
A Supplementary material

This section contains proofs and additional details on some of the material discussed above.

A.1 Proofs of minimal polynomial normalization

Lemma A.1 Let p(x) be the minimal polynomial of the matrix M . Assume that M does not have
the eigenvalue 1. Then we can always normalize p by the sum of its coefficients, p(1).

Proof. Let p be the minimal polynomial of M . Then for all eigenvalue λi of M , we have p(λi) = 0.
Since p is minimal, we cannot find q with deg q < deg p satisfying the above condition.

Now, assume by contradiction that p(1) = 0. It means that 1 is a root of p, so p can be written

p(x) = (1− x)q(x).

Because 1 is not an eigenvalue of M , we have p(λi) = 0 if and only if q(λi) = 0. However
deg q < deg p, so p is not minimal.

A.2 Proofs of regularization results

Proposition A.2 Let c∗ be the optimal solution to (AMPE)

c∗ = argmin
1T c=1

‖Uc‖2

for some matrix U ∈ Rn,k. Suppose U becomes Ũ = U + E and write c∗ + ∆c the perturbed
solution to (AMPE), then

∆c = −
(
I − M−111T

1TM−11

)
M−1(UTE + ETU + ETE)c∗ (18)

where M = (U + E)T (U + E) and (
I − M−111T

1TM−11

)
is a projector of rank k − 1.

Proof. Let µ be the dual variable corresponding to the equality constraint. Both c∗+∆c and µ∗+∆µ
must satisfy the KKT system [

2M 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

(
0
1

)
,

writing P = UTE + ETU + ETE, this means again[
2M 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

[
2P 0
0 0

](
c∗ + ∆c
µ∗ + ∆µ

)
+

[
2UTU 1
1T 0

](
c∗ + ∆c
µ∗ + ∆µ

)
=

(
2P (c∗ + ∆c)

0

)
+

[
2UTU 1
1T 0

](
∆c
∆µ

)
+

(
0
1

)
hence [

2M 1
1T 0

](
∆c
∆µ

)
=

(
−2Pc∗

0

)
The block matrix can be inverted explicitly, with[

2M 1
1T 0

]−1

=
1

1TM−11

[
1
2M

−1
(
(1TM−11)I − 11TM−1

)
M−11

1TM−1 −2

]

10



leading to an expression of ∆c and ∆µ in terms of c∗ and µ∗:(
∆c
∆µ

)
=

1

1TM−11

[
1
2M

−1
(
(1TM−11)I − 11TM−1

)
M−11

1TM−1 −2

](
−2Pc∗

0

)
After some simplification, we get

∆c = −
(
I − M−111T

1TM−11

)
M−1Pc∗ = −WM−1Pc∗

where W is a projector of rank k − 1, which is the desired result.

Lemma A.3 Let c∗λ be the optimal solution of problem (RMPE). Then

c∗λ =
(UTU + λI)−11

1T (UTU + λI)−11
(19)

Therefore,

‖c∗λ‖2 ≤
√
λ+ ‖U‖22

kλ
(20)

Proof. Let c∗λ the optimal solution of the primal and ν∗λ the optimal dual variable of problem (RMPE).
Let Mλ = UTU + λI . Then both c∗λ and ν∗λ must satisfy the KKT system:[

2Mλ 1
1T 0

](
c∗λ
µ∗λ

)
=

(
0
1

)
.

We have thus (
c∗λ
µ∗λ

)
=

[
2Mλ 1
1T 0

]−1(
0
1

)
.

The block matrix can be inverted explicitly:[
2Mλ 1
1T 0

]−1

=
1

1TM−1
λ 1

[
1
2M

−1
λ ((1TM−1

λ 1)I − 11TM−1
λ ) M−1

λ 1
1TM−1

λ −2

]
,

leading to

c∗λ =
M−1
λ 1

1TM−1
λ 1

.

Since

‖M−1
λ ‖2 ≤

1

σmin(UTU) + λ
≤ 1

λ

and

1TM−1
λ 1 ≥ ‖1‖2

σmax(Mλ)
≥ k

‖U‖22 + λ

We obtain

‖c∗λ‖2 =
‖M−1/2

λ M
−1/2
λ 1‖2

1TM−1
λ 1

≤
‖M−1

λ ‖
1/2
2√

1TM−1
λ 1

≤
√
λ+ ‖U‖22

kλ

which is the desired result.

