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Abstract

Clustering, in particular k-means clustering, is a central topic in data analysis.
Clustering with Bregman divergences is a recently proposed generalization of
k-means clustering which has already been widely used in applications. In this
paper we analyze theoretical properties of Bregman clustering when the number
of the clusters k is large. We establish quantization rates and describe the limiting
distribution of the centers as k →∞, extending well-known results for k-means
clustering.

1 Introduction

Clustering and the closely related problem of vector quantization are fundamental problems in
machine learning and data mining. The aim is to partition similar points into "clusters" in order to
organize or compress the data. In many clustering methods these clusters are represented by their
centers or centroids. The set of these centers is often called “the codebook" in the vector quantization
literature. In this setting the goal of clustering is to find an optimal codebook, i.e., a set of centers
which minimizes a clustering loss function also known as the quantization error.

There is vast literature on clustering and vector quantization, see, e.g., [8, 10, 12]. One of the particu-
larly important types of clustering and, arguably, of data analysis methods of any type, is k-means
clustering [16] which aims to minimize the loss function based on the squared Euclidean distance.
This is typically performed using the Lloyd’s algorithm [15], which is an iterative optimization
technique. The Lloyd’s algorithm is simple, easy to implement and is guaranteed to converge in a
finite number of steps. There is an extensive literature on various aspects and properties of k-means
clustering, including applications and theoretical analysis [2, 13, 23]. An important type of analysis is
the asymptotic analysis, which studies the setting when the number of centers is large. This situation
(n� k � 0) arises in many applications related to data compression as well as algorithms such as
soft k-means features used in computer vision and other applications, where the number of centers
k is quite large but significantly less than the number of data points n. This situation also arises in
k-means feature-based methods which have seen significant success in computer vision, e.g., [6].
The quantization loss for k-means clustering in the setting k →∞ is well-known (see [5, 9, 20]). A
less well-known fact shown in [9, 18] is that the discrete set of centers also converges to a measure
closely related to the underlying probability distribution. This fact can be used to reinterpret k-means
feature based methods in terms of a density dependent kernel [21].

More recently, it has been realized that the properties of square Euclidean distance which make the
Lloyd’s algorithm for k-means clustering so simple and efficient are shared by a class of similarity
measures based on Bregman divergence. In an influential paper [3] the authors introduced clustering
based on Bregman divergences, which generalized k-means clustering to that setting and produced
a corresponding generalized version of the Lloyd’s algorithm. That work has lead to a new line
of research on clustering including results on multitask Bregman clustering[24], agglomerative
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Bregman clustering[22] and many others. There has also been some theoretical analysis of Bregman
clustering including [7] proving the existence of an optimal quantizer and convergence and bounds
for quantization loss in the limit of size of data n→∞ for fixed k.

In this paper we set out to investigate asymptotic properties of Bregman clustering as the number
of centers increases. We provide explicit asymptotic rates for the quantization error of Bregman
clustering as well as the continuous measure which is the limit of the center distribution. Our results
generalize the well-known results for k-means clustering. We believe that these results will be useful
for better understanding in Bregman divergence based clustering algorithms and algorithms design.

2 Preliminaries and Existing Work

2.1 k-means clustering and its asymptotic analysis

k-means clustering is one of the most popular and well studied clustering problems in data analysis.

Suppose we are given a dataset D = {xi}ni=1 ⊂ Rd , containing n observations of a Rd-valued
random variable X . k-means clustering aims to find a set of points (centroids) α = {aj}kj=1 ⊂ Rd,
with |α| = k initially fixed, that minimizes the squared Euclidean loss function

L(α) =
1

n

∑
j

min
a∈α
‖xj − a‖22. (1)

Finding the global minimum of loss function is a NP-hard problem [1, 17]. However, Lloyd’s
algorithm [15] is a simple and elegant method to obtain a locally optimal clustering of the data,
corresponding to a local minimum of the loss function. A key reason for the practical utility of the
Lloyd’s k-means algorithm is the following property of squared Euclidean distance: the arithmetic
mean of a set of points is the unique minimizer of the loss for a single center:

1

n

n∑
i=1

xi = arg min
s∈Rd

1

n

n∑
i=1

‖xi − s‖22. (2)

It turns out that this property holds in far greater generality as we will discuss below.

Asymptotic analysis of Euclidean quantization:

In an asymptotic quantization problem, we focus on the limiting case of k → ∞, where the size
of dataset n � k. In this paper we will assume n = ∞, i.e., that the probability distribution with
density P is given. This setting is in line with the analysis in [9].

Correspondingly, a density measure P is defined as follows: for a set A ⊆ Rd, P(A) =
∫
A
Pdλd,

where λd is the Lebesgue measure on Rd. We also have P = dP
dλd .

The classical asymptotic results for the Euclidean quantization are provided in a more general setting
for an arbitrary power of the distance Eq.(1), Euclidean quantization of order r (1 ≤ r <∞), with
loss

L(α) = EP

[
min
a∈α
‖X − a‖r2

]
. (3)

Note that the Lloyd’s algorithm is only applicable to the standard case with r = 2.

The output of the k-means algorithm include locations of centroids, which then imply the partition
and the corresponding loss. For large k we are interested in: (1) the asymptotic quantization error,
and (2) the distribution of centroids.

