A Proof of query complexities

A.1 Properties of adaptive sequential testing in Procedure 2

Lemma 1. Suppose {X;};°, is a sequence of i.i.d. random variables such that EX; < 0,
|Xi| < 1. Let 6 > 0. Then with probability at least 1 — §, for all n € N simultaneously
CheckSignificant({X;}"_, , 8) in Procedure 2 returns false.

Proof. This is immediate by applying Proposition 1 to X; — EXj. O

Lemma 2. Suppose {X;};, is a sequence of i.i.d. random variables such that EX; > € > 0,
|Xi| < 1. Let§ € [0, %}, N > 6% In %[ln ln]+% (€ is an absolute constant specified in the proof).
Then with probability at least 1 — 0, CheckSigniﬁcant({Xi}ﬁ\r:1 ,5) in Procedure 2 returns true.

Proof. Let Sy = 21X, X;. CheckSignificant({X;})L, ,8) returns false if and only if
Sw < Do (1+Ind+ /N (Inl), N +1n 1)),

0 <1+1n(1s + \/N ([lnln]+N+ln(1s)>)

<Pr (SNgDO <1+1n(1$+\/N[lnln]+N+1/Nln§>>

<Pr (SN — NEX; < Dy (1—#111(1S ++/N[nln] N + \/Nhli) —Ne)

Suppose N = §—§ In %[ln ln]+% for constant ¢ > 1 and &. £ is set to be sufficiently large, such that (1)

€2 4D3: @) 232 + Do (3+ /InI]1€) + Do = vE/2 < —/3: 3) f(2) = Doy/InTn]yz —

V/x/2 is decreasing when = > £. Here (2) is satisfiable since 3—% + Doy/[Inln]+& — /€/2 —
—o0 as & — oo, (3) is satisfiable since f'(z) — —oo as z — oo. (2) and (3) together implies

205 + Do (3+ v/[nIn]yc€) + Do — v/c€/2 < -5

% (Do <1+ln(1s+\/N[ln1n]+N+\/Nln(ls> —Ne)

1 [Inln]4 (%ln%[lnlnh%) 1
+ Dg T + Dy — 4/ c€[lnln] —
cf[Inln]; 1 1n In 5 €

Doe(1+1n $) < 2Dg
Ve€lnln]pind — NG

Since [Inln]y2 > 1if # > 1, we have [Inln]; 2 < 1, and thus

Since [lnln]+%, c, ln% > 1land e < 1, we have
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—
=

max

1
e 21nf—|—lnc§+lnlng+ln[lnln] }]
€

\/[lnln]+ (ifln;[lnlnhi) _

—
=

e
max{e 31nf +Inct + [Inln], ;H
R

maxqe,9In — lncflnln] (15}}

IN

IN
=

3+ [In ln]+ + [Inln]yc€ + In[lnln] 4 =

(b)
< V3+/[nln] c + \/[lnln]+1 + \/1D[1n1n]+(15
€

where (a) follows by a + b + ¢ < 3abc if a,b,c > 1, and (b) follows by />, x; < > . \/x; if

Thus, we have

1 /
W(Dg(l—l—ln + /N[lnln] N + Nln5>— )

< fmi o, Do\/§+ [Tl €+ y/in i + /il + Do — {/c€[Inln] -
o\ V€ ln%

Qi (e p (3+ VIl c€) + Do — Vet /2

= 5 \/E 0 + 0

“W

(©) follows by \/ln 3 > max {1, /mln1n] 1}, Dy > 1, and [lnln]+i( Dy —@) <
Dy — /c€ < —\/c&/2if c€ > 4DE. (d) follows by our choose of &.

Therefore,
1 / 1
Pr (SN — NEX; < Dy (1 —l—lng ++/N[nln] N +4/Nln 5) — N6>
1
Pr (SN — NEX; <—4/Nln 5/2)
which is at most by Hoeffding Bound. O

Lemma 3. Suppose {X;}.- < <
1. Let § > 0. Then with probability at least 1 — 6, for all n simultaneously CheckSignificant-

Var({X;}!_, ,8) in Procedure 2 returns false.

Proof. Define Y; = X; — EX;. It is easy to check ;2 (LI, V2 - L (DL, ¥)%) =
o (Zn Lyt X)) ) The result is immediate from Proposition 2.

n—1 i=1
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Lemma 4. Suppose {X;}.2 | is a sequence of i.i.d. random variables such that EX; > e, | X;| <1,
Var (X;) < 2e where 0 < e <1, 7> 0. Let6 < 1, N = % 111% (€ is a constant specified in the

proof). Then with probability at least 1 — ¢, CheckSigniﬁcant-Var({Xi}ﬁvzl ,5) in Procedure 2
returns true.

Proof. LetY; = X; — EX;, 1) be the constant 1 in Lemma 14. Set £ = max(n, & + %)

T

CheckSignificant-Var ({Xz}fil , 6) returns false if and only if Zi\il X; < q(N, Var, ).

