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1 Proof of Proposition 1,3.

We first prove the following Lemma.

Proposition 1. If f : S C RP — R is convex, non-negative and V> f exists for all x € int S, then
% f?(x) is convex.

Proof V (1 f%) = fVf; V2 (3 /%) = fV2f + V[V f which is positive definite whenever fV? f
is. 0.

Using the above Lemma, and the fact that ||H; — 1,,|| is non-negative and infinitely differentiable
almost everywhere , we obtain the desired result. d

2 Proof of Proposition 2
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For (2), we first prove the following fact
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where Ay,q.(G) is the spectral radius of G, ©(G, Go) = SUD||y||=|jv||=1,veNull G,ueNull G, & GV is
the cosine of the principal angle between Null G and Null Gy, and X} ;,,(Go) is the smallest non-
zero eigenvalue of G.

Denote for simplicity g(u) = MG“‘T% (1) If Null(G) = Null(Gg) then for u € Null G the
value is 0, which cannot be the sup. Let uy = v ® ug with ug € NullG, v € NullG*. Then
ul' Gouy + €||ur]|? = vTGov + €|[v][? + €||ug||> > vT'Gov + €||v||?. Hence, the u which attains
the supremum must be in Null G.

Now note that, if Null G # Null G, R® = Null Go@Null G, and Null Gy = (Null GonNull G)®
V, with V the orthogonal complement of Null Go N Null G in Null Gy and the supremum of g(u) =

is attained on i/ = V @ Null Gé‘ (as adding any component along the orthogonal complement of this
space only adds a positive value to the denominator, increasing g(u)). Any u € U can be written

as u = aug P Pvg with ug € Null GOL and vy € V unit vectors. By upper bounding every term in



the numerator and lower bounding u,Gouo we obtain the result. Note that for € small enough, the
expression in 4 is close to LAT(G).

For (2), let v € V and compute g(v) as above, with o« = 0. It follows that g(v) = LT‘/ETTZ'

taking the supremum over v € V) we obtain that sup,, g(v) = 1AT(G) < r, from which the result
follows.

and by

For (3), it is obvious that when ¢ — 0, g(v) — oo on V, but remains finite for v ¢ V. More
precisely, ||G||g, = oo iff NullGy Z G. To verify that ||||g, is a norm, we must verify the triangle
inequality, since the other two properties obviously hold. If ||Al|g, = oo or ||Bl|g, = o0, triangle
inequality holds trivially. Assume then that ||Al|g,, ||Bllg, < co. Since ||A||gy-+el. + ||BllGo+el. >
[|A + B||g,+l, for every € > 0, then in the limit we will have that ||A||g, +||Bllg, > ||A + B||a,-

The norm for comparing Riemannian metric The norm of a bilinear functional f : R> xR? — R
is defined as sup),||=jv|j=1 |f (1, V)], or since for a fixed orthonormal base of R* f(u,v) = u'Av,
IIfIl = sup|jy)|=(jo|j=1 [v'Av|. If A is hermitian, then ||f|| = mazx(a)|Ai| where A(A) de-
notes the spectrum of A. One can define the norm with respect to any metric Gy on R®

where Gp is a symmetric, positive definite matrix by [|f[la, = SUP|ju(jq =|jvle. =1 W' AV] =
0 0

SUP| | |=|5||=1 |ﬂ’G51/2AG51/21~)| = max [A;| In other words, the appropriate op-

MGy '/?AG; /2
erator norm we seek can be expressed as a (generalized) matrix spectral norm. In our cases Gy = Ig
and A = Hk — Id

3 Proof of Propositions 3

Note that we can write the loss as:
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Where IT;, = (U U}, + (50Tth)kls)*1/2. We take the IT; matrices to be fixed and don’t depend
on the data points Y (in practice they do, however, after taking a gradient step we update the ITj
in an E-M style algorithm). Since U;Uj, and II;, are the identity matrix (the latter multiplied by
1/(1 + eortn)) when s = d we can compute the derivative when s > d without loss of generality.

