δ
+ 1

)

= K0





n− 1

n
Vn +

1

n

(

n
∑

i=1

Yi

)2

+ ln
2

δ
+ 1




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By Lemma 6, with probability at least 1− δ/2, for all n,

1

n

(

n
∑

i=1

Yi

)2

<
1

n

(

D0

(

1 + ln
2

δ
+

√

nσ2 [ln ln]+ (nσ2) + nσ2 ln
2

δ

))2

=
D2

0

n

(

1 + ln
2

δ

)2

+D2
0σ

2 [ln ln]+ (nσ2) +D2
0σ

2 ln
2

δ

+2D2
0

(

1 + ln
2

δ

)

√

σ2 [ln ln]+ (nσ2) + σ2 ln 2
δ

n

≤ K1

(

1 + ln
1

δ
+ [ln ln]+ (nσ2)

)

for some absolute constant K1. The last inequality follows by n ≥ ln 1
δ .

Thus, by a union bound, with probability at least 1− δ, for all n, nσ2 ≤ K0Vn +K0(K1 +2) ln 1
δ +

K0K1 [ln ln]+ (nσ2) +K0(K1 + 3).

Let K2 > 0 be an absolute constant such that ∀x ≥ K2, K0K1 [ln ln]+ x ≤ x
2 .

Now if nσ2 ≥ K2, then nσ2 ≤ K0Vn +K0(K1 + 2) ln 1
δ + nσ2

2 +K0(K1 + 3), and thus

nσ2 ≤ 2K0Vn + 2K0(K1 + 2) ln
1

δ
+ 2K0(K1 + 3) +K2 (7)

If nσ2 ≤ K2, clearly (7) holds. This concludes the proof.

We note that Proposition 2 is immediate by applying above lemma to Lemma 6.

Lemma 9. Take any δ, n > 0. Then with probability at least 1− δ,

Vn ≤ 4nσ2 + 8 ln
1

δ

Proof. Applying Bernstein’s Inequality to Y 2
i , and noting that Var(Y 2

i ) ≤ 4σ2 since |Yi| ≤ 2, we
have with probability at least 1− δ,

n
∑

i=1

Y 2
i ≤ 4

3
ln

1

δ
+ nσ2 +

√

8nσ2 ln
1

δ

≤ 4 ln
1

δ
+ 2nσ2

The last inequality follows by the fact that
√
4ab ≤ a+ b.

The desired result follows by noting that Vn = n
n−1

(

∑n
i=1 Y

2
i − 1

n (
∑n

i=1 Yi)
2
)

≤ 2
∑n

i=1 Y
2
i .

C.2 Bounds of distances among probability distributions

Lemma 10. If P,Q are two probability distributions on a countable support X , then

dKL (P ‖ Q) ≤
∑

x

(P (x)−Q(x))
2

Q(x)
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Proof.

dKL (P ‖ Q) =
∑

x

P (x) ln
P (x)

Q(x)

≤
∑

x

P (x)

(

P (x)

Q(x)
− 1

)

=
∑

x

(P (x)−Q(x))
2

Q(x)

The first inequality follows by lnx ≤ x−1. The second equality follows by
∑

x P (x)
(

P (x)
Q(x) − 1

)

=
∑

x

(

P 2(x)−P (x)Q(x)
Q(x) − P (x) +Q(x)

)

=
∑

x
(P (x)−Q(x))2

Q(x) .