Asymptotic quantization error. The asymptotic quantization error for k-means clustering has
been analyzed in detail in [5, 14, 20]. S. Graf and H. Luschgy [9] show that as k → ∞, the r-th
quantization error decreases at a rate of k−r/d. Furthermore, coefficient of the term k−r/d is of the
form

Qr(P ) = Qr([0, 1]d)‖P‖d/(d+r), (4)

where Qr([0, 1]d), a constant independent of P , is geometrically interpreted as asymptotic Euclidean
quantization error for uniform distribution on d-dimensional unite cube [0, 1]d. Here ‖ · ‖d/(d+r) is
the Ld/(d+r) norm of function: ‖f‖d/(d+r) = (

∫
fd/(d+r)dλd)(d+r)/d.
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Locational distribution of centroids. A less well-known fact is that the locations of the optimal
centroid configuration of k-means converges to a limit distribution closely related to the underlying
density [9, 18]. Specifically, given a discrete set of centroids αk, to construct the corresponding
discrete measure,

Pk =
1

k

k∑
j=1

δaj , (5)

where δa is Dirac measure centered at a. For a open set A ⊆ Rd, Pk(A) is the ratio of number of
centroids kA located within A to the total number of centroids k, namely Pk(A) = kA/k. We say
that a continuous measure P̃ is the limit distribution of centroids, if {Pk} (weakly) converges to P̃ ,
specifically

∀A ⊆ Rd, lim
k→∞

Pk(A) = P̃(A). (6)

S. Graf and H. Luschgy [9] gave an explicit expression for this continuous limit distribution of
centroids:

P̃r = P̃rλ
d, P̃r = N · P d/(d+r), (7)

where λd is the Lebesgue measure on Rd, P is the density of the probability distribution and N is
the normalization constant to make sure that P̃r integrates to 1.

2.2 Bregman divergences and Bregman Clustering

In this section we briefly review basics of Bregman divergences and the Bregman clustering algorithm.

Bregman divergence, first proposed in 1967 by L.M.Bregman [4], measure dissimilarity between two
points in a space. The formal definition is as follows:
Definition 1 (Bregman Divergence). Let function φ be strictly convex on a convex set Ω ⊆ Rd, such
that φ is differentiable on relative interior of Ω, we define Bregman divergence Dφ : Ω × Ω → R
with respect to φ as:

Dφ(p, q) = φ(p)− φ(q)− 〈p− q,∇φ(q)〉 , (8)

where 〈·, ·〉 is inner product in Rd. Ω is domain of the Bregman divergence.

Note that Bregman divergences are not necessarily true metrics. In general, they do satisfy the basic
properties of non-negativity and identity of indiscernibles, but may not respect the triangle inequality
and symmetry.

Examples: Some popular examples of Bregman divergences include:

Squared Euclidean distance: DEU (p, q) = ‖p− q‖22, (φEU (z) = ‖z‖2)

Mahalanobis distance: DMH(p, q) = (p− q)TA(p− q), A ∈ Rd×d

Kullback-Leibler divergence: KL(p‖q) =
∑

pi ln
pi
qi
−
∑

(pi − qi),

(φKL(z) =
∑

zi ln zi − zi, zi > 0)

Itakura-Saito divergence: DIS(p‖q) =
∑ pi

qi
− ln

pi
qi
− 1, (φIS(z) = −

∑
ln zi)

Norm-like divergence: DNL(p‖q) =
∑
i

pαi + (α− 1)qαi − αpiqα−1
i .

(φNL(z) =
∑

zαi , zi > 0, α ≥ 2) (9)

Domains of Bregman divergences: ΩEU = ΩMH = Rd, and ΩKL = ΩIS = ΩNL = Rd+.

Alternative expression: the quadratic form. Suppose that φ ∈ C2(Ω), which holds for most
popularly used Bregman divergences. Note that φ(q) + 〈p− q,∇φ(q)〉 is simply the first two terms
in Taylor expansion of φ at q. Thus, Bregman divergences are nothing but the difference between a
function and its linear approximation. By Lagrange’s form of the remainder term, there exists ξ with
ξi ∈ [min(pi, qi),max(pi, qi)] (i.e. ξ is in the smallest d-dimensional axis-parallel cube that contains
p and q) such that

Dφ(p, q) =
1

2
(p− q)T∇2φ(ξ)(p− q), (10)
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where ∇2φ(ξ) denotes the Hessian matrix of φ at ξ.

This form is more compact and will be convenient for further analysis, but at the expense of
introducing an unknown point ξ. We will use this form in later discussions.

The mean as the minimizer. As shown in A. Banerjee et al. [3], the property Eq.(2) still holds if
squared Euclidean distance is substituted by a general Bregman divergence:

1

n

n∑
i=1

xi = arg min
s∈Ω

n∑
i=1

Dφ(xi, s). (11)

That allows for the Lloyd’s method to be generalized to arbitrary Bregman clustering problems, where
the new loss function is defined as

L(α) =
1

n

∑
i

min
a∈α

Dφ(xi, a). (12)

This modified version of k-means, called Bregman hard clustering algorithm (see Algorithm 1 in [3]),
results a locally optimal quantization as well.

3 Asymptotic Analysis of Bregman Quantization

We do not distinguish the terminology of Bregman quantization and Bregman clustering. In this
section, we analyze the asymptotics of Bregman quantization allowing a power of Bregman diver-
gences in the loss function. We show expressions for the quantization error and limiting distribution
of centers.