By applying Lemma 14 to X, w — EX,; < —7¢/2 with probability at least 1 — §/2.
Applying Bernstein’s inequality to Y;, we have

1 & N (—7¢)? /4
Pr (N;Y; S T€/2> S exp <4€—|—27'6/3
_ ¢In g
- (‘ 16/7 + 8/3)
< /2

Thus, by a union bound,

N
Pr <Z X; < q(N, Var, 5))

=1

<Pr (‘I(NNM ~EX; > —Te/2>

N
q(N, Var, ) 1 q(N, Var, )
= ' ' 7 < — — I - B A
+ Pr ( N EX; < —7€/2 and ZE:I X; <

N
q(N, Var, §) 1 q(n, Var, 0)
§/2+Pr ( EX; < —re/2and ; 1 Y; ¥ EX;

N
1
< — . < —
<§/2+ Pr (N ;:1 Y; < Te/2>

<6
O
A.2 The one-dimensional case
Proof of Theorem 1. Since 0 = (Llog L+ Ry %) /2 and R, L =Ly 1 =2, 0 — 0| > eis

equivalent to 0" & [Ly,, 1, Ryog 1 ]. We have

-9

Pr (‘é — 0"

Pr (0" ¢ [Liog 1+ Fiog 1))
= Pr (Hk 10" € [Lk,Rk] and 6* ¢ [Lk-l,-l, Rk+1])
log ifl
> Pr(0" € [Ly, Ry and 0% ¢ [Lys1, Riy1])
k=0

IN

Forany k =0,...,log 5~ — 1, define Q = {(p,q) :p,q€QN0,1]and g — p = (%)k} where Q
is the set of rational numbers. Note that L, Ry € Qy, and Q is countable. So we have
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Pr (9* S [Lk, Rk] and 6" §§ [Lk+17 Rk+1D
= > Pr(Ly =p, Ry = qand 0" ¢ [Ly11, Ri+1])
(p,q)€Qr:p<*<q

= > Pr (0" ¢ [Lrt1, Ret1]| Ly = p, Re = q) Pr(Ly, = p, Rk = q)
(p,9)€Qx:p<O* <q

Define event Ey, ,, 4 to be the event L, = p, R;, = ¢. To show Pr (‘é - 0% > e) < %, it suffices to
show Pr (6* ¢ [Li+y1, Re+1]|Brpq) < ﬁ forany k =0,...,log 2% —1,(p,q) € Qpandp <
0* <q.

Conditioning on event Ey, ,, 4, event 8* ¢ [Lj11, Ri1] happens only if some calls of CheckSignifi-

cant and CheckSignificant-Var between Line 16 and 27 of Algorithm 1 return true incorrectly. In
other words, at least one of following events happens for some n:

° O,(Cl) : 0* € [Lg, U] and CheckSigniﬁcant-Var({Agu) — Agm)}fl

_5 .
0yq° T ) returns true;

i=1  4log

: 0% € [Vi, Ry and CheckSigniﬁcant—Var({AE”) - Al(-m)}‘ K ﬁ) returns true;
i= 2¢

. O,(j;,q: 0* € [Ly, U] and CheckSigniﬁcant({fBEu)}i:1 , 410‘; T ) returns true;

° 0(4)

kopngt 0* € [V, Ri] and CheckSigniﬁcant({Bi(”)} , —% ) returns true;
o i=1 08 3¢

41

Note that since [Ug, Vi] C [Lg+1, Rk+1] for any k by our construction, if 8* € [Uy, Vi] then
0* € [Liy1, Rit1]. Besides, event 0* € [Ly, Uy and event 0* € [V, Ry are mutually exclusive.

Conditioning on event E}, ,, 4, suppose for now 6* € [Ly, Uy].

Pr (Ol(c%;)w | Ek,p,q)

=Pr <3n : CheckSignificant-Var( {Dgu’m)}

n

oy 410gi)returns true | 0" € [Ly, Uk],Ek7p7q>
On event 0* € [Ly,Uy| and Ej , 4, the sequences {AZ(-“)} and {Afm)} are i.i.d., and ]E[Az(u) -

Agm) | 0* € [Lg, U], Ekypyq} < 0. By Lemma 3, the probability above is at most ﬁ.
2e

Likewise,
3
PI' (O](C,])J,q ‘ Ek,p,q)

=Pr <E|n : CheckSignificant( {—Bgu)}

n

1

) returns true | 6% € [Ly, Uk]»Ek,p,q>
2e

i=1 4log

On event 0* IS [Lk,Ug] and Ej,, the sequence {Bi(")} is iid., and
E {—Bf“) | 6* € [Lk,Uk],Ek,p,q] < 0. By Lemma 1, the probability above is at most
Thus, Pr(6" ¢ [Lit1, Ri1] | Erpa) < 55T
6* € [Vi,Ri], we can show Pr(0* ¢ [Lyt1,Rey1] | Erpq) < Pr (O,(jl))’q | Ek,p,q) +

(4) )
Pr (Ok',p,q | Ekypyq) = 2log &

when 6* € [Ly,Uy]. Similarly, when
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Therefore, Pr (6* ¢ [Liy1, Rit1] | Ekp,q) < Tlog & ,and thus Pr (‘9 0*

<l >e)<é/2. O

Proof of Theorem 2. Define T to be the number of iterations of the loop at Line 6,

T Zlog 3¢~ T3,. For any numbers m1, ma, . . ., Mg 11, We have:
log 5= —1
Pr(T>m) < Pr(‘é—&* >e)+Pr ’é—@* <eand T > mg
k=0
5 logQ%—l
< i—l—Pr T> Z mkand‘é—H* <e (D
k=0
5 log i—l
< 5-1— Z Pr(Tkzmkand ‘é—@* <e)
k=0
5 log ifl
< 5 + Pr (Tk > my and 0% € [Lk7RkD
k=0

The first and the third inequality follows by union bounds. The second follows by Theorem 1. The
< eis equivalent to 6" € Ly, 1, Ry, 1], which implies 6" € [Ly, Ry]
forallk:O,...,logi —1.

last follows since ‘é —0*

We define Q as in the previous proof. Forall k =0, ..., log i -1

>

Pr (Tk > my and 0* e [Lk7 RkD

— > Pr (T}, > my, Ly = p, Rk = q)
(p,9)€QL:p<0*<q

= Y Pr(Ty >m|Lp =p,Re = q)Pr(Ly =p, Rr = q)
(,9)€Qx:p<0*<q

Thus, in order to prove the query complex1ty of Algorithm 1 is O ( 1og025 - mk) , it suffices to show

that Pr (T, > my, | L, = p, Rk = q) <
0* <q.