Define

P0 (Y =⊥ |x) = 1−
∣

∣

∣

∣

x− 1

2

∣

∣

∣

∣

α

P0 (Y = 0|x) =







(

x− 1
2

)α
(

1−
(

x− 1
2

)β
)

/2 x > 1
2

(

1
2 − x

)α
(

1 +
(

1
2 − x

)β
)

/2 x ≤ 1
2

P0 (Y = 1|x) =







(

x− 1
2

)α
(

1 +
(

x− 1
2

)β
)

/2 x > 1
2

(

1
2 − x

)α
(

1−
(

1
2 − x

)β
)

/2 x ≤ 1
2

and

P1 (Y =⊥ |x) = 1−
∣

∣

∣

∣

x− ǫ− 1

2

∣

∣

∣

∣

α

P1 (Y = 0|x) =







(

x− ǫ− 1
2

)α
(

1−
(

x− ǫ− 1
2

)β
)

/2 x > ǫ+ 1
2

(

ǫ+ 1
2 − x

)α
(

1 +
(

ǫ+ 1
2 − x

)β
)

/2 x ≤ ǫ+ 1
2

P1 (Y = 1|x) =







(

x− ǫ− 1
2

)α
(

1 +
(

x− ǫ− 1
2

)β
)

/2 x > ǫ+ 1
2

(

ǫ+ 1
2 − x

)α
(

1−
(

ǫ+ 1
2 − x

)β
)

/2 x ≤ ǫ+ 1
2

Lemma 11. Let P0, P1 be the distributions defined above. If x ∈ [0, 1], ǫ ≤
min

{

(

1
2

)1/β
,
(

4
5

)1/α
, 1
4

}

, then

∑

y

(P0(Y = y|x)− P1(Y = y|x))2
P0(Y = y|x) + P1(Y = y|x) = O

(

ǫα + ǫ2
)

(8)

Proof. By symmetry, it suffices to show for 0 ≤ x ≤ 1+ǫ
2 . Let t = 1

2 + ǫ− x.

We first show (8) holds for ǫ
2 ≤ t ≤ ǫ (i.e. 1

2 ≤ x ≤ 1+ǫ
2 ).

We claim miny (P0(Y = y|X = t) + P1(Y = y|X = t)) ≥ 1
2

(

ǫ
2

)α
. This is because:

• P0(Y =⊥ |X = t) + P1(Y =⊥ |X = t) = 1 − (ǫ− t)
α
+ 1 − tα ≥ 2 − 2ǫα ≥ 1

2

(

ǫ
2

)α

where the last inequality follows by ǫ ≤
(

4
5

)1/α
;

• 2 (P0(Y = 0|X = t) + P1(Y = 0|X = t)) = (ǫ− t)
α
(

1− (ǫ− t)
β
)

+ tα
(

1 + tβ
)

≥
tα
(

1 + tβ
)

≥
(

ǫ
2

)α
. Therefore, P0(Y = 0|X = t) + P1(Y = 0|X = t) ≥ 1

2

(

ǫ
2

)α
.
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• Similarly, P0(Y = 1|X = t) + P1(Y = 1|X = t) ≥ 1
2

(

ǫ
2

)α
.

Besides,

∑

y

(P0(Y = y|X = t)− P1(Y = y|X = t))
2

=(tα − (ǫ− t)
α
)
2
+

1

4

(

tα
(

1− tβ
)

− (ǫ− t)
α
(

1 + (ǫ− t)
β
))2

+
1

4

(

tα
(

1 + tβ
)

− (ǫ− t)
α
(

1− (ǫ− t)
β
))2

=(tα − (ǫ− t)
α
)
2
+

1

4

(

tα − (ǫ− t)
α − tα+β − (ǫ− t)

α+β
)2

+
1

4

(

tα − (ǫ− t)
α
+ tα+β + (ǫ− t)

α+β
)2

(a)

≤ (tα − (ǫ− t)
α
)
2
+

1

2
(tα − (ǫ− t)

α
)
2
+

1

2

(

tα+β + (ǫ− t)
α+β

)2

+
1

2
(tα − (ǫ− t)

α
)
2
+

1

2

(

tα+β + (ǫ− t)
α+β

)2

=2 (tα − (ǫ− t)
α
)
2
+
(

tα+β + (ǫ− t)
α+β

)2

≤2ǫ2α + 4ǫ2α+2β

≤6ǫ2α

where (a) follows by the inequality (a+ b)2 ≤ 2a2 + 2b2 for any a, b.

