
Fast Algorithms for Robust PCA via Gradient
Descent

Xinyang Yi∗ Dohyung Park∗ Yudong Chen† Constantine Caramanis∗
∗The University of Texas at Austin †Cornell University

∗{yixy,dhpark,constantine}@utexas.edu †yudong.chen@cornell.edu

Abstract

We consider the problem of Robust PCA in the fully and partially observed set-
tings. Without corruptions, this is the well-known matrix completion problem.
From a statistical standpoint this problem has been recently well-studied, and
conditions on when recovery is possible (how many observations do we need,
how many corruptions can we tolerate) via polynomial-time algorithms is by
now understood. This paper presents and analyzes a non-convex optimization
approach that greatly reduces the computational complexity of the above prob-
lems, compared to the best available algorithms. In particular, in the fully ob-
served case, with r denoting rank and d dimension, we reduce the complexity
from O(r2d2 log(1/ε)) to O(rd2 log(1/ε)) – a big savings when the rank is big.
For the partially observed case, we show the complexity of our algorithm is no
more than O(r4d log d log(1/ε)). Not only is this the best-known run-time for a
provable algorithm under partial observation, but in the setting where r is small
compared to d, it also allows for near-linear-in-d run-time that can be exploited in
the fully-observed case as well, by simply running our algorithm on a subset of the
observations.

1 Introduction
Principal component analysis (PCA) aims to find a low rank subspace that best-approximates a data
matrix Y ∈ Rd1×d2 . The simple and standard method of PCA by singular value decomposition
(SVD) fails in many modern data problems due to missing and corrupted entries, as well as sheer scale
of the problem. Indeed, SVD is highly sensitive to outliers by virtue of the squared-error criterion
it minimizes. Moreover, its running time scales as O(rd2) to recover a rank r approximation of a
d-by-d matrix.

While there have been recent results developing provably robust algorithms for PCA (e.g., [5, 26]), the
running times range fromO(r2d2) toO(d3) and hence are significantly worse than SVD. Meanwhile,
the literature developing sub-quadratic algorithms for PCA (e.g., [15, 14, 3]) seems unable to
guarantee robustness to outliers or missing data.

Our contribution lies precisely in this area: provably robust algorithms for PCA with improved
run-time. Specifically, we provide an efficient algorithm with running time that matches SVD while
nearly matching the best-known robustness guarantees. In the case where rank is small compared to
dimension, we develop an algorithm with running time that is nearly linear in the dimension. This
last algorithm works by subsampling the data, and therefore we also show that our algorithm solves
the Robust PCA problem with partial observations (a generalization of matrix completion and Robust
PCA).

1.1 The Model and Related Work
We consider the following setting for robust PCA. Suppose we are given a matrix Y ∈ Rd1×d2 that
has decomposition Y = M∗ + S∗, where M∗ is a rank r matrix and S∗ is a sparse corruption matrix
containing entries with arbitrary magnitude. The goal is to recover M∗ and S∗ from Y . To ease
notation, we let d1 = d2 = d in the remainder of this section.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Provable solutions for this model are first provided in the works of [9] and [5]. They propose to solve
this problem by convex relaxation:

min
M,S
|||M |||nuc + λ‖S‖1, s.t. Y = M + S, (1)

where |||M |||nuc denotes the nuclear norm of M . Despite analyzing the same method, the corruption
models in [5] and [9] differ. In [5], the authors consider the setting where the entries of M∗ are
corrupted at random with probability α. They show their method succeeds in exact recovery with
α as large as 0.1, which indicates they can tolerate a constant fraction of corruptions. Work in [9]
considers a deterministic corruption model, where nonzero entries of S∗ can have arbitrary position,
but the sparsity of each row and column does not exceed αd. They prove that for exact recovery, it
can allow α = O(1/(µr

√
d)). This was subsequently further improved to α = O(1/(µr)), which is

in fact optimal [11, 18]. Here, µ represents the incoherence of M∗ (see Section 2 for details). In this
paper, we follow this latter line and focus on the deterministic corruption model.

The state-of-the-art solver [20] for (1) has time complexity O(d3/ε) to achieve error ε, and is thus
much slower than SVD, and prohibitive for even modest values of d. Work in [21] considers the
deterministic corruption model, and improves this running time without sacrificing the robustness
guarantee on α. They propose an alternating projection (AltProj) method to estimate the low
rank and sparse structures iteratively and simultaneously, and show their algorithm has complexity
O(r2d2 log(1/ε)), which is faster than the convex approach but still slower than SVD.