721 Tos & forany k = 0,. logZ—l,(p,q)erandpg

For each k p, q, define event E, ,, , to be the event Ly, = p, R, = q. Define [, = ¢ —p = (7) Ny,
to be © ( Fu7 4)l 28 ) The logarithm factor of IVy is to be specified later. Define S,(l w and S,(LU) to
be the size of array B(*) and B(*) before Line 16 respectively.

To show Pr (T,C > Ni. | Brpg) < 52 Tog L it suffices to show that on event Ej, ,, 5, with probability

= 21og
at least 1 — 21 Flog L if n = N}, then at least one of the two calls to CheckSignificant between Line 22

and Line 27 w111 return true.

On event Ey, ,, ¢, if 0* € [Ly, My] (note that on event Ey, ,, 4, Ly, and Mj, are deterministic), then
Vi — 0*| > L. We will show

s
v 5 J
p1 := Pr [ CheckSignificant {B( )} returns false | By p 4 | < —
"4log ” 2log 5

To prove this, we will first show that S, (U) , the length of the array B("), is large with high probability,
and then apply Lemma 2 to show that Check81gn1ﬁcant will return true if Sy, (v) is large.
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By definition, 51(\172 = Z1N:"1 Az(-”). By Condition 2, E {Az(.v) | Ek’p’q} =
Pr(Y #L| X = Vi, Brpg) > f (%)

On event Ey, p, 4, {AE”)} is a sequence of i.i.d. random variables. By the multiplicative Chernoff
bound, Pr (S5 < Nwf (%) | Brpg) < exp (~Nef (%) /8).

Now,

4 log

+Pr (S(” < Nkf< )|Ek,p,q>

By Condition 2 and |V, — 0*| > %, E [BS’) | Em,,q} > ¢ (%)". Onevent Ey ., {B§”>} is a
sequence of i.i.d. random variables. Thus, On event E}, ,, ,, by Lemma 2, with probability at least

I~ g3l CheckSignificant will return true if 3Ny f (%) = © (l%ln In1/e 1y 1n}+%). We

)
v 6 v
p1 <Pr (CheckSigniﬁcant ({B( >} ) returns false, S > Nk f( ) |Ek,p,q>

have already proved Pr (SJ(C,’) <AINGf (&) | Ek7p7q) < exp (—Nif (&) /8). By setting N}, =

o (f(l - l—2ﬁ In o l/e [Inln], 1215 ), we can ensure p; is at most §/2log 5-.

Now we have proved on event Ey, , 4, if 0* € [Ly, My, then

( )
v 5 5
Pr | CheckSignificant {B( >} returns true | Ej,pq | > 1 — .
"4log ” 2log 5-

Likewise, on event F, , 4, if 6* € [My, Ry], then

s
] 4]
Pr | CheckSignificant { B(u)} returns true | By pq | > 1 — T
" 4log ” 2log 5

Therefore, we have shown Pr (T}, > Ny, | Exp4) < 21
at least 1 — §, the number of samples queried is at most

> 0(f((5 5 <i>_2ﬁkln lng/e[lnlnh <i>_m>

211 1 1
=0 (f(6/2) lng (1116 +Inln 6) [lnln]+6>

for any k, p, q. By (1), with probability

log ifl

O

Proof of Theorem 3. For each k in Algorithm 1 at Line 3, Let I, = Ry — Li. Let Ny =
1

nm In 410%, where 7 is a constant to be specified later. As with the previous proof, it suffices

to show Pr (T} > Ny | By p, q) <

= 2log
the number of iterations at the loop at L1ne 6.

J Tlog L where event Ey, ,, , is defined to be Ly, = p, Ry, = g, T}, is

On event E}, , 4, we will show that the loop at Line 6 will terminate after n = IV}, with probability at
least 1 — Slog L °

og b
Suppose for now 6* € [My, Ri]. Let Z; = Ag“) — Agm), ¢ = 0* — My. Clearly, |Z;] < 1
On event Ej ;, 4, sequence {Z;} is i.i.d.. By Condition 3, E[Z; | Ey 4] = f(¢ + %) — f(¢) >
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(a)
cef(C+ l’“) since ¢ < (C + l‘) Var [Z;|E}, 4] = Var [AE“) | Ek7p7q} + Var {Agm) | Brpgl <

u m (b)
E[A" | Brpa] +E[A™ | Epg| = F(C+ %) + F(Q) = 2£(C+ ) where (a) follows by
A; € {0,1} and (b) follows by the monotonicity of f . Thus, on event Ej , 4, by Lemma 4,

if we set 7 sufficiently large (independent of [, €, §), then with probability at least 1 — Thoa T lo‘; -
2e
CheckSignificant-Var ({Z }1 19 41#) in Procedure 2 returns true.