Therefore, we get
∑

y
(P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) ≤

∑
y(P0(Y=y|x)−P1(Y=y|x))2

miny(P0(Y=y|x)+P1(Y=y|x)) ≤ 12 ∗ 2αǫα when
1
2 ≤ x ≤ 1+ǫ

2 .

Next, We show (8) holds for ǫ ≤ t ≤ 1
2+ǫ (i.e. 0 ≤ x ≤ 1

2 ). We will show
(P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) =

O
(

ǫα + ǫ2
)

for Y =⊥, 1, 0.

For Y =⊥, for the denominator,

P0(Y =⊥ |X = t) + P1(Y =⊥ |X = t) = 2− tα − (t− ǫ)
α ≥ 2−

(

3

4

)α

−
(

1

2

)α

For the numerator,

(P0(Y =⊥ |X = t)− P1(Y =⊥ |X = t))
2
= (tα − (t− ǫ)

α
)
2
= t2α

(

1−
(

1− ǫ

t

)α)2

By Lemma 13, if α ≥ 1, t2α
(

1−
(

1− ǫ
t

)α)2 ≤ t2α
(

α ǫ
t

)2
= t2α−2 (αǫ)

2
= O

(

ǫ2
)

. If 0 ≤ α ≤ 1,

t2α
(

1−
(

1− ǫ
t

)α)2 ≤ t2α
(

ǫ
t

)2
= t2α−2ǫ2 ≤ ǫ2α.

Thus, we have
(P0(Y=⊥|x)−P1(Y=⊥|x))2
P0(Y=⊥|x)+P1(Y=⊥|x) = O

(

ǫ2α + ǫ2
)

.

For Y = 1, for the denominator,

2 (P0(Y = 1|X = t) + P1(Y = 1|X = t)) = tα
(

1− tβ
)

+ (t− ǫ)
α
(

1− (t− ǫ)
β
)

≥ tα
(

1− tβ
)

≥ tα

(

1−
(

3

4

)β
)
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For the numerator,

(P0(Y = 1|X = t)− P1(Y = 1|X = t))
2

=
1

4

(

tα
(

1− tβ
)

− (t− ǫ)
α
(

1− (t− ǫ)
β
))2

≤1

2
(tα − (t− ǫ)

α
)
2
+

1

2

(

tα+β − (t− ǫ)
α+β

)2

=
1

2
t2α
(

1− (1− ǫ

t
)α
)2

+
1

2
t2α+2β

(

1− (1− ǫ

t
)α+β

)2

≤1

2
t2α
(

1− (1− ǫ

t
)α
)2

+
1

2
t2α
(

1− (1− ǫ

t
)α+β

)2

If α ≥ 1, by Lemma 13, 1
2 t

2α
(

1− (1− ǫ
t )

α
)2

+ 1
2 t

2α
(

1− (1− ǫ
t )

α+β
)2 ≤ 1

2 t
2α
(

α ǫ
t

)2
+

1
2 t

2α
(

(α+ β) ǫ
t

)2
=

(

1
2α

2 + 1
2 (α+ β)

2
)

t2α−2ǫ2. Thus,
(P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) ≤

(

1
2α

2 + 1
2 (α+ β)

2
)

tα−2ǫ2/
(

1−
(

3
4

)β
)

which is O(ǫ2) if α ≥ 2 and O (ǫα) if α ≤ 2.

If α ≤ 1 and α + β ≥ 1, by Lemma 13, 1
2 t

2α
(

1− (1− ǫ
t )

α
)2

+ 1
2 t

2α
(

1− (1− ǫ
t )

α+β
)2 ≤

1
2 t

2α
(

ǫ
t

)2
+ 1

2 t
2α
(

(α+ β) ǫ
t

)2
=
(

1
2 + 1

2 (α+ β)
2
)

t2α−2ǫ2 ≤
(

1
2 + 1

2 (α+ β)
2
)

t2α−2ǫ2. Thus,

(P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) ≤

(

1
2 + 1

2 (α+ β)
2
)

tα−2ǫ2/
(

1−
(

3
4

)β
)

= O (ǫα).

