A  Proofs

In this appendix, we prove Theorem 1 in Section 2, and Lemma 8, Theorem 2, and Corollary 5 in
Section 3. The proofs of Theorems 3 and 4 are omitted, since they are essentially similar to that of
Theorem 2 relying on slightly different uniform deviation bounds.

A.1 Proof of Theorem 1

The proof is straightforward. Denote by
mi(@)=p(Y = +1| X =2), m_(x)=p(Y =-1|X =u),
then the conditional risk is
Ey [l (9(X), Y) | X = 2] = 74 () ar (g(2), +1) + 7 (0)bsr (g(2), —1)

T (x), g(x) < -1,
—31/2— (i (2) - 7 (2))g(@) /2, —1 < gla) < +1,
T (x), g(x) = +1.
The minimum is achieved by g(z) = sign(m4 (x) — 7_(x)), which is actually the Bayes classifier.
Therefore, /g, is classification-calibrated according to Theorem 1.3.c in [19]. ]

A.2 Proof of Lemma 8

Similarly to the decomposition in Eq. (3) such that
R(g) =27 Ry (9) + Ru,—(9) =,
we have seen in the definition of ﬁpu(g) that it can also be decomposed into
Rpu(g) = 27 Ry (9) + Ru.-(9) =,
where R ~
R-‘r(g) = i ine/’br Z(g('rz)v +1)7 Ru,—(g) = i Zg;jexu e(g(x])v _1)
are the empirical averages corresponding to R4 (g) and R, _(g). Due to the sub-additivity of the
supremum operators, it holds that

SUPgeg [fpu(g) — R(g)| < 2msupyeg [Re(9) — R (9)] + sup,eg [Ru,—(9) — Ru—(9)]-
As aresult, in order to prove Lemma 8, it suffices to show that with probability at least 1 — §/2, the
uniform deviation bounds below hold separately:

supyeg | By (9) — R (9)] < 2Le%Rn, ., (G) + /a0, (16)
sUPyeg | Ru,—(9) — Ru—(9)] < 2LeRn, p(G) + /52 (17)

In the following we prove (16), and then (17) can be proven using the same proof technique.

Since the surrogate loss ¢ is bounded by 0 and 1 according to (2), the change of ]§+ (g) will be no
more than 1/n. if some z; in X is replaced with «;. Thus McDiarmid’s inequality [31] implies

~ 2
Pr 1Ry (9) ~ Ri9)] = ] < 2exp (—52np)
for any fixed g. Equivalently, for any fixed g, with probability at least 1 — §/2,

Ry (g9) — Ry(g)] < (/m4r0)

2ng
Then, according to the basic uniform deviation bound using the Rademacher complexity [ 18], with
probability at least 1 — 6/2,

SUPgeg [ B (9) — Ry (9)] < 2R, (€0 Q) + /00, (18)

where R,,, ;. (£ o G) is the Rademacher complexity of the composite function class (¢ o G) for the
sampling of size ny from p (x) defined by

R, (000) =By 1By [uDyeq 7 Xy, c, llg(w), +1)]

As {(t,y) is L,-Lipschitz-continuous in ¢ for every y, we have R,,, , ({0 G) < LR, ., (G) by
Talagrand’s contraction lemma [32], which proves (16). O
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A.3 Proof of Theorem 2
Based on Lemma 8, the estimation error bound (7) is proven through
R(gpu) - R(g*) = (Epu(gpu) - Rpu(g*)) + (R(gpu) - Rpu(gpu)) + (Rpu(g*) - R(g*)>
<0+ 2Sllpgeg ‘Epu(g) - R(g)|
< STLMR, p, (G) + ALy, (G) + 2ﬂ_\/21n(4/5) I \/21n(4/5)7

n4 Ny

where we have used ﬁpu(gpu) < Epu (g*) by the definition of gpy,.

Moreover, if £ is classification-calibrated, Theorem 1 in [19] implies that there will exist a convex,
invertible and nondecreasing transformation 1), with ¢¢(0) = 0, such that

W(I(qu) - I*) < R(qu) - R".
Hence, let p = 1/)[1, we have

I(gpu) —-I" < @(R(gpu) - R*)
=¢@(R(g") = R* + R(gpu) — R(g")),

and subsequently the excess risk bound (8) is an immediate corollary of (7). O]
A4 Proof of Corollary 5

Given (5), the estimation error bound (7) can be rewritten into

R(gpu) — R(g") < 87LeCg/ /iy + 2y %ﬁ/é) +4LCq/ /g + 1/ 22010
=2nf(0)/ s + f(8)/ /i,

where f(0) = 4L,Cg + /21n(4/6). This proves (12). In exactly the same way, we could get (11)
from (9) and (13) from (10).

Consider the special case of G defined in (6). Recall that R,, ,(G) is the Rademacher complexity of

G for X = {a1,...,zy,} with each x; drawn from ¢(z). Given any such X, denote by R (G) the
empirical Rademacher complexity of G conditioned on X’ [18]:

Rx(G) = E, [sup,cg = Doeex oig(x;)] -

It is known that R (G) < CwCy/+/n and thus R,, 4(G) = Ex [Rx(G)] < CwCy/+/n [18]. Then,
letting Cg = C,,Cy completes the proof. O
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