We start with the following:
Definition 2 (k-th quantization error for P of order r). Suppose a variable X takes values on Ω ⊆ Rd
following a density P , where Ω is the d-dimensional domain of Bregman divergence Dφ. The k-th
quantization error for P of order r (1/2 ≤ r <∞) associated with Dφ is defined as

Vk,r,φ(P ) = inf
α⊂Rd,|α|=k

EP

[
min
a∈α

Dr
φ(X, a)

]
(13)

where α ⊂ Rd is set of representatives of clusters, corresponding to a certain partition, or quantiza-
tion of Rd or support of P , and EP [·] means taking expectation value over P .

Remark: (a) The set α∗ that reaches the infimum is called k-optimal set of centers for P of order
r with respect to Dr

φ(X, a). (b) In this setting, Bregman quantization of order r corresponds to
Euclidean quantization of order 2r, because of Eq.(10).

3.1 Asymptotic Bregman quantization error

We are interested in the asymptotic case, where k →∞.

First note that quantization error asymptotically approaches zero as every point x in the support
support of the distribution can always is arbitrarily closed to a centroid with respect to the Bregman
divergence when k is large enough.

Intuition on Convergence rate. We start by providing an informal intuition for the convergence
rate. Assume P has a compact support with a finite volume. Suppose each cluster is a (Bregman)
Voronoi cell with typical size ε. Since total volume of the support does not change, volume of one
cell should be inversely proportional to the number of clusters, εd ∼ 1

k . On the other hand, because
of Eq.(10), Bregman divergence between two points in one cell is the order of square of the cell size,
Dφ(X, a) ∼ ε2, That implies

Vk,r,φ(P ) ∼ k−2r/d asymptotically. (14)

We will now focus making this intuition precise and on deriving an expression for the coefficient at
the leading term k−2r/d in the quantization error. For now we will keep the assumption that P has
compact support, and remove it later on. We only describe the method and display important results
in the following. Please see detailed proofs of these results in the Appendix.

We first mention a few useful facts:
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Lemma 1. In the limit of k → ∞, each interior point x in the support of P is assigned to an
arbitrarily close centroid in the optimal Bregman quantization setting.
Lemma 2. If support of P is convex, φ is strictly convex on the support and ∇2φ is uniformly
continuous on the support, then (a): limk→∞ k

2r
d Vk,r,φ(P ) exists in (0,∞), denoted as Qr,φ(P ),

and (b):

Qr,φ(P ) = lim
k→∞

k
2r
d inf
α(|α|=k)

EP

[
min
a∈α

(
1

2
(X − a)T∇2φ(a)(X − a)

)r]
. (15)

Remark: 1, Since Qr,φ(P ) is finite, part (a) of Lemma 2 proves our intuition on convergence rate,
Eq.(14). 2, In Eq.(15), it does not matter whether ∇2φ take values at a, x or even any point between
x and a, as long as ∇2φ has finite values at that point.

Coefficient of Bregman quantization error. We evaluate the coefficient of quantization error
Qr,φ(P ), based on Eq.(15). What makes this analysis challenging is that unlike is that Euclidean
quantization, general Bregman error does not satisfy translational invariance and scaling properties.
For example, Lemma 3.2 in [9] does not hold for general Bregman divergence. We follow the
following approach: First, dice the the support of P into infinitesimal cubes {Al} with edges parallel
to axes, where l is the index for cells. In each cell, we approximate the Hessian by a constant matrix
∇2φ(zl), where zl is a fixed point located in the cell. Therefore, evaluating the Bregman quantization
error within each cell reduces to a Euclidean quantization problem, with existing result, Eq.(4). Then
summing them up appropriately over the cubes gives total quantization error.

We start from Eq.(15), and introduce the following notation: denote sl = P(Al) and conditional
density on Al as P (·|Al), αl = α ∩ Al as set of centroids that located in Al and kl = |αl| as size
of αl, and ratio vl = kl/k. Following the above intuition and noting that P =

∑
P(Al)P (·|Al),

Qr,φ(P ) is approximated by

Qr,φ(P, {vl}) ∼
∑
l

slv
−2r/d
l Qr,Mh,l (P (·|Al)) , (16)

Qr,Mh,l (P (·|Al)) = lim
kl→∞

k
2r
d

l inf
αl(|αl|=kl)

EP (·|Al)

[
min
a∈αl

1

2
(X − a)T∇2φ(zl)(X − a)

]r
(17)

where Qr,Mh,l (P (·|Al)) is coefficient of asymptotic Mahalanobis quantization error with Maha-
lanobis matrix∇2φ(zl), evaluated onAl with density P (·|Al). It can be shown that the approximation
error of Qr,φ(P ) converges to zero in the limits of k →∞ and then size of cell to zero.

In each cell Al, P (·|Al) is further approximated by uniform density U(Al) = 1/Vl, and Hessian
∇2φ(zl), as a constant, is absorbed by performing a coordinate transformation. ThenQr,Mh,l (U(Al))
reduces to squared Euclidean quantization error. By applying Eq.(4), we show that

Qr,Mh,l (U(Al)) =
1

2r
Q2r([0, 1]d)δ2r[det∇2φ(zl)]

r/d (18)

where δ is the size of cube, and Q2r([0, 1]d) is again the constant in Eq.(4).