If α ≤ 1, α+β ≤ 1, by Lemma 13, 1
2 t

2α
(

1− (1− ǫ
t )

α
)2
+ 1

2 t
2α
(

1− (1− ǫ
t )

α+β
)2 ≤ 1

2 t
2α
(

ǫ
t

)2
+

1
2 t

2α
(

ǫ
t

)2
= t2α−2ǫ2. Thus,

(P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) ≤ tα−2ǫ2/

(

1−
(

3
4

)β
)

= O (ǫα).

Therefore, we have
(P0(Y=1|x)−P1(Y=1|x))2
P0(Y=1|x)+P1(Y=1|x) = O

(

ǫα + ǫ2
)

.

Likewise, we can get
(P0(Y=0|x)−P1(Y=0|x))2
P0(Y=0|x)+P1(Y=0|x) = O

(

ǫα + ǫ2
)

. So we prove
∑

y
(P0(Y=y|x)−P1(Y=y|x))2
P0(Y=y|x)+P1(Y=y|x) = O

(

ǫα + ǫ2
)

when x ≤ 1
2 . This concludes the proof.

C.3 Other lemmas

Lemma 12. ([20], Lemma 4) For sufficiently large d > 0, there is a subset M ⊂ {0, 1}d with

following properties: (i) |M | ≥ 2d/48; (ii) ‖v − v′‖0 > d
12 for any two distinct v, v′ ∈ M ; (iii) for

any i = 1, . . . , d, 1
24 ≤ 1

M

∑

v∈M vi ≤ 3
24 .

Lemma 13. If x ≤ 1,r ≥ 1, then (1− x)
r ≥ 1− rx and 1− (1− x)

r ≤ rx.

If 0 ≤ x ≤ 1,0 ≤ r ≤ 1, then (1− x)r ≥ 1−x
1−x+rx and 1− (1− x)r ≤ rx

1−(1−r)x ≤ x.

Inequalities above are know as Bernoulli’s inequalities. One proof can be found in [16].

Lemma 14. Suppose ǫ, τ are positive numbers and δ ≤ 1
2 . Suppose {Zi}∞i=1 is a sequence

of i.i.d random variables bounded by 1, EZi ≥ τǫ, and Var(Zi) = σ2 ≤ 2ǫ. Define Vn =
n

n−1

(

∑n
i=1 Zi − 1

n (
∑n

i=1 Zi)
2
)

, qn = q (n, Vn, δ) as Procedure 2. If n ≥ η
τǫ ln

1
δ for some

sufficiently large number η (to be specified in the proof), then with probability at least 1 − δ ,
qn
n − EZi ≤ −τǫ/2.

Proof. By Lemma 9, with probability at least 1− δ, Vn ≤ 4nσ2 + 8 ln 1
δ , which implies

qn ≤ D1

(

1 + ln
1

δ
+

√

(

4nσ2 + 9 ln
1

δ
+ 1

)(

[ln ln]+ (4nσ2 + 9 ln
1

δ
+ 1) + ln

1

δ

)

)

We denote the RHS by q.

On this event, we have
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qn
n

− EZi ≤ q

n
− τǫ

= τǫ
( q

nτǫ
− 1
)

(a)

≤ τǫ

(

2D1

η
+

D1

η ln 1
δ

√

9η

τ
ln

1

δ

(

[ln ln]+ (
9η

τ
ln

1

δ
) + ln

1

δ

)

− 1

)

= τǫ

(

2D1

η
+D1

√

9

ητ ln 1
δ

[ln ln]+ (
9η

τ
ln

1

δ
) +

9

ητ
− 1

)

where (a) follows from q
n being monotonically decreasing with respect to n. By choosing η sufficiently

large, we have 2D1

η +D1

√

9
ητ ln 1

δ

[ln ln]+ ( 9ητ ln 1
δ ) +

9
ητ − 1 ≤ − 1

2 , and thus qn
n − EZi ≤ −τǫ/2.
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