A.3 Computational Complexity for RMPE Algorithm

In Algorithm 1, computing the coefficients c̃∗λ means solving the k × k system (ŨT Ũ + λI)z = 1.
We then get c̃∗λ = z/(1T z). This can be done in both batch and online mode.

11



Online updates. Here, we receive the vectors ui one by one from the optimization algorithm. In
this case, we perform low-rank updates on the Cholesky factorization of the system matrix. At
iteration i, we have the Cholesky factorization LLT = ŨT Ũ + λI . We receive a new vector u+ and
we want

L+L
T
+ =

[
L 0
aT b

] [
LT a
0 b

]
=

[
ŨT Ũ + λI ŨTu+

(ŨTu+)T uT+u+ + λ

]
⇒ a = L−1ŨTu+, b = aTa+ λ.

The complexity of this update is thus O(in+ i2), i.e. the matrix-vector multiplication of ŨTu+ and
solving the triangular system. Since we need to do it k times, the final complexity is thusO(nk2 +k3).
Notice that, at the end, it takes only O(k2) iteration to solve the system LLT z = 1.

Batch mode. The complexity is divided in two parts: First, we need to build the linear system itself.
Since U ∈ Rn×k, it takes O(nk2) flops to perform the multiplication. Then we need to solve the
linear system (ŨT Ũ + λI)z = 1 which can be done by a direct solver like Gaussian elimination (if
k is small) or Cholesky factorization, or using an iterative method like conjugate gradient method. It
takes O(k3) flops to solve the linear system in the worst case, meaning that the complexity at the
end is O(nk2 + k3). In practice, the eigenvalues of the system tend to be clustered around λ, which
means that the conjugate gradient solver converges very quickly to a good solution.

A.4 Regularized Chebychev Polynomials

We first briefly recall basic results on Sum of Squares (SOS) polynomials and moment problems
[25, 26, 27], which will allow us to formulate problem (16) as a (tractable) semidefinite program.
A univariate polynomial is positive if and only if it is a sum of squares. Furthermore, if we let
m(x) = (1, x, . . . , xk)T we have, for any p(x) ∈ R2k[x],

p(x) ≥ 0, for all x ∈ R
m

p(x) = m(x)TCm(x), for some C � 0,

which means that checking if a polynomial is positive on the real line is equivalent to solving a linear
matrix inequality (see e.g. [28, §4.2] for details). We can thus write the problem of computing the
maximum of a polynomial over the real line as

minimize t
subject to t− p(x) = m(x)TCm(x), for all x ∈ R

C � 0,
(21)

which is a semidefinite program in the variables p ∈ Rk+1, C ∈ Sk+1 and t ∈ R, because the first
contraint is equivalent to a set of linear equality constraints. Then, showing that p(x) ≥ 0 on the
segment [0, σ] is equivalent to showing that the rational fraction p

(
σx2/(1 + x2)

)
is positive on the

real line, or equivalently, that the polynomial is positive on the real line. Overall, this implies that
problem (16) can be written

S(k, α) = min. t2 + α2‖q‖22
s.t. (1 + x2)k+1

((
1− σx2

1+x2

)
q
(
σx2

1+x2

))
= m(x)TCm(x), for all x ∈ R

1T q = 1, C � 0,
(22)

which is a semidefinite program in the variables q ∈ Rk+1, C ∈ Sk+2 and t ∈ R.

A.5 Proof of the convergence result

Proposition A.4 Let matrices X = [x0, x1, ..., xk], X̃ = [x0, x̃1, ..., x̃k], E = (X − X̃) and scalar
κ = ‖(A− I)−1‖2. Suppose c̃∗λ solves problem (RMPE)

minimize cT (ŨT Ũ + λI)c
subject to 1T c = 1

⇒ c∗λ =
(ŨT Ũ + λI)−11

1T (ŨT Ũ + λI)−11
(23)

12



in the variable c ∈ Rk+1, with parameters Ũ ∈ Rn×(k+1). Assume A symmetric with 0 � A ≺ I .
Then

‖X̃c̃∗λ−x∗‖2 ≤

(
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2
)1

2(
S(k, λ/‖x0 − x∗‖22)

) 1
2‖x0−x∗‖2

with P is defined in Corollary 2.5 and S(k, α) is defined in (16).