Combining Eq.(17) and Eq.(18), Qr,φ(P ) is approximated by

Qr,φ(P, {vl}) ∼
1

2r
Q2r([0, 1]d)δ2r

∑
l

slv
−2r/d
l [det∇2φ(zl)]

r/d. (19)

Portion of centroids vl within Al is still undecided yet. The following lemma provides an optimal
configuration of {vl} that minimizes Qr,φ(P, {vl}):

Lemma 3. Let B = {(v1, · · · , vL) ∈ (0,∞)L :
∑L
l=1 vl = 1}, and define

v∗l =
s
d/(d+2r)
l [det∇2φ(zl)]

r/(d+2r)∑
l s
d/(d+2r)
l [det∇2φ(zl)]

r/(d+2r)
, (20)

then for the function

F (v1, · · · , vL) =

L∑
l=1

slv
−2r/d
l [det∇2φ(zl)]

r/d, (21)
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F (v∗1 , · · · , v∗L) = min
(v1,··· ,vL)∈B

F (v1, · · · , vL) =

(∑
l

s
d/(d+2r)
l [det∇2φ(zl)]

r/(d+2r)

)(d+2r)/d

.

(22)

Lemma 3 finds the optimal configuration of {vl} in Eq.(19). Recall that quantization error is defined
to be infimum over all possible configurations, we have our main result:
Theorem 1. Suppose E||X||2r+ε <∞ for some ε > 0 and ∇2(φ) is uniformly continuous on the
support of P , then

Qr,φ(P ) =
1

2r
Q2r([0, 1]d)‖(det∇2φ)r/dP‖d/(d+2r). (23)

Remark: 1, In the Euclidean quantization cases, where φ(z) = ‖z‖2, Eq.(23) reduces to Eq.(4),
noting that ∇2φ = 2I. Bregman quantization, which is more general than Euclidean quantization,
has result that is quite similar to Eq.(4), differing by a det∇2φ-related term.

3.2 The Limit Distribution of Centroids

Similar to Euclidean clustering, Bregman clustering also outputs k discrete cluster centroids, which
can be interpreted as a discrete measure. Below we show that in the limit this discrete measure
coincide with a continuous measure defined in terms of the probability density P .

Define Pr,φ to be the integrand function in Eq.(23) (with a normalization factor N ),

Pr,φ = N · (det∇2φ)r/(d+2r)P d/(d+2r). (24)

The following theorem claim that Pr,φ is exactly the continuous distribution we are looking for:

Theorem 2. Suppose P is absolutely continuous with respect to Lebesgue measure λd. Let αk be an
asymptotically k-optimal set of centers for P of order r based on Dφ. Define measure Pr,φ := Pr,φλ

d,
then

1

k

∑
a∈αk

δa → Pr,φ (weakly). (25)

Remark: As before Pr,φ is the measure while Pr,φ is the corresponding density function. The proof
of the theorem can be found in the appendix.

Example 1: Clustering with Squared Euclidean distance (Graf and Luschgy[9]). Squared Eu-
clidean distance is an instance of Bregman divergence, with φ(z) =

∑
z2
i . Graf and Luschgy proved

that asymptotic centroid’s distribution is like

Pr,EU (z) ∼ P d/(d+2r)(z). (26)

Example 2: Clustering with Mahalanobis distance. Mahalanobis distance is another instance of
Bregman divergence, with φ(z) = zTAz, (A) ∈ Rd. Hessian matrix∇2φ = A. Then the asymptotic
centroid’s distribution is same as that of Squared Euclidean distance

Pr,Mh(z) ∼ P d/(d+2r)(z). (27)

Example 3: Clustering with Kullback-Leibler divergence. The convex function used to define
Kullback-Leibler divergence is negative Shannon entropy defined on domain Ω ⊆ Rd+,

φKL(z) =
∑
i

zi ln zi − zi (28)

with component index i. Then Hessian matrix

∇2φKL(z) = diag(
1

z1
,

1

z2
, · · · , 1

zd
). (29)
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According to Eq. (24), centroid’s density distribution function

Pr,KL(z) ∼ P d/(d+2r)(z)

(∏
i

zi

)−r/(d+2r)

. (30)

Example 4: Clustering with Itakura-Saito divergence. Itakura-Saito divergence uses Burg entropy
as φ,

φIS(z) = −
∑
i

ln zi, z ∈ Rd, (31)

with component index i. Then Hessian matrix

∇2φIS(z) = diag(
1

z2
1

,
1

z2
2

, · · · , 1

z2
d

). (32)

According to Eq. (24), centroid’s density distribution function

Pr,IS(z) ∼ P d/(d+2r)(z)

(∏
i

z2
i

)−r/(d+2r)

. (33)

Example 5: Clustering with Norm-like divergence. Convex function φ(z) =
∑
i z
α
i ,z ∈ Rd+,

with power α ≥ 2. Simple calculation shows that the divergence reduces to Euclidean distance when
α = 2. However, the divergence is no longer Euclidean-like, as long as α > 2:

DNL(p, q) =
∑
i

pαi + (α− 1)qαi − αpiqα−1
i . (34)

With some calculation, we have

Pr,NL(z) ∼ P d/(d+2r)(z)

(∏
i

zi

)(α−2)r/(d+2r)

. (35)

Remark: It is easy to see that Kullback-Leibler and Itakura-Saito quantization tend to move centroids
closer to axes, and Norm-like quantization, when α > 2, does opposite thing, moving centroids far
away from axes.