Similarly, we can show that on event Ey, , o, if 6* € [Ly, My], by Lemma 4, with probability at least

N
1-— 41%, CheckSigniﬁcant—Var<{A(.”) — A(-m)} * ) & ) returns true.
0g 5= (2 7 i=1 4log 5
Therefore, the loop at Line 6 will terminate after n = NV, with probability at least 1 — Tiog J Tog Z O0
event Ej, ,, . Therefore, with probability at least 1 — J, the number of samples queried is at ‘most
log 5-—1 1 Inl/e _
e TR =05zt (I} +mml)). =

A.3 The d-dimensional case

To prove the d-dimensional case, we only need to use a union bound to show that with high probability
all calls of Algorithm 1 succeed, and consequently the output boundary g produced by polynomial
interpolation is close to the true underlying boundary due to the smoothness assumption of g*.

d—1
Proof of Theorem 8. For q € {0, 1,..., % — 1} , define the “polynomial interpolation” version
of g* as

9;@) = Y g ()Qqu)

leT,NL

Recall that we choose M = O (6*1/7).

By Theorem 1, each run of Algorithm 1 at the line 3 of Algorithm 3 will return a g; such that
|9: — g;(1)| < € with probability at least 1 — §/2M 1.

lg —g”|l
= > [(9q —9") {&E € I}

q€{0,..., M/y—1}d-1

< > (90 — 93) 143 € I} + || (95 — 9") 1{& € I}

q€{0,...,M/y—1}d-1

(g5 — ¢") 1{& € 1.}

/ 102(F) — o (5)| d5
(14

= o)

The second equality follows from Lemma 3 of [6] that |g,(Z) — ¢*(Z)| = O (M ~7) since g* is
~v-Holder smooth.
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(90 — 95) 1{F € 1}
= > o - ;0] 1Qul

lef,NL
< > el
lE,NL
=0(eM~9F1)
d-1
Therefore, overall we have ||g — g*[| < O (M 7741 4 eM—H1) (%) = O(e). O

Proof of Theorem 9. By Theorem 2, each run of Algorithm 1 at the line 3 of Algorithm 3 will make

O (%6_26 ) queries with probability at least 1 — §/M?~!, thus by a union bound, the total

number of queries made is o] (ﬂ%ﬂ)e*w 7%> with probability at least 1 — 4. [
Proof of Theorem 10. The proof is similar to the previous proof. O

B Proof of lower bounds

First, we introduce some notations for this section. Given a labeler L and an active learning algorithm
A, denote by P} , the distribution of n samples {(X;,Y;)}!"_; where Y; is drawn from distribution

Pr(Y|X;) and X; is drawn by the active learning algorithm based solely on the knowledge of
{(Xj, Y])};;ll We will drop the subscripts from PJ 4 and P, (Y|X) when it is clear from the
context. For a sequence {X;}2, denote by X™ the subsequence {X1,...,X,}.

Definition 1. For any distributions P, () on a countable support, define KL-divergence as

dgL (P, Q) = Y. P(x)In g%i; For two random variables X,Y’, define the mutual information

as I(X;Y) = dgo (P(X,Y) || P(X)P(Y)).

We will use Fano’s method shown as below to prove the lower bounds.

Lemma 5. Let O be a class of parameters, and { Py : 6 € O} be a class of probability distributions
indexed by © over some sample space X . Let d : © x © — R be a semi-metric. Let) =
{01,...,00m} C O such that Vi # j, d(0;,0;) > 2s > 0. Let P = ﬁ > oey Po- If dir (P@ I P)

0 for any 6 €V, then for any algorithm 0 that given a sample X drawn from Py outputs é(X )EO
the following inequality holds:

N

- d+1n2
sup Py (d(6,0(X)) > s) > 1~
e 4 b (d6,000)) 2 5) In M

Proof. For any algorithm 0, define a test function ¥ : X — {1,..., M} such that \i/(X) =

argmin;e gy, ary d(0(X),0;). We have

.....

sup Py (d(é), 0(X)) > s) > max Py (d(e, 0(X)) > s) > max P, (\i/(X) £ z)

[JSC) T ae{l,...,M}

Let V be a random variable uniformly taking values from V, and X be drawn from Py-. By Fano’s
Inequality, for any test function ¥ : X — {1,..., M}

I(V;X)+1n2
Py, (U(X y>1- ——
e, Po (WX) #1) 2 In M
The desired result follows by the fact that 1(V; X) = 3 >y, dx (Py || P). O
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B.1 The one dimensional case

Proof of Theorem 5. > Without lose of generality, let C = C’ = 1 (C'is defined in Condition 2). Let

e < 2min { (%)1/6 , (%)l/a , i} We will prove the desired result using Lemma 5.

First, we construct V and Py. For any k € {0,1,2,3}, let Pr, (Y | X) be the distribution of the
labeler Lj’s response with the ground truth 6 = ke:

P (Y=Llzr) = l—x—%—ke
k) (1-(z—L—ke)T) /2 z>L+k
P (Y =0[z) = (o= E)a =2 6),3 /2 x> 5+ ke
2 €E—T 5 €E— r < = €
(3tke—2)" (1+(3+ke—2)")/2 z<5+k
k) (14 (-1t —ke)) /2 2> L4k
P, (Y =1x) = (x 2 6)(1 (I 2 f)ﬁ /2 3 €
5 the— — (5 +kKke—2x z < 2+ ke
(Stke—2)* (1-(b+he—a2)") /2 e<i+k

Clearly, Py, complies with Conditions 1, 2 and 3.