Proof. Let us write the error decomposition (13) in matrix format:

‖X̃c̃∗λ − x∗‖2 ≤ ‖Xc∗λ − x∗‖2 + ‖(X −X∗)∆c‖2 + ‖E c̃∗λ‖2.

The first term can be bounded as follow:

‖Xc∗λ − x∗‖2 ≤ κ‖Uc∗λ‖2

≤ κ
√
‖Uc∗λ‖22 + (λ− λ)‖c∗λ‖22

≤ κ
√
‖(A− I)p(A)‖22‖x0 − x∗‖22 + λ‖c∗λ‖22 − λ‖c∗λ‖22

≤ κ
√
S(k, λ/‖x0 − x∗‖22)‖x0 − x∗‖22 − λ‖c∗λ‖22.

The second one becomes, if we use Corollary 2.5,

‖(X −X∗)∆c∗λ‖2 ≤ κ‖U∆c∗λ‖2
≤ κ‖U(UTU + λI + P )−1W̃TP‖2‖c∗λ‖2
≤ κ‖U(UTU + λI + P )−1‖2‖P‖2‖c∗λ‖2.

Let us write (UTU + λI + P )−1 = [(UTU + λI)−1 + S] for some perturbation S. Indeed,

((UTU + λI)−1 + S)(UTU + λI + P ) = I,

which leads to
S = −(UTU + λI)−1P (UTU + λI + P )−1.

If we plug this expression in ‖U(UTU + λI + P )−1‖2 we obtain

‖U(UTU + λI + P )−1‖2 = ‖U(UTU + λI)−1(I − P (UTU + λI + P )−1)‖2
≤ ‖U(UTU + λI)−1‖2

(
1 + ‖P‖2‖(UTU + λI + P )−1‖2

)
≤ σ

σ2 + λ

(
1 +
‖P‖2
λ

)
.

For any value of σ ∈ [σ
1/2
min(UTU), σ

1/2
max(UTU)]. The maximum is attained at σ =

√
λ, so it

becomes

‖U(UTU + λI + P )−1‖2 ≤
1

2
√
λ

(
1 +
‖P‖2
λ

)
.

So the second term can be bounded by

‖(X −X∗)∆c∗λ‖2 ≤ κ
‖P‖2
2
√
λ

(
1 +
‖P‖2
λ

)
‖c∗λ‖.

The third term can be bounded as follow:

‖E c̃∗λ‖2 ≤ ‖E‖2(‖c∗λ‖2 + ‖∆c∗λ‖2)

≤ ‖E‖2
(

1 +
‖P‖2
λ

)
‖c∗λ‖2.

If we combine all bounds, we obtain

‖X̃c̃∗λ−x∗‖22 ≤ κ
√
S(k, λ/‖x0 − x∗‖22)‖x0 − x∗‖22 − λ‖c∗λ‖22+‖c∗λ‖2

(
1 +
‖P‖2
λ

)(
‖E‖2 + κ

‖P‖2
2
√
λ

)
.

13



We will now find the value of ‖c∗λ‖2 which maximize the bound. For more simplicity, let us write the
bound using parameters a, b and c = ‖c∗λ‖2:

κ
√
a2 − λc2 + bc.

We want to solve
max

c:0≤c≤(a/
√
λ)
κ
√
a2 − λc2 + bc,

and the solution is given by

c =
a√
λ

b√
κ2λ+ b2

∈
[
0,

a√
λ

]
.

The optimal value becomes

max
c:0≤c≤(a/

√
λ)
κ
√
a2 − λc2 + bc =

a√
λ

√
κ2λ+ b2.

In other words, if we replace a, b and c, we have

‖X̃c̃∗λ− x∗‖2 ≤
√
S(k, λ/‖x0 − x∗‖22)‖x0− x∗‖2

√
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2

,

which is the desired result.

A.6 Explicit bounds for the gradient method

Here, we make our bounds explicit in the case where we use the simple gradient method for smooth
and strongly convex function with Lipchitz-continuous Hessian. In this scenario, the fixed point
function becomes

x̃k+1 = x̃k −
1

L
f ′(x̃k)

where µI � f ′′(x) � LI (and we assume the bounds thigh at x = x∗ for simplicity). Moreover,

