
Supplementary Material

A Full proofs of Lemmas

A.1 Proof of Lemma 2

Let us suppose 1 < k < n/3, and let S� be a set of size r < k. Note that our definition of sum-min()
for a singleton {u} is maxv∈V d(u, v). Thus picking two points is always better than 1. Thus we
may assume that r ≥ 2, and so we can suppose that S� = {u1, u2, . . . , ur}, for 1 < r < k.

Let us partition V into V1, V2, . . . , Vr, where Vi is the set of vertices whose closest neighbor in
S� is ui (i.e., it is the Voronoi partition arising from S�). Without loss of generality, assume that
|V1| ≥ |V2| ≥ · · · ≥ |Vr|. Also, let di denote the minimum distance from ui to the rest of S�. We
consider two cases:

Case 1. |V1| ≥ k.

First, consider the set of points W1 := {u2, u3, . . . , ur}∪T , where T is an arbitrary set of k− r+1
points in V1. We claim that the diversity of S�� is at least (d2+ d3+ · · ·+ dr)/2. This is because for
any i > 1, every point in V1 is at a distance at least di/2 from ui (to see this, consider some v ∈ V1;
we know that d(v, u1) ≤ d(v, ui), by the definition of V1; thus if d(v, ui) < di/2, we must have
d(ui, u1) < di, a contradiction).

Second, let v be the ui that is furthest from u1. Clearly, we have d(u1, v) ≥ d1. Now consider the
set of points W2 := {v} ∪ T , where T is any set of k − 1 vertices in V1. From the same argument
as above, the diversity of W2 is at least d1/2.

Now one of the sets above must have diversity ≥ (d1 + d2 + · · · + dr)/4 ≥ sum-min(S�)/4. This
completes the argument in this case.

Case 2. |V1| < k < n/3. In other words, all the sets Vi have size < k.

Now let s be the smallest index for which |V1 ∪ · · · ∪ Vs| ≥ k. Since all the |Vi| are smaller than
k < n/3, we certainly have s < r. Furthermore, we must have |Vs+1 ∪ · · · ∪ Vr| ≥ k.

Now, define W1 := {u1, u2, . . . , us} ∪ T , where T is an arbitrary set of k − s elements from
Vs+1 ∪ · · ·∪Vr, and W2 := {us+1, . . . , ur}∪T , where T is an arbitrary set of k− s elements from
V1 ∪ · · · ∪ Vs. By the argument above, the diversity of W1 is at least (d1 + d2 + · · · + ds)/2, and
that of W2 is at least (ds+1 + · · ·+ dr)/2.

As before, one of these quantities is at least sum-min(S�)/4. This completes the proof of the lemma.

A.2 Final step – Proof of Lemma 4

We fill in the details of the last step of the lemma – upper bound the second term of (2). Note that

Pr[χ(a) ∧ χ(c)] ≤ Pr[χ(a)] Pr[χ(c) | χ(a)].

The second term on the RHS, because the rounding is independent, is at most the probability that
the rounding picks at least k pairs other than (i, r). Each pair (j, r�) is picked with probability
(1−�)(1−e−xjr� ) ≤ (1−�)xjr� . Thus the expected number of pairs picked (in total) is ≤ (1−�)k.
Thus by a standard Chernoff bound, we have

Pr[χ(c) | χ(a)] ≤ e−�2(1−�)k/3 < �/e,

by our choice of k. Thus using (2), we have

Pr[χir = 1] ≥ (1− �)xir

e
− Pr[χ(a)] · �

e
≥ (1− �)(1− �)

xir

e
.

In the last step, we used the fact that Pr[χ(a)] ≤ (1 − �)xir. This completes the proof of the
lemma.
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Figure 5: Point u is at a distance < r1/2 from i1 and < r2/2 from i2, and the constraint implies
xi1r1 + xi2r2 ≤ 1

A.3 Proof of Theorem 1

First, we illustrate in Figure 5 the additional constraint we add to the linear program.

From Lemma 4, since χir is a 0/1 random variable, it follows that E[χir] ≥ ((1 − 2�)/e) · xir.
Now, using linearity of expectation and Lemma 3, it follows that the expected objective value of the
solution returned by the algorithm is at least

E[
�

i,r

(r/2)χir] ≥
1− 2�

e
·
�

i,r

(r/2)xir =
1− 2�

2e
· LPopt.