Define P} to be the distribution of n samples {(X;,Y;)};—, where Y; is drawn from distribution
P, (Y|X1-)_ and X; is drawn by the active learning algorithm based solely on the knowledge of

1—1
{(Xjan)}j:y
Define P, = §°; Pr, and P" = ; 3=, Pj'. We take © to be [0,1], and d(6:,62) = |61 — 65| in
Lemma 5. To use Lemma 5, we need to bound d;. (P,:L I 15”) for k € {0,1,2,3}.
Forany k € {0,1,2,3},

dxr (P || Fy')

X)) P (Xo | X, Yn) - B (Yn|X17Y17~-~7Xn))
(Yl | Xl)Pn(X2|X17Y1)Pn (Yn|X17Y1,~"7XTL)

OF b, (ln —Higlpfk (mXi)) )
I, Pr (YilX)

n
Pr, (}/1|Xl) n
i=1 [ 7

sn max di (P, (Y | 2) || PL(Y | 2))
(a) follows by the fact that P;* (X, 1 | X1,Y1,...X;,Y;) = P (Xi1 | X1,Y1,..., X3, Y5) since
X1 is drawn by the same active learning algorithm based solely on the knowledge of {(X;, YJ)};:1
regardless of the labeler’s response distribution, and the fact that P (V; | X1,Y1,..., X;) =
P, (Yi|X;) and P™ (Y; | X1, Y1, ..., X;) = Py (Yi|X;) by definition.

Forany k € {1,2,3},z € [0, 1],

D PLO('|m)+PLk("$)

Pr(-|a) > N 3)

Forany k € {0,1,2,3},2 € [0,1],y € {1,—-1, L}

2 Actually we can use Le Cam’s method to prove this one dimensional case (which only needs to construct 2
distributions instead of 4 here), but this proof can be generalized to the multidimensional case more easily.
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(PL(Y =y|a)— P (Y =y|x))’

(Pr,(Y =y|z) = Pr,(Y =y |2)) + (PL,(Y =y |x) = P, (Y =y| )

< (5 (P, (Y =y | 2) = Py (Y =y |2))" +5(P(Y =y | 2) = P (Y =y | 2))

J
<65 (P, (Y =y|2)— Pro(Y =y | 2))° )

2
where the first inequality follows by (Z?:o ai) < 5 ZZ 0@ by letting a; =
1 (P, =yla)—P,(Y=y|z))forj=0,....3anday = P, (Y =y | z) — P, (Y =y |

x), and noting that ag = 0 under this setting.
Thus,

dxL (PLk(Y | ) || PL(Y | x))
_Z (PLo(Y =y|2) = PL(Y =y | 2))°

1 2
<24§;PL WT0)+ Pl (B0 =D - P =yl

<O(e%)

—y\ x)

The first inequality follows from Lemma 10. The second inequality follows by (3) and (4). The last
inequality follows by applying Lemma 11 to P, (- | ) and Pr, (- | =) and the assumption o < 2.

Therefore, we have dg;. (P || Pi) = nO(e®). By settingn = e, we getdky (P || P') < O (1),
and thus by Lemma 5,

sup Py (d(0,6(X)) = 2(0)) = 1- 0(1) +In2

In4 =0Q)

B.2 The d-dimensional case

Again, we will use Lemma 5 to prove the lower bounds for d-dimensional cases. We first construct

{Py : 0 € O} using a similar idea with [6], and then use Lemma 12 to select a subset ©cOto apply
Lemma 5.

Proof of Theorem 6. Again, without lose of generality, let C' = 1. Recall that for ¢ = (21,...,24) €
R?, we have defined % to be (x1,...,74_1). Define m = (7)1” L = {o, m,...,mT’l}d_l,
h(z) = 1) exp( T 43: )]l {lzil < 3}, (@) = Km™Yh(m(&—1)—3) where | € L. Itis easy
to check ¢ (&) is (K, )-Holder smooth and has bounded support [I1, Iy 4+ 2]+ x [lg_1, lg—1+ =],
which implies that for different /1, l2 € L, the support of ¢;, and ¢;, do not intersect.

Let Q = {0, 1}md_1. For any w € €, define g, (%) = >, wi¢i(x). For each w € 2, define the
conditional distribution of labeler L,,’s response as follows:

For zg < A, P, (y =L |x) = 1 - f(A), P(y # Lza > gu(@))|w,y #L) =
L (1~ taa - gul@)°):
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Forza > A, Pu,(y =L [@) = 1 = f(va), Pro(y # Iza > g (@), y £1) = 5 (1-a7).
Here, A = cmax ¢(&) = ¢ for some constants ¢, ¢’.

It can be easily verified that Py, satisfies Conditions 1 and 2. Note that g, (&) can be seen as the
underlying decision boundary for labeler Py, .

Define P} to be the distribution of n samples {(X;,Y;)},_, where Y; is drawn from distribution
P, (Y|X;) and X; is drawn by the active learning algorithm based solely on the knowledge of

i1
{(Xja Yj)}j:1'

By Lemma 12, when ¢ is small enough so that m9~! is large enough, there is a subset
{w®, . w®} c Q such that [|w® fw(j)Ho > m? /12 forany 0 < i < j < M and
M > 2™ /%8 Define P = P, P* = LM pr.

Next, we will apply Lemma 5 to {w™®, ..., w®)} with d(w®,w)) = |lg,6) — g0 [|. We will
lower-bound d(w?,w)) and upper-bound dxy, (P! || P™).

Foranyl1 <i<j<M,

190 = g |l
= Y -
le{1,...,m}pd-1
>m1 /12 %« Km =71 |||
=Km™" ||h] /12
=0 (¢)

Km= 7=V |||

By the convexity of KL-divergence, di; (P! || P") < & Zj\il deu (P || PJTL), so it suffices to
upper-bound dgy. (P || PJ*) for any i, j.
Forany 1 <i¢,7 < M,

dxi (PP || P})

<n max da (PL, (V| @) || P, (V| )

=n_max PP (V1] @) (Pgm (V |2, Y £0) | P (Y 2, ;u))

The inequality follows as (2) in the proof of Theorem 5. The equality follows since P,,(y =L |x) is
the same for all w € €.