‖f ′′(y)− f ′′(x)‖2 ≤M‖y − x‖2
We have thus A = I − 1

Lf
′′(x∗), meaning that ‖A‖2 ≤ 1− µ

L . The rate of this method is

‖x̃k − x∗‖2 ≤

(√
L− µ
L+ µ

)k
‖x0 − x∗‖2 = rk‖x0 − x∗‖2

Notice that this is not the optimal fixed-step gradient method, however it allows us a much simpler
analysis. Now let us bound ‖X̃ −X∗‖2, ‖U‖2 and ‖E‖2. Indeed,

‖X̃ −X∗‖2 ≤
k∑
i=0

‖x̃i − x∗‖2

=
1− rk

1− r
‖x0 − x∗‖2

‖U‖2 ≤ ‖A− I‖2
k∑
i=0

‖xi − x∗‖2

≤
k∑
i=0

‖A‖i‖x0 − x∗‖2

≤ 1− ‖A‖k2
1− ‖A‖2

‖x0 − x∗‖2

≤ L

µ

(
1−

(
1− µ

L

)k)
‖x0 − x∗‖2

14



x̃i+1 − xi+1 = x̃i −
1

L
f ′(x̃i)− xi +

1

L
f ′′(x∗)(xi − x∗)

= x̃i − xi −
1

L
(f ′(x̃i)− f ′′(x∗)(xi − x∗))

= (I − f ′′(x∗)

L
)(x̃i − xi)−

1

L
(f ′(x̃i)− f ′′(x∗)(x̃i − x∗))

Since our function has a Lipchitz-continuous Hessian, it is possible to show that ([6], Lemma 1.2.4)

‖f ′(ỹ)− f ′(x)− f ′′(x)(ỹ − x)‖2 ≤
M

2
‖y − x‖2

We can thus bound the norm of the error at the ith iteration:

‖xi+1 − x̃i+1‖2 ≤
∥∥∥∥I − f ′′(x∗)

L
)

∥∥∥∥
2

‖xi − x̃i‖2 +
1

L
‖f ′(x̃i)− f ′′(x∗)(x̃i − x∗)‖2

=

∥∥∥∥I − f ′′(x∗)

L
)

∥∥∥∥
2

‖xi − x̃i‖2 +
1

L
‖f ′(x̃i)− f ′(x∗)− f ′′(x∗)(x̃i − x∗)‖2

≤ (1− µ

L
)‖xi − x̃i‖2 +

M

2L
‖x̃i − x∗‖22

≤ (1− µ

L
)‖xi − x̃i‖2 +

M

2L
(r2)i‖x0 − x∗‖22

=
M

2L

i∑
j=1

(1− µ

L
)i−j(r2)j‖x0 − x∗‖22

The sum starts at j = 1 because, by definition, ‖e0‖2 = 0. In order to have a simpler analysis, let us
use the fact that

r2

1− µ
L

=
1

1 + µ
L

< 1

We can bound ‖xi+1 − x̃i+1‖2 with a simpler expression:

‖xi+1 − x̃i+1‖2 ≤ (1− µ

L
)i
M

2L

i∑
j=1

(
r2

1− µ
L

)j
‖x0 − x∗‖22

≤ (1− µ

L
)i
M

2L

 i∑
j=0

(
r2

1− µ
L

)j ‖x0 − x∗‖22

= (1− µ

L
)i
M

2L

 i∑
j=0

(
1

1 + µ
L

)j ‖x0 − x∗‖22

= (1− µ

L
)i
M

2L

1−
(

1
1+ µ

L

)i
1− 1

1+ µ
L

 ‖x0 − x∗‖22

=
M

2L

 (1− µ
L )i −

(
1− µL
1+ µ

L

)i
1− 1

1+ µ
L

 ‖x0 − x∗‖22

=

(
1 +

L

µ

)
M

2L

(
(1− µ

L
)i −

(
1− µ

L

1 + µ
L

)i)
‖x0 − x∗‖22

15



0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

V
al

u
e

o
f
λ
/‖
x
0
−
x
∗
‖2

k

0 5 10 15 20 25 30
0

0.5

1

1.5

2

 

 

S
p
ee

d
u
p

fa
ct

o
r

k

Grad.

Nest.

RMPE

Figure 3: Left: Relative value for the regularization parameter λ used in the theoretical bound. Right:
Convergence speedup relative to gradient, for Nesterov’s accelerated method and the theoretical
RMPE bound in Proposition 2.6. We see that our algorithm performs a significant speedup (even in
comparison with Nesterov’s method) when k is well chosen.