3.1 Proof of Derivative

Since the derivative is a linear operator it’s sufficient to show that the derivative of a single loss
function is of the form:
Ol

({97 = (2|)\;; |)sgn()\,*€)LkYHkuku;€H;c

To compute the derivative we will make use of the chain rule. First define the function [ as a
composition of functions:
U (Y) = p(Pu(Hi(Y)) — Cr)
With Ck = IT,U,U.II, and
p(U) = (max |\ (U)])?
Py (H) = I} HIT,,
1
H(Y) = §Y/LkY

Where U, H are both symmetric. Here we note that the matrix spectral norm reduces to the spectral
radius if U is symmetric. Since Hy(Y) is defined to be symmetric and Cy, is symmetric this is the
case. By the chain rule:

Dl (Y) = Dp(Pr(Hi(Y)) — Cr) DPy(Hi(Y)) DHi(Y)

Taking these from left to right:



3.1.1 Dp

Since p is defined to be the largest (in absolute value) eigenvalue of U (squared) the derivative' is
the kronecker product between the corresponding eigenvector and itself multiplied by the sign of the

eigenvalue:
D+/p(U) = sgn(Ap)(uy, ® uy,)
Where |A\;| = v/p(U) and Uuy, = Ajuy Then since we square the spectral radius we add the factor
of (2|A}]) so that:
D(p(U) = (2[A%])sgn(Ap) (u), @ uy)

312 DP,

DPy(H) = (I, @ 11,
Proof.

Py(H) = II,HIT,
dPy(H) = II,dHII,
= vec(dPy(H)) = vec(IT;,dHIL})
— (T, & TT} )dvec(H)
O

313 DH;

DH(Y) = Ny(I; ® Y'Ly)
Where N = 1,2 + K, for K, the commutation matrix defined in Magnus & Neudecker ch. 3 §7.

Proof.
Hi(Y) = %Y’LkY
= dH,(Y) = %[(dY)/LkY + Y'LidY]
1

= vec(dHi(Y)) = 5[(Y/L;c @ ly)dvec(Y) + (I, @ Y'Lg)dvec(Y))

= %[(Y/ e @ 1)K sdvee(Y) + (I, @ YLy, )dvec(Y)]

= %[KSS(IS @ Y'Ly)dvec(Y) + (I, @ Y'Ly)dvec(Y)]

1
= 5[(Kss +1,2) (I ® Y'Ly)dvee(Y)] L, is symmetric

%[2NS(IS 2 Y'Ly)dvee(Y)]
=N, (I, ® Y'Ly)dvec(Y)

314 Dcy

Putting it all together

8 /
Dep(Y) = (2|1 A5 sgn(A}) (), @ uj,) (T}, @ T )N (1, ® Y'Lg) = vec <60Yk)

Isee Matrix Differential Calculus With Applications in Statistics And Economics by Magnus & Neudecker
ch. 9 §12 for proof



We can simplify this to get the claim:

Bck

5 = (2|25 sgn(\; )Ly YITupu) IT),

Proof.
Dei(Y) = (2|5 sgn(A;) (), © wj,) (I}, © I NG (1 @ Y'Ly)
= (2N sgn (V) © ) (T, @ TI3) £ (Kas + 1) (1 @ VL)
= (2IAx))sgn(N;) 5 (. IT), @ wpIT;) (Kss +12) (Is @ Y'Ly)
= (2[AiDsgn(Ap) 5 [(WRIT, @ wIT, K (s @ Y'Ly) + (wiIT;, @ w I ) (I © Y'Ly)]
= (2| Ax])sgn(Ax)
= (2IAi)sgn(Ap) 5 [(IT Y Ly @ w, I ) Ky + (w,IT, © w,IT,Y'Ly,)]
— (2]%))

(2|>‘k|) ( )(u;ch ® w ILY’ Lk) Kii =1
= (21X ))sgn(AL) (Tuy, ® L YITLug )
Then note that:

1
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% [(w), T}, @ up I) (Y'hi @ 1)K + (w)IT), @ up I ) (I, @ Y'Ly)|
1
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Wyl

vee((2IAL)sgn(AL) L YILwwi 1T ) = (2|A%])sgn (A} vee([Ly YITuy][1][u) IT;])
= (2|A;])sgn(Af) (puy ® L YITuy )vec(l)
= (2|Ak))sgn(A;) (Mpug @ Ly YT uy)
= (Dex(Y)'
So that
Ocy LY 1/
Sy = CARDsgn(Ap)Le YL v IT,
The proposition then follows by removing the absolute value and multiplication by the sign. O
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Figure 1: The average number of neighbors m(r) vs the neighborhood radius r, on a log-log scale,
for the SDSS spectra data, computed on the whole sample of 675,000 galaxies. The blue regres-
sion line, is fitted to the graph points in the shown r range, and has slope 2.87. The absence of a
linear region on this graph suggests that the data dimension varies with the scale. The analysis and
visualization in this paper corresponds to the largest meaningful scale.