4 Experiments

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

1

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

1.4

1.6

1.8

x

2/3 x
−1/3

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

x

4/3 x
1/3

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Squared Euclidean
0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

16

18

Kullback-Leibler
0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

Norm-like (α = 3)

Figure 1: First row are predicted distribution functions of
centroids by Eq.(36,37,38); second row are experimental his-
tograms of location of centroids, by applying corresponding
Bregman hard clustering algorithms.

In this section, we verify our re-
sults, especially centroid’s loca-
tion distribution Eq.(24), by using
the Bregman hard clustering algo-
rithm.

Recall that our results are obtained
in a limiting case, where we first
take size of dataset n → ∞ and
then number of clusters k → ∞.
However, size of real data is finite
and it is also not practical to apply
Bregman clustering algorithms on
the asymptotic case. In this section,
we simply sample data points from
given distribution, with dataset size
large enough, compared to k, to
avoid early stopping of Bregman
clustering. In addition, we only
verify r = 1 cases here, since
the Bregman clustering algorithm,
which utilizes Lloyd’s method, cannot address Bregman quantization problems with r 6= 1.
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Case 1 (1-dimensional): Suppose the density P is uniform over [0, 1]. We set number of clusters
k = 81, and apply different versions of Bregman hard clustering algorithm on this sample: standard
k-means, Kullback-Leibler clustering and norm-like clustering. According to Eq.(27), Eq.(33) and
Eq.(35), theoretical prediction of centroids locational distribution functions in this case should be:

P1,EU (z) = 1, z ∈ [0, 1]; (36)

P1,KL(z) ∼ z−1/3, z ∈ (0, 1]; (37)

P1,NL(z) ∼ z1/3, z ∈ [0, 1]; (38)
and P (z) = 0 elsewhere.

Figure 1 shows, in the first row, the theoretical prediction of distribution of centroids, and in the second
row, experimental histograms of centroid locations for different Bregman quantization problems.

Case 2 (2-dimensional): The density P = U([0, 1]2). Set k = 81 and apply the same three Bregman
clustering algorithms as in case 1. Theoretical predictions of distribution of centroids for this case by
Eq.(27), Eq.(33) and Eq.(35) are as follow, also shown in Figure 2:

P1,EU (z) = 1, z = (z1, z2) ∈ [0, 1]2; (39)

P1,KL(z) ∼ (z1z2)−1/4, z = (z1, z2) ∈ (0, 1]2; (40)

P1,NL(z) ∼ (z1z2)1/4, z = (z1, z2) ∈ [0, 1]2; (41)
and P (z) = 0 elsewhere.
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Figure 2: Experimental results and theoretical predictions of centroids
distribution for Case 2. In each of the 3-d plots, function is plotted over
the cube [0, 1]2, with left most corner corresponding to point (0, 0),
and right most corner corresponding to point (1, 1).

Figure 2, in the first row,
shows a visualization of
centroids locations gener-
ated by experiments. For
comparison, second row of
Figure 2 presents 3-d plots
of theoretical predictions of
distribution of centroids. In
each of the 3-d plots, func-
tion is plotted over the cube
[0, 1]2, with left most cor-
ner corresponding to point
(0, 0).

It is easy to see that squared
Euclidean quantization, in
this case, results an uni-
form distribution of cen-
troids, and that Kullback-
Leibler quantization tends
to attract centroids towards
axes, and norm-like quantization tends repel centroids away from axes.

5 Conclusion

In this paper, we analyzed the asymptotic Bregman quantization problems for general Bregman
divergences. We obtained explicit expressions for both leading order of asymptotic quantization
error and locational distribution of centroids, both of which extend the classical results for k-means
quantization. We showed how our results apply to commonly used Bregman divergences, and
gave some experimental verification. We hope these results will provide guidance and insight for
further theoretical analysis of Bregman clustering, such as Bregman soft clustering and other related
methods [3, 11], as well as for practical algorithm design and applications. Our results can also lead
to better understanding of the existing seeding strategies for Bregman clustering [19] and to new
seeding methods.
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Appendix

Proof of Lemma 1:

Proof. Claim 1: For any two interior points x, a ∈ Ω, x 6= a, Dφ(x, a) > 0.

Let’s start from Eq.(10). Since Ω is convex, and ξ is a point between x and a, ξ is an interior point in
Ω. Because φ is strictly convex on Ω by definition, Hessian matrix ∇2φ(ξ) is positive definite. Then
x− a 6= 0 implies Dφ(x, a) > 0.

Claim 2: ∀ε > 0, ∃a ∈ Ω s.t. Dφ(x, a) < ε.

For the interior point x, we can always find a d-dimensional ball B(x, δ) ⊂ Ω ⊆ Rd, such that∇2φ
is upper bounded by some finite Λ > 0 in the following sense:

∀v ∈ Rd,∀ξ ∈ B(x, δ), vT∇2φ(ξ)v ≤ Λ‖v‖2. (42)

Set δ′ = min{
√
ε/Λ, δ} > 0, then

∀y ∈ B(x, δ′), Dφ(x, y) = (x− y)T∇2φ(ξ)(x− y) < Λ‖x− y‖2 ≤ Λδ′2 ≤ ε. (43)

And we also have α ∩ B(x, δ′) 6= ∅ in the limit of k → ∞. This is because, if α
⋂
B(x, δ′) = ∅,

adding one centroid in B(x, δ′) would decrease the quantization error for sure. Thus, we finish the
proof of Claim 2.