If we sum all the errors we get

‖E‖2 ≤
k∑
i=0

‖xi − x̃i‖2

≤
(

1 +
L

µ

)
M

2L

(
k∑
i=0

(1− µ

L
)i −

k∑
i=0

(
1− µ

L

1 + µ
L

)i)
‖x0 − x∗‖22

=

(
1 +

L

µ

)
M

2L

(
L

µ

(
1−

(
1− µ

L
)k
))
− L

2µ

(
1−

(
1− µ

L

1 + µ
L

)k))
‖x0 − x∗‖22

≤
(

1 +
L

µ

)2
M

2L

(
1−

(
1− µ

L

)k
− 1

2

(
1−

(
1− µ

L

1 + µ
L

)k))
‖x0 − x∗‖22

=

(
1 +

L

µ

)2
M

2L

(
1

2
−
(

1− µ

L

)k
+

1

2

(
1− µ

L

1 + µ
L

)k)
‖x0 − x∗‖22

We can also deduce that

‖Ũ − U‖2 = ‖E‖2 ≤ 2‖E‖2 = ‖X̃ −X‖2
Let us fix µ, L, M and ‖x0 − x∗‖2 to some values:

• L = 100,

• µ = 10,

• M = 10−1,

• ‖x0 − x∗‖2 = 10−4.

We also decided to put λ = ‖P‖2.

In figure 3 (left) we can see the relative value for λ (i.e. ‖P‖2/‖x0−x∗‖2) using the above parameters.
In this case, we can compute the rate of convergence of the AMPE method using proposition 2.6.
This rate of convergence is showed in figure 3 (right).

A.7 Additional numerical experiments

We test our methods on a regularized logistic regression problem written

f(w) =
∑m
i=1 log

(
1 + exp(−yiξTi w)

)
+ τ

2‖w‖
2
2,

16



Optimization is done on dataset Madelon (500 features, 4400 points), sido0 (4932 features, 12678
points) and sonar (60 features, 208 points) with different values of τ . The starting point is always
w = 0. The optimization is done on raw data. We compare different algorithms:

• fixed-step gradient method with stepsize = 2/(L+ µ),
• Nesterov’s method for strongly convex functions with fixed coefficients,
• Nesterov’s method using backtracking strategy on the smoothness parameter L,
• RMPE with k = 5 (i.e. RMPE5), where λ is found using grid search,
• RMPE5 using grid search for λ and line-search for the stepsize.

The line-search on the stepsize works as follow. We compute an extrapolation x̄ =RMPE(X, k, λ)
using iterates X = [x0, ..., xk], then we find a coefficient c ∈ {1, 2, 4, ..., 2i, ...} which minimize the
objective function f(x0 + c(x̄− x0)). If we assume that the computation of the objective function
value is much cheaper than the computation of its gradient, then this line-search has almost no impact
on the total complexity of the algorithm.

In all experiments, we compare the rate of convergence of these methods in function of the number
of gradient oracle call ot in function of time.

0 20 40 60 80 100
10-10

10-5

100

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

0 0.5 1 1.5
10-10

10-5

100

CPU Time (sec.)

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

Figure 4: Logistic regression on Madelon dataset, with τ = 107 (condition number = 6 · 103).

0 2000 4000 6000 8000 10000

10-1

100

101

102

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

0 50 100 150 200

10-1

100

101

102

CPU Time (sec.)

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

Figure 5: Logistic regression on Madelon dataset, with τ = 10−3 (condition number = 6 · 1013).

17



0 200 400 600 800 1000

10-10

10-5

100

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

0 0.5 1

10-10

10-5

100

CPU Time (sec.)

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

Figure 6: Logistic regression on sonar dataset, with τ = 10−1 (condition number = 7 · 103)

0 2 4 6 8 10
×104

10-6

10-4

10-2

100

102

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

0 50 100
10-6

10-4

10-2

100

102

CPU Time (sec.)

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

Figure 7: Logistic regression on sonar dataset, with τ = 10−6 (condition number = 7 · 108)

0 200 400 600 800 1000
10-10

10-5

100

f
(x

k
)
−
f
(x

∗
)

Gradient oracle calls

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

0 20 40 60 80 100
10-10

10-5

100

CPU Time (sec.)

Gradient
Nesterov
Nest. + backtrack
RMPE 5
RMPE 5 + LS

Figure 8: Logistic regression on sido0 dataset, with τ = 102 (condition number = 1.5 · 105)

18