If zg = A, then Pp Y | =Y #1) = P} o Y | =Y #L), so
dyL (Pgu(i) (Y |,y £1) | PP (V|2 #J_)) = 0. Ifzg < A, then P} (Y #1| x) =
f(A). Therefore,
da (P | PJ) < nf(A) mas dio (P (V |2, Y 1) | PR, (V [ 2,Y #1))
Apply Lemma 10 to P7 (Y|@,Y #1)and P} » (Y | ,Y #.1), and noting they are bounded
above by a constant, we have max¢(o 14 dkL (Pf o (Y|x,Y#L) || PP o Y |xY 7£J_)) =
O (A?P). Thus,
du (P]' || P') < nf(A)O (A%P) = nf(ce)O(e*F)

By setting n = f(i,é) e_zﬂ_dv;l, we get dgr. (Pi” I PJ”) <O (e_%). The desired results follows

by Lemma 5. O
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The proof of Theorem 7 follows the same structure.

Proof of Theorem 7. As in the proof of Theorem 6, let C = C' = 1, and define m = (l)l/ "

£ = {0 B} 1@ = T exp (= i) 1 {leul < 4}, @) = Kn~"h(im(@ =
l) — %) where | € L. Let Q = {0, 13", For any w € €, define g,,(z) = T4+ Y e widn(@),
which can be seen as a decision boundary. A = max ¢(&) = ¢’e for some constants ¢’.

Let 94(Z) = g(1,1,..1)(Z) = X 01(Z). 9-(T) = 9(0,0,....0) (&) = 0. In other words, g is the
“highest” boundary, and g_ is the “lowest” boundary.

For each w € (2, define the conditional distribution of labeler L,,’s response as follows:

Pr (y=1|z) =1—|zq — g (&)

Prly # 1(za > go@)le,y #1) = £ (1~ lra— 00(@)")

It can be easily verified that Py, satisfies Conditions 1, 2, and 3.
Let Pr(-|z) = Pr,, ,,(|2), P-(-|x) = Pry, (| ). By the construction of g, for any
x €[0,1]4, any w € Q, Pr_ (- | ) equals either P, (- | ) or P_(- | x).

Define P to be the distribution of n samples {(X;,Y;)}.—, where Y; is drawn from distribution
Pr,, (Y|X ) and X is drawn by the active learning algorithm based solely on the knowledge of

{(XJ7 ij)}

By Lemma 12, when ¢ is small enough so that m is large enough,, there is a subset ' =
{w®,... ™)} C Q such that (i) (well-separated) [|w® — wO)|| > m=1/12 forany 0 < i <
j < M, M >2m"""/48; and (ii) (well-balanced) for any j = 1,...,m%1, = < & M wgi) <
3

ﬂ .

d—1

Define P/ = Pw(), = M ZZ P Deﬁne P, = P (), p ZZ 1 Pr,. By the
well-balanced property, for any = € [0,1]%, P.(- | @) is between o ( | a:) 2P (| x)and
2P.(|z)+ ZP_(-| x). Therefore
1
Pr(-|2) = 57 (P(- [ @) + P-(- | @) (5)

Moreover, since Py, (- | «) can only take Py (- | ) or P_(- | x) for any @,

[P, (- [) = Pe(- | 2)| < [Py( [ x) = P_(- | @) (6)
Next, we will apply Lemma 5 to {w™®, ..., w®)} with d(w®,w®) = ||g o — guwm . We
already know from the proof of Theorem 6 ||, ;) — g, || = 2 (€).

Forany 0 < i < M, dx (P || P§') < nmaxgepjedxe (Pr,(Y | ) || PL(Y | 2)). For any
x € [0,1)4,
dxv (P, (Y | @) || PL(Y | z))

X =y (P =vl® A =yl @)

24 N z) — _ - 2
S%:P+(y|m)+P—(y|m)(P+(Y_y| )—P_(Y=y|x)

=y|x)

<O(A%)
The first inequality follows from Lemma 10. The second inequality follows by (5) and (6). The last

inequality follows by applying Lemma 11 to P, (- | ) and P_(- | &), setting the € in Lemma 11 to
be g., (&), and using g,,(Z) < A and the assumption o < 2.
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Therefore, we have

dxw (P || Fg') < nO (A%) = nO(e”)

d—1 —1

By settingn =¢ * 7 ,we getdg, (P || Py) <O (ede) . Thus by Lemma 5,

) 0] (e_dv;l) +In2
sup Py (d(6,0(X)) = () =1 - =01
0 € 7 /48
, from which the desired result follows. O
C Technical lemmas
C.1 Concentration bounds
In this subsection, we define Y7,Y5,... to be a sequence of i.i.d. random variables. Assume

Yy € [-2,2], BY; = 0, Var(Y}) = 02 < 4. Define V,, = - (z" y2-1 (Zﬁzly;f). It is

i=1%i
easy to check EV,, = no?.

We need following two results from [21]

Lemma 6. (/21], Theorem 2) Take any 0 < § < 1. Then there is an absolute constant D such that
with probability at least 1 — 0, for all n simultaneously,

i=1

< Dy (1 + ln% + \/7102 [Inln], (no?) + no?In (15>

Lemma 7. ([21], Lemma 3) Take any 0 < § < 1. Then there is an absolute constant K such that
with probability at least 1 — 0, for all n simultaneously,

1 n
2 2
no? < K, <1—|—1n6—|—ZYi )
i=1
We note that Proposition 1 is immediate from Lemma 6 since Var(Y;) < 4.