I.e., the expected objective value is ≥ (1 − 2�)/2e times the LP-optimum. We now claim that
LPopt ≥ opt. This will complete the proof, from the above.

To see this, consider the optimal solution to the diversity problem, which is simply a subset S of
input points of size ≤ k. For any i ∈ S, let di denote d(i, S \ {i}). Now, set xidi

= 1 for all i ∈ S,
and the rest of the xir to 0. For i not in S, we always set xir = 0. This solution satisfies all the
constraints, as we can easily verify.

The first constraint holds as |S| ≤ k and exactly one xir is set to 1 for each i ∈ S. The second set
of constraints hold due to the reasoning given in Section 2. Essentially, suppose the constraint fails
for some u. Then it means that there exist at least two terms on the LHS that are 1. Thus, we have
i, j ∈ S such that u ∈ B(i, di/2), and u ∈ B(j, dj/2) (recall the definitions of di, dj above). This
means that, by triangle inequality,

d(i, j) ≤ d(i, u) + d(u, j) < (di + dj)/2 ≤ max(di, dj).

Thus, if we assume (without loss of generality) that di ≤ dj , we have that d(i, j) is strictly less than
di, which is a contradiction, because we defined di to be d(i, S \ {i}) – the min distance from i to
an element of S \ {i}, and S \ {i} includes j.

Now, the cost of this solution (= opt =
�

i∈S di) is precisely the LP objective value (since xir is
set to 1 only for r = di). Thus, since the LP tries to maximize over all feasible solutions, and we
have shown that there is a feasible solution of objective value opt, we have that LPopt ≥ opt.
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B General Matroid Constraints

The full LP we use in this algorithm is the following:

maximize
�

i

�

r∈Ri

xir · r subject to

y ∈ P (M),
�

r∈Ri

xir = yi for all i ∈ V ,

�

i∈V,r∈Ri:u∈B�(i,r)

xir ≤ 1 for all u ∈ V ,

0 ≤ yi, xir ≤ 1 for all i, r.

Let us now turn to the analysis of the rounding algorithm. The key component is the following
theorem from [7].
Theorem 4 (Theorem 1.1 in [7]). Let (y1, . . . , yn) ∈ P (M) be a fraction solution in a matroid
polytope and (Y1, . . . , Yn) ∈ {0, 1}n an integral solution obtained using randomized swap round-
ing. Then E[Yi] = yi, and for any T ⊆ [n], (i) E[

�
i∈T Yi] ≤

�
i∈T yi, (ii) E[

�
i∈T (1 − Yi)] ≤�

i∈T (1− yi). (Here the expectation is over the randomness of the algorithm.)

B.1 Analysis

Let us start by observing that the algorithm returns a feasible solution, i.e., S ∈ I. This is because,
by Theorem 4, Y ∈ P (M) ∩ {0, 1}V , and the returned set S is a subset of {i : Yi = 1}. Since the
feasible sets of a matroid is a down-closed family, we have S ∈ I.

Let us now turn to the analysis of the objective sum-min(S). As in Section 2, we show that the
probability of selecting a point i ∈ S with a certain radius is proportional to its LP value.
Lemma 5. For any ball i and r∗ ∈ Ri, we have

Pr[i ∈ S and ri = r∗] ≥ xir∗/4,

where the probability is over the randomness of the generalized-round procedure, i.e., the selection
of Y and the radii.

Proof. The statement is clearly true if xir∗ = 0. Hence, assume from now on that xir∗ > 0. By
Theorem 4 the probability that Yi = 1 equals yi/2. Therefore,

Pr[Xir∗ = 1] = xir∗/2,

where Xir∗ is the indicator variable that Yi = 1 and ri = r∗. Moreover, by condition (ii) of
Theorem 4, Pr[Yi = 1 ∧ Yj = 1] ≤ yi/2 · yj/2 for two different centers. In other words, we have
Pr[Yj = 1 | Yi = 1] ≤ yj/2 and therefore Pr[Xjr = 1 | Xir∗ = 1] ≤ xjr/2.

Also note that i is in the returned set S with ri = r∗ if Xir∗ = 1 and Xjr = 0 for all r ≥ r∗ such
that i ∈ B�(j, r). Thus, by the union bound, Pr[i ∈ S and ri = r∗] is at least

Pr[Xir∗ = 1]


1−

�

j,r∈Rj :r≥r∗ and i∈B�(j,r)

Pr[Xjr = 1 | Xir∗ = 1]




≥ xir∗/2


1−

�

j,r∈Rj :r≥r∗ and i∈B�(j,r)

xjr/2




≥ xir∗/4,

where the last inequality follows from the LP constraint
�

j,r∈Rj :i∈B�(j,r) xjr ≤ 1.