It is also easy to see that the centroid a we found above is arbitrarily close to x, since a ∈ B(x, δ′)

and δ′ ≤
√
ε/Λ can be arbitrarily small.

Proof of Lemma 2:

Proof. First, we prove the existence of limk→∞ k2r/dVk,r,φ(P ) by showing the equivalence of
lim supk→∞ and lim infk→∞. But before analyzing the limit superior and limit inferior, we clarify
some notations.

For a fixed k, let α∗k be the (so far unknown) optimal set of centers for the Bregman quantization
problem:

α∗k = arg inf
α⊂Rd,|α|=k

EP

[
min
a∈α

Dr
φ(X, a)

]
, (44)

then,

inf
α⊂Rd,|α|=k

EP

[
min
a∈α

Dr
φ(X, a)

]
= EP

[
min
a∈α∗

k

Dr
φ(X, a)

]
. (45)

We dice the support of P into a set of small cubes {Al} with size δ and with edges parallel to axes,
where l is the index for cells and cell size δ will be determined later. We denote sl = P(Al) and
conditional density on Al as P (·|Al), and it is easy to have

P =
∑
l

slP (·|Al). (46)

Let αl = α ∩ Al (correspondingly, α∗k,l = α∗k ∩ Al) be the set of centroids that located in Al and
kl = |αl| be the size of αl, and ratio vl = kl/k. In each cell, we choose a representative point zl,
which can typically be the central point of the cell.

Since Hessian matrix∇2φ is symmetric and positive definite anywhere in Ω, it is always possible to
diagonalize it as

∇2φ = UTdiag(λ1, · · · , λd)U, with ∀i = 1 · · · d, λi > 0, (47)

where U is an orthogonal transformation matrix. For an arbitrary point x ∈ Ω ⊆ Rd and δ1 > 0,
define Aδ1(x) := [xi − δ1/2, xi + δ1/2]d as the d-dimensional cube with size δ1 centered at point
x ∈ Rd, where xi is i-th coordinate of x.

Because ∇2φ is uniformly continuous on Ω, we have

∀ε > 0,∃δ1 > 0,∀x ∈ Ω,∀p, q ∈ Aδ1(x) ∩ Ω, |λi(p)− λi(q)| < ε. (48)
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Therefore, Hessian matrix∇2φ within a cube Al, with cube size δ1 or smaller, can be approximated
by∇2φ(zl) with small error. Specifically,

∀ε > 0,∃δ1 > 0,∀(z ∈ Al∩Ω,v ∈ Rd),vT (∇2φ(zl)−εI)v ≤ vT∇2φ(z)v ≤ vT (∇2φ(zl)+εI)v
(49)

Further more, due to the uniform continuity of ∇2φ and compactness of Ω, ∇2φ is bounded on Ω.
Specifically,

∀(x ∈ Ω,v ∈ Rd),∃(M,m ∈ R+,M > m), s.t. m · ‖v‖2 ≤ vT∇2φ(z)v ≤M · ‖v‖2. (50)

On the other hand, the data density P can be approximated by a "step" density function P̃ . Suppose
P is absolutely continuous for now and define

P̃ :=
∑
l

slU(Al), (51)

where U(Al) is the uniform density within Al and 0 anywhere else. Then,

∀ε > 0,∃δ2 > 0,∀z ∈ Al ∩ Ω, |P (z)− P̃ (z)| ≤ ε. (52)

Set δ = min{δ1, δ2}. Applying Lemma 1, we conclude that, in the limit of k → ∞, each interior
point z of Al is assigned to a centroid a ∈ Al, therefore the corresponding ξ in Eq.(10) is also in Al.
Considering that the union of boundaries of Al is measure zero and applying Eq.(46), Eq.(49) and
Eq.(52), we have

lim sup
k→∞

k2r/dVk,r,φ(P )

= lim sup
k→∞

k2r/dEP

[
min
a∈α∗

k

Dr
φ(X, a)

]
= lim sup

k→∞
k2r/dEP

[
min
a∈α∗

k

(
1

2
(X − a)T∇2φ(ξ)(X − a)

)r]
≤ lim sup

k→∞
k2r/dEP̃

[
min
a∈α∗

k

(
1

2
(X − a)T∇2φ(ξ)(X − a)

)r]
(53)

+ε · lim sup
k→∞

k2r/d

∫
Ω

min
a∈α∗

k

(
1

2
(X − a)T∇2φ(ξ)(X − a)

)r
dX

≤ lim sup
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r
(1 +

ε

m
)r
]

+ε · lim sup
k→∞

k2r/d
∑
l

∫
Al

min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r
(1 +

ε

m
)rdX

= lim sup
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
+ε · r

m
lim sup
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
+ε · lim sup

k→∞
k2r/d

∑
l

∫
Al

min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r
dX + o(ε2)

:= lim sup
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
+ ε · r

m
·A+ εB + o(ε2)
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The second inequality holds in the above, because

1

2
(X − a)T∇2φ(ξ)(X − a)

≤ 1

2
(X − a)T∇2φ(zl)(X − a) +

ε

2
‖X − a‖2

≤ 1

2
(X − a)T∇2φ(zl)(X − a) +

ε

2m
(X − a)T∇2φ(zl)(X − a)

= (1 +
ε

m
) · 1

2
(X − a)T∇2φ(zl)(X − a). (54)

After a similar argument as above, we have

lim inf
k→∞

k2r/dVk,r,φ(P )

≥ lim inf
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
−ε · r

m
·A− εB − o(ε2) (55)

To conclude that the sequence, {k2r/dVk,r,φ}, converges to a finite value, we only need to prove
equivalence of the limsup and liminf appeared in the last expressions of Eq.(53) and Eq.(55), and the
finiteness of A and B.

