
A Proofs

In this appendix, we prove Theorem 1 in Section 2, and Lemma 8, Theorem 2, and Corollary 5 in
Section 3. The proofs of Theorems 3 and 4 are omitted, since they are essentially similar to that of
Theorem 2 relying on slightly different uniform deviation bounds.

A.1 Proof of Theorem 1

The proof is straightforward. Denote by
π+(x) = p(Y = +1 | X = x), π−(x) = p(Y = −1 | X = x),

then the conditional risk is
EY [`sr(g(X), Y ) | X = x] = π+(x)`sr(g(x),+1) + π−(x)`sr(g(x),−1)

=


π+(x), g(x) ≤ −1,

1/2− (π+(x)− π−(x))g(x)/2, −1 < g(x) < +1,

π−(x), g(x) ≥ +1.

The minimum is achieved by g(x) = sign(π+(x)− π−(x)), which is actually the Bayes classifier.
Therefore, `sr is classification-calibrated according to Theorem 1.3.c in [19].

A.2 Proof of Lemma 8

Similarly to the decomposition in Eq. (3) such that
R(g) = 2πR+(g) +Ru,−(g)− π,

we have seen in the definition of R̂pu(g) that it can also be decomposed into

R̂pu(g) = 2πR̂+(g) + R̂u,−(g)− π,
where

R̂+(g) = 1
n+

∑
xi∈X+

`(g(xi),+1), R̂u,−(g) = 1
nu

∑
xj∈Xu

`(g(xj),−1)

are the empirical averages corresponding to R+(g) and Ru,−(g). Due to the sub-additivity of the
supremum operators, it holds that

supg∈G |R̂pu(g)−R(g)| ≤ 2π supg∈G |R̂+(g)−R+(g)|+ supg∈G |R̂u,−(g)−Ru,−(g)|.
As a result, in order to prove Lemma 8, it suffices to show that with probability at least 1− δ/2, the
uniform deviation bounds below hold separately:

supg∈G |R̂+(g)−R+(g)| ≤ 2L`Rn+,p+(G) +
√

ln(4/δ)
2n+

, (16)

supg∈G |R̂u,−(g)−Ru,−(g)| ≤ 2L`Rnu,p(G) +
√

ln(4/δ)
2nu

. (17)

In the following we prove (16), and then (17) can be proven using the same proof technique.

Since the surrogate loss ` is bounded by 0 and 1 according to (2), the change of R̂+(g) will be no
more than 1/n+ if some xi in X+ is replaced with x′i. Thus McDiarmid’s inequality [31] implies

Pr
[
|R̂+(g)−R+(g)| ≥ ε

]
≤ 2 exp

(
− 2ε2

n+(1/n+)2

)
for any fixed g. Equivalently, for any fixed g, with probability at least 1− δ/2,

|R̂+(g)−R+(g)| ≤
√

ln(4/δ)
2n+

.

Then, according to the basic uniform deviation bound using the Rademacher complexity [18], with
probability at least 1− δ/2,

supg∈G |R̂+(g)−R+(g)| ≤ 2Rn+,p+(` ◦ G) +
√

ln(4/δ)
2n+

, (18)

where Rn+,p+(` ◦ G) is the Rademacher complexity of the composite function class (` ◦ G) for the
sampling of size n+ from p+(x) defined by

Rn+,p+(` ◦ G) = EX+∼p
n+
+

Eσ
[
supg∈G

1
n+

∑
xi∈X+

σi`(g(xi),+1)
]
.

As `(t, y) is L`-Lipschitz-continuous in t for every y, we have Rn+,p+(` ◦ G) ≤ L`Rn+,p+(G) by
Talagrand’s contraction lemma [32], which proves (16).
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A.3 Proof of Theorem 2

Based on Lemma 8, the estimation error bound (7) is proven through

R(ĝpu)−R(g∗) =
(
R̂pu(ĝpu)− R̂pu(g∗)

)
+
(
R(ĝpu)− R̂pu(ĝpu)

)
+
(
R̂pu(g∗)−R(g∗)

)
≤ 0 + 2 supg∈G |R̂pu(g)−R(g)|

≤ 8πL`Rn+,p+(G) + 4L`Rnu,p(G) + 2π
√

2 ln(4/δ)
n+

+
√

2 ln(4/δ)
nu

,

where we have used R̂pu(ĝpu) ≤ R̂pu(g∗) by the definition of ĝpu.

Moreover, if ` is classification-calibrated, Theorem 1 in [19] implies that there will exist a convex,
invertible and nondecreasing transformation ψ` with ψ`(0) = 0, such that

ψ`(I(ĝpu)− I∗) ≤ R(ĝpu)−R∗.

Hence, let ϕ = ψ−1` , we have

I(ĝpu)− I∗ ≤ ϕ(R(ĝpu)−R∗)
= ϕ(R(g∗)−R∗ +R(ĝpu)−R(g∗)),

and subsequently the excess risk bound (8) is an immediate corollary of (7).

A.4 Proof of Corollary 5

Given (5), the estimation error bound (7) can be rewritten into

R(ĝpu)−R(g∗) ≤ 8πL`CG/
√
n+ + 2π

√
2 ln(4/δ)
n+

+ 4L`CG/
√
nu +

√
2 ln(4/δ)
nu

= 2πf(δ)/
√
n+ + f(δ)/

√
nu,

where f(δ) = 4L`CG +
√

2 ln(4/δ). This proves (12). In exactly the same way, we could get (11)
from (9) and (13) from (10).

Consider the special case of G defined in (6). Recall that Rn,q(G) is the Rademacher complexity of
G for X = {x1, . . . , xn} with each xi drawn from q(x). Given any such X , denote by R̂X (G) the
empirical Rademacher complexity of G conditioned on X [18]:

R̂X (G) = Eσ
[
supg∈G

1
n

∑
xi∈X σig(xi)

]
.

It is known that R̂X (G) ≤ CwCφ/
√
n and thus Rn,q(G) = EX [R̂X (G)] ≤ CwCφ/

√
n [18]. Then,

letting CG = CwCφ completes the proof.
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