The bound sum-min(S) ≥ opt/8 now follows from linearity of expectation in the same way as in
Section 2 (Lemma 3). This completes the proof of Theorem 2.
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C Coverage Objective in Addition to Diversity

We start by discussing the statement of Theorem 3. Note that the guarantees of the theorem are all
in expectation. Thus we may, with some probability, output a set of size > k. It could also happen
that the solution we output has only a high value for diversity or has good coverage but not both
(because guarantees are in expectation). We do not expect to see such pathological cases in practice,
but it is one drawback of randomized rounding. We leave it as an interesting open problem to obtain
a bi-criteria approximation.

Let us now describe the algorithm. The overall idea is to write a linear program which combines the
linear program for diversity maximization with the natural one for maximizing coverage, and then
round via randomized rounding. Formally, in addition to the xir variables from Section 2, the LP
also has variables zj for j ∈ [m], which are supposed to indicate if element j is covered.

maximize
�

i

�

r∈Ri

xir · r subject to

�

i∈V,r∈Ri

xir ≤ k,

�

i∈V,r∈Ri:u∈B�(i,r)

xir ≤ 1 for all u ∈ V ,

�

j∈[m]

zj ≥ C,

zj ≤
�

(i,r):B�(i,r)�j

xir for all j ∈ [m],

0 ≤ zj , xir ≤ 1.

Note that the last three constraints are the ones that correspond to the coverage problem, while the
first two are the ones we had for diversity in Section 2. Another technical point is that we assumed
knowledge of the parameter C when formulating the LP. We can assume this because we can try
various guesses for C (in increasing multiples of (1 + δ), for a small constant δ), and work with the
largest C for which the LP is feasible.

Feasibility of the LP. Consider any solution S∗ with size ≤ k, and suppose it has a coverage
objective at least C. Then we can construct a feasible solution to the LP as in Section 2: we set
xir = 1 precisely when i ∈ S∗ and r = min d(i, S∗ \ {i}). The value of zj is set to 1 for all
j ∈ ∪i∈S∗Ci.

The algorithm is a simplified version of the one from Section 2. Here the rounding is done with
probability simply xir/2, and there is no ensuring that the solution has size ≤ k.

procedure round-coverage(x, z) // LP solution (x, z).

1: Initialize S = ∅.
2: Add (i, r) to S with probability xir/2 (independent of the other point-radius pairs).
3: If (i, r) �= (j, r�) ∈ S such that r ≤ r� and i ∈ B�(j, r�), remove (i, r) from S .
4: Return the first coordinates of the pairs in S .

The technical core in the analysis is to show that the removal phase (step 3) does not cause a signif-
icant loss to the coverage objective, in expectation.

We now show how to analyze procedure round-coverage and prove Theorem 3.

From the rounding, it is clear that part (1) of Theorem 3 holds. Now let us define χir to be 1 iff (a)
(i, r) is selected in step 2, and (b) (i, r) is not removed in step 3. Analyzing Pr[χir = 1] is now
much simpler.

Lemma 6. In the notation above, Pr[χir = 1] ≥ xir/4.

This lemma, together with Lemma 3 implies that part (2) of the statement of Theorem 3 holds.
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Proof. As before, let T be the set of all (point, radius) pairs (j, r�) such that (i, r) �= (j, r�), i ∈
B�(j, r�), and r� ≥ r. Now, the condition (b) in the definition of χir is precisely the same as saying
that none of the pairs in T are picked in step 2. Thus

Pr[χir = 1] =
xir

2

�

(j,r�)∈T

�
1− xjr�

2

�
.

Since
�

(j,r�)∈T xjr� ≤ 1, we have that the product term above is ≥ 1/2, implying the lemma.

We thus need to analyze the coverage objective. This turns out to be a bit tricky because of the
removal phase (step 3).

Lemma 7. Fix some j ∈ [m] and consider the algorithm above. The probability that it outputs a
solution that covers j is at least zj/16.