We are going to show that the limit exists for the following sequence, which will indicate the
agreement of the limsup and liminf.

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
= k2r/d inf

α⊂Rd,|α|=k

∑
l

slEU(Al)

[
min
a∈αl

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
= inf

{vl}

∑
l

slv
−2r/d
l k

2r/d
l inf

αl

EU(Al)

[
min
a∈αl

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
(56)

Within each cube Al, the Hessian matrix ∇2φ(zl) is constant and positive definite. For each Al, we
can preform an independent linear transformation, which corresponds to rotating and stretching along
some directions on Al, to absorb the effect of ∇2φ(zl). After the transformation, Al changes to Bl,
which is not necessarily again a cube, and all the points also transform accordingly. Then we have

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
= inf

{vl}

∑
l

slv
−2r/d
l k

2r/d
l inf

βl

EU(Bl)

[
min
b∈βl

(
1

2
(X ′ − b)T (X ′ − b)

)r]
(57)

Note that, according to the results of asymptotic Euclidean quantization,

k
2r/d
l inf

βl

EU(Bl)

[
min
b∈βl

(
1

2
(X ′ − b)T (X ′ − b)

)r]
(58)

converges to positive finite values for all l. Furthermore, Eq.(57) is convex with respect to vl’s and
has bounded domain constraint by

∑
vl = 1. Therefore,

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
(59)

converges to a finite value in the limit of k →∞.

Since the term A is just limsup of Eq.(58), its finiteness is guaranteed by the above discussion.
Similarly, the term B is also finite. Thus, we conclude that limk→∞ k

2r
d Vk,r,φ(P ) exists.
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From the above discussion, we have the observation that

lim
k→∞

k
2r
d Vk,r,φ(P ) + o(ε)

= lim
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(zl)(X − a)

)r]
+ o(ε)

= lim
k→∞

k2r/d
∑
l

slEU(Al)

[
min
a∈α∗

k,l

(
1

2
(X − a)T∇2φ(a)(X − a)

)r]
+ o(ε)

= lim
k→∞

k2r/d inf
α⊂Rd,|α|=k

EP

[
min
a∈α

(
1

2
(X − a)T∇2φ(a)(X − a)

)r]
+ o(ε) (60)

Since ε > 0 is arbitrary, we get the conclusion of part (b).

Proof of Eq.(18):

Proof. Let’s start from Eq.(17). Note that Hessian matrix ∇2φ(zl) is positive definite, it is always
possible to find a positive definite matrix

√
∇2φ(zl) such that

√
∇2φ(zl) ·

√
∇2φ(zl) = ∇2φ(zl).

Since∇2φ(zl), and also
√
∇2φ(zl), is constant matrix within Al, we define new coordinates such

that

Y =
√
∇2φ(zl)X, and b =

√
∇2φ(zl)a. (61)

Then the Hessian∇2φ(zl) is absorbed into new coordinates, and cube Al = [zl,i − δ/2, zl,i + δ/2]d

changes to Bl = [
√
∇2φ(zl)(zl,i − δ/2),

√
∇2φ(zl)(zl,i + δ/2)]d. It is easy to check that volume

of Al is VAl
= δd, and volume of Bl is VBl

= δd det
√
∇2φ(zl). Then, we have

Qr,Mh,l(U(Ai)) = lim
kl→∞

k
2r/d
l inf

αl,(|αl|=kl)

∫
Al

[
min
a∈αl

1

2
(X − a)T∇2φ(zl)(X − a)

]r
1

VAl

ddX

= lim
kl→∞

k
2r/d
l inf

βl,(|βl|=kl)

∫
Bl

min
b∈βl

1

2r
‖Y − b‖2r 1

VAl

1

det
√
∇2φ(zl)

ddY

= lim
kl→∞

k
2r/d
l inf

βl,(|βl|=kl)

∫
Bl

min
b∈βl

1

2r
‖Y − b‖2r 1

VBl

ddY

=
1

2r
lim
kl→∞

k
2r/d
l Vkl,2r,Eu(U(Bl))

=
1

2r
Q2r([0, 1]d)V

2r/d
Bl

=
1

2r
Q2r([0, 1]d)δ2r[det∇2φ(zl)]

r/d. (62)

Proof of Lemma 3:

Proof. Consider sl and [det∇2φ(zl)]
−r/d together and apply Lemma 6.8 of Graf and Luschgy

[9].

Proof of Theorem 1:
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Proof. Noting that Qr,φ(P ) is achieved by taking the minimum of Qr,φ(P, {vl}) over V = {{vl} :∑
l vl = 1} and then taking cube size δ → 0 and appling Lemma 3 on function (19), we have

Qr,φ(P ) = lim
δ→0

min
{vl}∈V

Qr,φ(P, {vl})

= lim
δ→0

1

2r
Q2r([0, 1]d)δ2r

(∑
l

s
d/(d+2r)
l [det∇2φ(zl)]

r/(d+2r)

)(d+2r)/d

= lim
δ→0

1

2r
Q2r([0, 1]d)

(∑
l

P (pl)
d/(d+2r)[det∇2φ(zl)]

r/(d+2r)

)(d+2r)/d

=
1

2r
Q2r([0, 1]d)

(∫
P d/(d+2r)(det∇2φ)r/(d+2r)ddX

)(d+2r)/d

=
1

2r
Q2r([0, 1]d)‖P (det∇2φ])r/d‖d/(d+2r) (63)

The third equality holds because P (zl) = sl/δ
d.