Lemma 8. Take any 0 < 6 < 1. Then there is an absolute constant K3 such that with probability at
least 1 — ¢, for alln > ln% simultaneously,

1
no? < Ks <1+1n5+vn)

Proof. By Lemma 7, with probability at least 1 — ¢/2, for all n,

2
° 2 n—1 1 [< 2
2<K§Y21—1:K —EY' In=+1
no* < o< z+n§+ 0 nVn+n . £ +n6+

i=1
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By Lemma 6, with probability at least 1 — §/2, for all n,

S) < 2 (st it

2
= D—% 1+ lng + D3o? [Inln], (no?) + D3o? lng
n 5 0 * s

2 o2 [Inln], (no2?) 4+ o21n 2
+2D2 (1 +In 5) \/ nln], (no®) 9
n

IA

K (1 + ln% + [InIn] (n02)>

for some absolute constant K. The last inequality follows by n > In %.

Thus, by a union bound, with probability at least 1 — ¢, for all n, no? < KoV, + Ko(K1 +2)In 3 +
KoKy [lnln]+ (7102) + Ko(Kl + 3)

Let K3 > 0 be an absolute constant such that Va > Ky, KoK [Inln], z < 5.

Now if no? > Kj, then no? < KoV, + Ko(K1 +2)In 1 + 2= + Ky (K; + 3), and thus

1
no® < 2KoV, + 2Ko(K; +2)In 5+ 2Ko(Ky +3) + K» (7)
If no? < Ko, clearly (7) holds. This concludes the proof. O

We note that Proposition 2 is immediate by applying above lemma to Lemma 6.

Lemma 9. Take any 0,n > 0. Then with probability at least 1 — 9,

1
V, < 4n02+81ng

Proof. Applying Bernstein’s Inequality to Y;?, and noting that Var(Y;?) < 402 since |V;| < 2, we
have with probability at least 1 — 4,

& 4.1 / 1
ZYiQ < -—ln<+no?+4/8nc?In~
P 3 0 8

1
41n 5 + 2no?

IN

The last inequality follows by the fact that v/4ab < a + .

The desired result follows by noting that V,, = "+ (Z?Zl vi-1(on, Y;)Q) <230 YA
O

C.2 Bounds of distances among probability distributions

Lemma 10. If P, Q are two probability distributions on a countable support X, then

dKL<P||Q>32W
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Proof.

dgr (P || Q)

IN

P(z)
2P (Q(af) 1)
(P@) - Q))’
2 0w

The first inequality follows by Inz < . —1.
P3(z)-P P(z)—Q(x))?
S ( (af)Q(g)Q(x) — P(z) + Q(:c)) =3 ( (wg(g(m)) ]

The second equality follows by >~ P(z) (

P(z)
Q(w)

[0,1],

Define
P(Y=Llz) = 1—|x %
-1 (1=@-1") /2 2>1
Py =o) = ¢ P .
(3-2)" (1+(z-2)")/2 =<3
(x5 (1+(@-1)")/2 o>}
PQ(Y:HJJ) = 1 . 1 1 8 9 <l
(z-2) (3-2)")/2 =<3
and
«
P(Y=Llz) = 1—|x—c¢ %
(z—e—l)a 1—(as—e—l)ﬁ /2 z>e+ 3
Al =0 = (e+l—i)“ 1+(e+l—92c)6 /2 x<e+i
2 2 = 2
(x—e—3)" 1+(x—e—l)ﬁ /2 z>e+3
P(Y=1lz) = L L :
(e+3-—2) (1—(e+5—-2)")/2 z<e+3
Lemma 11. Let Py, P, be the distributions defined above. If x €
min { ()", (2)'/" . 1}, then
(Po(Y = yla) = Pi(Y = ylz))* 2
=0 (e +
; Py(Y = ylz) + P (Y = ylx) (" +¢)
1+4€

Proof. By symmetry, it suffices to show for 0 <z < <5<, Lett = % +e—x.

We first show (8) holds for £ < ¢ < e (i.e. 3 <z < Lf€).

We claim min, (P (Y = y|X =t) + P(Y =y|X =1)) > 1 (;)a

e (Y=L | X=t)+P(Y =L | X=t)=1—(e—t)" +
where the last inequality follows by e < (%) e,

e 2(Py(Y
t> (14 t7)

=0[X =t)+ P (Y
> (%)a Therefore, Py (Y

= 0]X =1))
01X =)+ Py (Y

=0|X =t)>
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. This is because:

1—t*>2—-2>1

L)

1)

O

<

®)

(5)°

(=0 (1= (e=0") 12 (1447) >



o Similarly, Py(Y = 1|X =t) + P,(Y = 1|X =1) > 1 (£)"

Besides,

Y (Bo(Y =y|X =) - P(Y = y|X =)’

= (=0 (1 (=1 =07 (14 (=)
(e (") = (-0 (1- (e—t)6>)2

R I G e e S g
(t" —(e—t)" +tF + (e — t)a+5>2

2

=

_|_

_|_

RNy

Ll e S e L (g -

+ % t* — (e— 1)) + % (t“+ﬂ + (e — t)“*ﬁ)2

=2(t* — (e—t)*)* + (t‘”ﬂ + (e — t)”‘*)2

<2€2a +462a+2ﬁ

§6€2a

where (a) follows by the inequality (a + b)? < 2a® + 2b? for any a, b.