Proof. Let us denote by Nj := {(i, r) : Ci � j}. We will now analyze what happens the elements
of Nj as we execute the algorithm. Let Xir be the indicator of event that the algorithm adds (i, r) to
S in step 2, and Yir the indicator that it does not discard it in step 3. Thus Xir, Yir are 0/1 random
variables, and we have Pr[Xir = 1] = xir/2 by definition, and Pr[Yir = 1] ≥ xir/4 from our
analysis earlier. We need to lower bound the probability of the event

�
(i,r)∈Nj

Yir > 0. The proof
proceeds by analyzing two cases:

Case 1. We have
�

(i,r)∈Nj
xir ≤ 2.

In this case we show that, in fact, the probability that the algorithm picks precisely one (i, r) in Nj

in step 2 is at least zj/16.

This is because of the following: consider some (i, r) ∈ Nj , and let Uir denote the event that (a)
Xir = 1, (b) Xi�r� = 0 for all other (i�, r�) ∈ Nj , and (c) Xi�r� = 0 for all other balls i� that could
cause Yir = 0 (in step 3 of the algorithm). Now, if event Uir occurs, we must have Yir = 1 (because
(i, r) is picked, and it does not get removed). Furthermore, the events Uir are mutually disjoint for
different (i, r) ∈ Nj (because we insist in (b) that Xir = 1 and the rest are 0). Thus the sum of this
probability over (i, r) ∈ Nj will be a lower bound for Pr[

�
(i,r)∈Nj

Yir > 0].

Let us thus compute the probability of Uir for a fixed (i, r) ∈ Nj . We call the set of possible (i�, r�)
in (b) and (c) above, the blocking set for (i, r), and denote it by Block(i, r). Hence we have

Pr[ Xir = 1 ∧ Xi�r� = 0 for all (i�, r�) ∈ Block(i, r)]

=
xir

2

�

(i�,r�)∈Block(i,r)

�
1− xi�r�

2

�

From the reasoning in Lemma 6, we have that the sum of xi�r� values of the pairs arising from
condition (c) above is at most 1, and by our assumption for Case 1, we have

�
(i�,r�)∈Nj

xi�r� ≤ 2.
Thus, we have

�
(i�,r�)∈Block(i,r) xi�r� ≤ 3. Subject to this (and the fact that 0 ≤ xi�r� ≤ 1), the

minimum value of
�

(i�,r�)∈Block(i,r)

�
1− xi�r�

2

�
occurs when the xi�r� are as spread out as possible,

i.e., when precisely three of them are 1 and the rest are 0. Thus the product is ≥ 1/8, implying that

Pr[ Xir = 1 ∧ Xi�r� = 0 for all (i�, r�) ∈ Block(i, r)] ≥ xir/16.

Combining this with the discussion above, we have that Pr[
�

(i,r)∈Nj
Yir > 0] ≥�

(i,r)∈Nj
xir/16, which in turn is at least zj/16. This completes the proof in this case.

Case 2. We have
�

(i,r)∈Nj
xir > 2. In this case, we may assume that zj = 1, and we will show

that the probability that at least one element of Nj is selected is at least 1/16.

Let us write C =
�

(i,r)∈Nj
xir. Recalling the definitions of Xir and Yir, we have, from linearity

of expectation and Lemma 6,
E[

�

(i,r)∈Nj

Yir] ≥ C/4.
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Let q denote the probability that
�

(i,r)∈Nj
Yir > 0. We want to show that q ≥ 1/16. By definition,

the above can be written as
q · E[

�

(i,r)∈Nj

Yir |
�

(i,r)∈Nj

Yir > 0] ≥ C/4.

This implies (since Xir is always ≥ Yir), that

E[
�

(i,r)∈Nj

Xir |
�

(i,r)∈Nj

Yir > 0] ≥ C/4q.

The rest of the argument proceeds by showing that if q < 1/16, this cannot happen. In particular,
since

�
(i,r)∈Nj

Xir is a sum of independent Bernoulli random variables with mean equal to C/2, it
is quite concentrated around C/2, and if q is small enough, we cannot have the desired expectation
to be ≥ C/4q.

Let us now make the intuition formal. For convenience, let us denote by Q the event that�
(i,r)∈Nj

Yir > 0. We start by noting that for any 0 < t ≤ 1, since Xir is 1 with probability
xir/2 and 0 otherwise, that

E[et(Xir−xir/2)] ≤ et
2E[(Xir−xir/2)

2] ≤ et
2xir/2.