Above argument is based on the assumptions that P has compact support. It can be remove by
applying Step 5 and 6 in proof of Theorem 6.2 in [9].

Lemma 4. ∀A ⊆ Ω, if P(A) 6= 0, then

(P(A)Qr,φ(P (·|A)))d/(d+2r) = Qr,φ(P )d/(d+2r)Pr,φ(A). (64)

Proof. From the definition of distribution function Eq.(24), we have, for set A

Pr,φ(A) =

∫
A

Pr,φdλ
d

=

∫
A
P d/(d+2r)(det∇2φ)r/(d+2r)dλd∫
P d/(d+2r)(det∇2φ)r/(d+2r)dλd

. (65)

In addition, P (·|A) = P1Aλ
d/P(A), then

Qr,φ(P (·|A)) =
1

2r
Qr([0, 1]d)

(∫
A

P d/(d+2r)(det∇2φ)r/(d+2r)dλd
)(d+2r)/d

/P(A)

=
1

2r
Qr([0, 1]d)

(
Pr,φ(A)

∫
P d/(d+2r)(det∇2φ)r/(d+2r)dλd

)(d+2r)/d

/P(A)

= Qr,φ(P )Pr,φ(A)(d+2r)/d/P(A). (66)

Therefore,
(P(A)Qr,φ(P (·|A)))d/(d+2r) = Qr,φ(P )d/(d+2r)Pr,φ(A). (67)

Thus, we conclude this lemma.

Proof of Theorem 2:

Proof. All the following proof of this theorem is parallel to that of Theorem 7.5 in [9], except that
we apply Lemma 4 instead of Lemma 7.2 in [9] and that we substitute squared Euclidean distance by
Bregman divergences.

Specifically, we need to prove that, in the limit of k → ∞, the sequence of the discrete measure
Pk, see Eq.(5), weakly converges to Pr,φ. Suppose the limiting measure of any vaguely convergent
subsequence of {Pk} is P̃ , and we are going to show that P̃ coincides with Pr,φ.

Consider a d-dimensional interval A = (b, c] with b, c ∈ Ω ⊆ Rd such that P̃(∂A) = 0. By vague
convergence, Pk(A)→ P̃(A). Assume 0 < P(A) < 1. Since P and Pr,φ are mutually absolutely
continous, this is equivlent to 0 < Pr,φ(A) < 1.

14



Before going further,we make some notations first. We denote αk as the k-optimal set of centers for
P . Without ambiguity, in the setting of this proof, write A1 = A,A2 = Ω− A, si = P(Ai), v1 =

P̃(A1), v2 = 1− P̃(A1),PAi = P(·|Ai), αi,k = αk ∩Ai and ki = |αi,k|.
For 0 < ε ≤ mini=1,2 Pr,φ(Ai), choose bi, ci ∈ Ω, b < b1 < c1 < c, b2 < b < c < c2 such that the
sets B1 = [b1, c1] and B2 = [b2, c2]c ∩ Ω satisfy P(Bi) > 0 and

Pr,φ(Bi) ≥ Pr,φ(Ai)− ε, i = 1, 2. (68)

Then choose a finite set γi on the boundary of Bi so that

min
a∈γi

Dφ(x, a) ≤ inf
y∈Ac

i

Dφ(x, y), for every x ∈ Bi. (69)

We have ∫
min
a∈αk

Dr
φ(x, a)dP(x) =

2∑
i=1

si

∫
min
a∈αk

Dr
φ(x, a)dPi(x)

≥
2∑
i=1

si

∫
Bi

min
a∈αk∪γi

Dr
φ(x, a)dPi(x)

=

2∑
i=1

si

∫
Bi

min
a∈αi,k∪γi

Dr
φ(x, a)dPi(x)

≥
2∑
i=1

siVki+|γi|,r,φ(P (·|Bi))P(Bi)/P(Ai). (70)

According to Theorem 1,

Qr,φ(P ) = lim
k→∞

k2r/d

∫
min
a∈αk

Dr
φ(x, a)dP(x)

≥
2∑
i=1

siv
−2r/d
i Qr,φ(P (·|Bi))P(Bi)/P(Ai). (71)

Using Lemma 4,

Qr,φ(P (·|Bi))P(Bi) = Qr,φ(P )Pr,φ(Bi)
(d+2r)/d

≥ Qr,φ(P )(Pr,φ(Ai)− ε)(d+2r)/d (72)

Applying both Lemma 3 and 4 and considering 0 < ε ≤ mini=1,2 Pr,φ(Ai), we have

Qr,φ(P ) ≥
2∑
i=1

siv
−2r/d
i Qr,φ(P )Pr,φ(Ai)

(d+2r)/d/P(Ai)

=

2∑
i=1

siv
−2r/d
i Qr,φ(Pi)

≥
2∑
i=1

siP−2r/d
r,φ Qr,φ(Pi) = Qr,φ(P ). (73)

This directly implies Pr,φ(Ai) = vi = P̃(Ai). Since A is arbitrary d-dimensional interval, we get
our conclusion.
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