(Po(Y=ylz)— P (Y=y|z))? _ X,(Po(Y=y|z)—P1(Y=y|z))*
Therefore, we get 3., R = fer (v =yle) = imin, (P (V=4[] P (V=1o)

1 1te
3 ST S

< 12 % 2%€® when

. 1 : (P (Y=y|z)—P (Y=y|z))* _
Next, We show (8) holds fore < t < %—l—e (. 0 <z < 3). We will show go(yzgmw;l(y:?ylm) =
O (e*+¢€?) forY =1,1,0.

For Y =, for the denominator,

Po(Y =L [X =t)+ P (Y =L |Xt)2ta(te)a22<i)a<;>a

For the numerator,
an 2
(Po(Y =L [X =1) — Py(Y =L |X = 1))% = (t® — (t — )*)® = 2 (1 - (1 - f) )
By Lemma 13, if a > 1, ¢3¢ (1 — (1 — %)a ? < 2@ (aE)Q = 202 (oze)2 =0 (62). Ifo<a<il,
a e\ 2 a (€2
tPe(l—(1-5)") <t (5) =2

(Po(Y=1|z)—P(Y=1]|z))> 2 2
Thus, we have 35— 5=p sk = O (€2 + €°).

For Y = 1, for the denominator,

2Py(Y =1X =t) + P, (Y = 1|X = 1))

I
~
Q
—
—
|
~
=

%

~
Q
—~
—

I

~

=

IV
~
Q
/
—
\
7N
o
~_
®
~—
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For the numerator,

(Po(Y =1|X =t) — P (Y = 1|X =1))°

L =) -0 (1- -0
T LI (S

:%tm (1 - (1= %)“)2 + %tr"““ﬁ (1 —(1- %)a+ﬁ)2
S%tm (1 —(1- %)u)Q i %tza (1 (- %)M—B)z

t

a €\2 2 a— Po(Y=1|z)— P (Y=1|z))>
100 (a4 8)5)° = (o +d(a+pP) e, This, BOUo-note)

(%QQ +1(a+ 5)2> to—2¢2/ (1 - (%)ﬂ) which is O(e?) if @ > 2 and O (%) if o < 2.

If a > 1, by Lemma 13, 127 (1 — (1)) 4 L2 (1 — (1 — £)2+F)® < L2 (a) 4
<

a_e 2 a e\ 2 o
e (5) 112 ((a+8)5)" = (5 + 3 (a+ B)) 222
=1ja)— P (Y=1]2))* o 8 .
R < (i) e/ (1-(@)) = o),
Ifa <1,a+8 <1,byLemma 13, t>* (1 — (1 — %)u)2+%t2a (1—(1- %)(H-B)Q < Lppa (%)2+

1
1,2c (€ 27 a— Po(Y=1|z)—Pi(Y=1|z))? o— 3\ 8 _ a
3177 (§)" = t**72¢% Thus, (I;]O((Yzl‘|z))+131’1((Y:1||m))) <t/ (1-(3) ) =0 (e).

« €\« 2
2o (1-(1-5)*)" <
)2) t22=2¢2 Thus,

Ifo < land o+ 8 > 1, by Lemma 13, 1¢2* (1 —(1— ¢

In 5
SN—

(Ut

+ +

o= NI

£}

+

™

(B U -PO =10 _ g (o 1 2),

Therefore, we have “5 5 5 5=

Likewise, we can get2 (1;‘,)0((3;::0()"”2)1121(&::03"2))2 = O(e*+¢€). So we prove
>, (%O(E;,iyy'ﬁ));iz(gf:yylg)) = O (¢* + €?) when = < 3. This concludes the proof. O

C.3 Other lemmas

Lemma 12. ([20], Lemma 4) For sufficiently large d > 0, there is a subset M C {0, l}d with
following properties: (i) |M| > 2%/48; (ii) |lv — v'||, > %for any two distinct v,v' € M, (iii) for
anyi=1,...,d, i < ﬁZUeMW < 23—4.

Lemma13. Ifz < 1r>1,then(1—2)" >1—rzand1 — (1 —x)" < raz.

F0<z<1,0<r<1then(l—2)"> "2 andl—(1—-2)" <

l—xz+rx sz

_rr
1-(1-r)z —

Inequalities above are know as Bernoulli’s inequalities. One proof can be found in [16].

Lemma 14. Suppose ¢, T are positive numbers and § < % Suppose {Zi}fil is a sequence

of i.i.d random variables bounded by 1, EZ; > te, and Var(Z;) = o?> < 2e. Define V,, =
L (Z?:l Zi—1(Xh, ZZ-)2), Gn = q(n,Vy,0) as Procedure 2. If n > Lln% for some

sufficiently large number 1 (to be specified in the proof), then with probability at least 1 — § ,
I —EZ; < —7¢/2.

Proof. By Lemma 9, with probability at least 1 — 4, V,, < 4no? + 81n $, which implies

qn < D1 <1+1n(15+\/<4n02+91n(15+1> ([lnln]+ (4n02+9lntls+1)+ln(1s>>

We denote the RHS by q.

On this event, we have
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I _gg,

= —Te€
n

q
Te(m’e 1)
oD, Dy [op. 1 o 1 1
—_— —~In=(/[Inl —~In-)+h=)-1
’7'6( p +771n(1;\/7 n6<[nn]+(7_ n6)+n6

2D, 9 o9 1. 9
—+D Inl —h-)+—-1
Te( 0 1\/7771113;[1“1}*(7 "5 )

where (a) follows from I being monotonically decreasing with respect to 7. By choosing 7 sufficiently
large, we have % + Dl\/ﬁ [lnlnLr (97’7 In %) + 77% —-1< —%, and thus % —EZ; < —7¢/2.

O
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