(This is the standard argument used to prove Chernoff style tail bounds.) Since the Xir are indepen-
dent, this implies that

E[et(
�

(i,r)∈Nj
Xir)−tC/2

] ≤ et
2C/2.

Now, since the exponential function is non-negative and convex, we have that

q · et·E[
�

Xir|Q]−tC/2 ≤ E[et(
�

Xir)−tC/2] ≤ et
2C/2,

where the summations are over (i, r) ∈ Nj , as before. Let us write E := E[
�

(i,r)∈Nj
Xir|Q].

Taking logs, we have

− log(1/q) + tE − tC/2 ≤ t2C/2 =⇒ E ≤ C/2 +
log(1/q)

t
+ tC/2.

Setting t = 1, we get E ≤ C+log(1/q) = C
�
1 + log(1/q)

C

�
. This is a contradiction if 1+ log(1/q)

C <

1/4q, which can easily be seen to hold if C > 2 and q ≤ 1/16.

This shows that in both the cases, the probability of covering element j is at least zj/16, completing
the proof.

D Hardness beyond factor 1/2

We show that assuming the hardness of the planted clique problem (which is widely believed), it is
impossible to obtain an approximation factor better than 1/2 for diversity maximization under both
the sum-sum and the sum-min objectives. We note that our hardness results hold whether we insist
on returning a set of size precisely k, or if we allow sets of size ≤ k.

Finding planted cliques. The well known planted clique problem, introduced by Karp [13], asks
for an algorithm that can distinguish, with probability ≥ 3/4, between graphs drawn from the fol-
lowing two distributions (p and δ are parameters):
D1 : G is drawn from G(n, p).
D2 : G is drawn from G(n, p), and then a clique of size n1/2−δ is planted (i.e., a set of vertices of

this size is chosen at random and all edges between those vertices are added).

For any constants p ∈ (0, 1) and δ > 0, we do not know of polynomial time algorithms that can solve
the distinguishing problem above, and the planted clique conjecture states that it is impossible to do
so. Recently, there has been evidence for the planted clique conjecture, in the form of lower bounds
for linear and semidefinite programming relaxations, as well as lower bounds for broad classes of
algorithms (see [9]). Let us now state our results formally.

We start by noting that the planted clique conjecture is usually stated with p = 1/2, but it is believed
for all constants p and δ, so our statement is slightly more general. Our result is formally stated as
follows.
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Theorem 5. Assuming the planted clique conjecture, for any constant � > 0, it is impossible to
approximate (a) the sum-sum diversity, and (b) the sum-min diversity to a factor better than (2− �)
in polynomial time.

We now prove Theorem 5, by a simple reduction. We first note that the planted clique conjecture
immediately implies (by taking the complement of the graph) that for any 0 < p < 1, it is impossi-
ble, in polynomial time, to distinguish between a graph G ∼ G(n, p) (call this D�

1), and a graph with
a planted independent set of size n1/4 (call this D�

2). Let us also fix δ = 1/4). Now given a graph
G, denote the shortest path metric by d. We now have the following lemmas:

Lemma 8. Let G ∼ D�
2 (i.e. the planted case), and set k = n1/4. Then we have

opt1(k) ≥ 2k, and opt2(k) ≥ 2k(k − 1).

Proof. The intuition is that the vertices of the planted independent set are all far from each other.
Formally, it is easy to check that the contribution of every vertex is ≥ 2 for the sum-min objective,
and ≥ 2(k − 1) for the sum-sum objective. This implies the lemma.

Lemma 9. Let G ∼ D�
1 (i.e., G(n, p) without planting), and set k = n1/4. Then for any k� ≤ k, we

have
opt1(k

�) ≤ (1 + o(1))k, and opt2(k
�) ≤ (2− p+ o(1))k(k − 1)

with probability 1− 1/n2, where the o(1) term hides factors that tend to 0 with n.

In the case of opt1, for any chosen vertex, it is extremely unlikely that none of the other vertices is
connected to it (at least for a typical chosen vertex), thus it contributes 1 to the objective. In the case
of opt2, we expect it to be at a distance 1 to a good fraction of the chosen vertices, which gives the
desired bound. We formalize this argument shortly, but first, we note that this implies the theorem.

Proof of Theorem 5. Using Lemmas 8 and 9, and by setting p to be 1−�, our main theorem follows.

D.1 Proof of Lemma 9

We start by noting that with probability 1 − exp(−Ω(n)), we have that d(u, v) ≤ 2 for any u, v ∈
V (G). This is simply because the expected number of common neighbors is p2n, and since p =
Ω(1), the probability that this is 0 is exp(−Ω(n)). We can take a union bound over all pairs, and
from now, assume that d(u, v) ≤ 2 for all pairs u, v.

Thus for any set S ⊆ V of size < k/2, we have sum-min(S) ≤ 2|S| < k and sum-sum(S) ≤
2|S|(|S| − 1) < k(k − 1). This means that we may assume that sets maximizing sum-min and
sum-sum are of size > k/2 = ω(log n).

The next observation is that for any two sets of nodes R, T of sizes r ≥ t respectively, the number of
edges is at least rtp2, and thus the probability that there are no edges is exp(−Ω(rt)). If T = c log n
for an appropriately large c, this probability is smaller than n−4(r+t), implying that with 1/nω(1)

probability, there are no such sets R, T .

Now consider any set S ⊆ V (G) of size ≥ k/2. From the above argument, the size of T = {s ∈
S : Γ(s) ∩ S = ∅} is at most c log n = o(1)|S| (since |S| ≥ k/2). This immediately implies that
sum-min(S) ≤ (1 + o(1))|S|.
A final observation for sets S of size ≥ k/2 is that the expected number of edges is |S|(|S|− 1)p/2,
and thus the probability that the number is < |S|(|S|− 1)p(1− �)/2 is at most exp(−Ω(�2|S|2p)).
Setting � = 1/ log n, and recalling our choice of k, we see that this probability is < 1/nω(k),
and thus we can take a union bound over all S of size between k/2 and k. Thus with probability
1 − 1/nω(1), all sets S of size between k/2 and k have at least |S|(|S| − 1)p(1 − o(1))/2 edges.
This (along with the observation that any two vertices are at distance at most 2) immediately implies
the bound on sum-sum(S). This completes the proof of the lemma.

16



E Bad Instances for Greedy and Local Search

We give an instance in which the greedy and local search algorithms have an approximation ratio
O(1/

√
k) for the sum-min objective.

Description of the Instance. We have
√
k sets of vertices S1, S2, . . . , S√

k, each of size k. For
any two vertices u, v in different sets (i.e., u ∈ Si and v ∈ Sj , with i �= j), we have d(u, v) = 4.
Each Si has

√
k special vertices Ti, that are at a distance 1 from one another (i.e., for all u, v ∈ Ti,

d(u, v) = 1). Finally, around each vertex u ∈ Ti, for all i, there are
√
k vertices Wu that are at

a distance 0 to u, and 0 to one another. (If we wish to avoid zero distances, we can obtain the
same effect with a distance �, for a small enough �.) For vertices i ∈ Wu and j ∈ Wv , we have
d(i, j) = d(u, v).

This is an instance with O(k
√
k) vertices.

Optimal solution. We wish to pick k vertices so as to maximize sum-min diversity. Choosing
T1 ∪ T2 ∪ · · · ∪ T√

k will give a total diversity of k (every vertex contributes 1 to the sum).

Now, what vertices does the greedy algorithm pick?

Greedy algorithm. In the first
√
k steps, the algorithm will pick one vertex from each of the Si.

Let ui be the vertex it picked from Si. Next, the algorithm will pick a second vertex from one of the
Si, say S1. Now, let us consider the choices in the next step. If the algorithm picks a second vertex
from an Si, with i �= 1, then the contribution of ui to the summation changes from 4 to ≤ 1, and the
additional contribution of the newly added vertex is at most 1, thus there is a net drop ≥ 2. On the
other hand, if a vertex is chosen from S1, the net drop is ≤ 1, so it is preferable to pick a vertex from
S1. This reasoning holds for all the remaining steps of the algorithm. Thus the greedy algorithm
will end up picking k−

√
k+ 1 vertices from S1, and one vertex each from the other Si. This gives

a total sum-min objective of ≤ 4
√
k.

Local search. Consider the solution chosen by the greedy algorithm. It is locally optimum, be-
cause swapping in any vertex from Si (i �= 1) will only result in a drop in the sum-min objective
value.

This shows that both the greedy and the local search algorithms have an approximation factor of
O(1/

√
k) in the worst case, thus proving Lemma 1.
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