Non-convex approaches have recently seen numerous developments for applications in low-rank
estimation, including alternating minimization (see e.g. [19, 17, 16]) and gradient descent (see e.g.
[4, 12, 23, 24, 29, 30]). These works have fast running times, yet do not provide robustness guarantees.
One exception is [12], where the authors analyze a row-wise `1 projection method for recovering
S∗. Their analysis hinges on positive semidefinite M∗, and the algorithm requires prior knowledge
of the `1 norm of every row of S∗ and is thus prohibitive in practice. Another exception is work
[16], which analyzes alternating minimization plus an overall sparse projection. Their algorithm is
shown to tolerate at most a fraction of α = O(1/(µ2/3r2/3d)) corruptions. As we discuss in Section
1.2, we can allow S∗ to have much higher sparsity α = O(1/(µr1.5)), which is close to optimal.
It is worth mentioning other works that obtain provable guarantees of non-convex algorithms or
problems including phase retrieval [6, 13, 28], EM algorithms [2, 25, 27], tensor decompositions [1]
and second order method [22]. It might be interesting to bring robust considerations to these works.

1.2 Our Contributions
In this paper, we develop efficient non-convex algorithms for robust PCA. We propose a novel
algorithm based on the projected gradient method on the factorized space. We also extend it to solve
robust PCA in the setting with partial observations, i.e., in addition to gross corruptions, the data
matrix has a large number of missing values. Our main contributions are summarized as follows.1

1. We propose a novel sparse estimator for the setting of deterministic corruptions. For the low-rank
structure to be identifiable, it is natural to assume that deterministic corruptions are “spread out” (no
more than some number in each row/column). We leverage this information in a simple but critical
algorithmic idea, that is tied to the ultimate complexity advantages our algorithm delivers.
2. Based on the proposed sparse estimator, we propose a projected gradient method on the matrix
factorized space. While non-convex, the algorithm is shown to enjoy linear convergence under proper
initialization. Along with a new initialization method, we show that robust PCA can be solved
within complexity O(rd2 log(1/ε)) while ensuring robustness α = O(1/(µr1.5)). Our algorithm is
thus faster than the best previous known algorithm by a factor of r, and enjoys superior empirical
performance as well.
3. Algorithms for Robust PCA with partial observations still rely on a computationally expensive
convex approach, as apparently this problem has evaded treatment by non-convex methods. We
consider precisely this problem. In a nutshell, we show that our gradient method succeeds (it is
guaranteed to produce the subspace of M∗) even when run on no more than O(µ2r2d log d) random
entries of Y . The computational cost is O(µ3r4d log d log(1/ε)). When rank r is small compared to
the dimension d, in fact this dramatically improves on our bound above, as our cost becomes nearly
linear in d. We show, moreover, that this savings and robustness to erasures comes at no cost in the

1To ease presentation, the discussion here assumes M∗ has constant condition number, whereas our results
below show the dependence on condition number explicitly.

2

robustness guarantee for the deterministic (gross) corruptions. While this demonstrates our algorithm
is robust to both outliers and erasures, it also provides a way to reduce computational costs even in
the fully observed setting, when r is small.

4. An immediate corollary of the above result provides a guarantee for exact matrix completion, with
general rectangular matrices, using O(µ2r2d log d) observed entries and O(µ3r4d log d log(1/ε))
time, thereby improving on existing results in [12, 23].
Notation. For any index set Ω ⊆ [d1] × [d2], we let Ω(i,·) :=

{
(i, j) ∈ Ω

∣∣ j ∈ [d2]
}

, Ω(·,j) :={
(i, j) ∈ Ω

∣∣ i ∈ [d1]
}

. For any matrix A ∈ Rd1×d2 , we denote its projector onto support Ω by
ΠΩ (A), i.e., the (i, j)-th entry of ΠΩ (A) is equal to A if (i, j) ∈ Ω and zero otherwise. The i-th
row and j-th column of A are denoted by A(i,·) and A(·,j). The (i, j)-th entry is denoted as A(i,j).
Operator norm of A is |||A|||op. Frobenius norm of A is |||A|||F. The `a/`b norm of A is denoted by
|||A|||b,a, i.e., the `a norm of the vector formed by the `b norm of every row. For instance, ‖A‖2,∞
stands for maxi∈[d1] ‖A(i,·)‖2.

2 Problem Setup
We consider the problem where we observe a matrix Y ∈ Rd1×d2 that satisfies Y = M∗+S∗, where
M∗ has rank r, and S∗ is corruption matrix with sparse support. Our goal is to recover M∗ and S∗.
In the partially observed setting, in addition to sparse corruptions, we have erasures. We assume that
each entry of M∗ + S∗ is revealed independently with probability p ∈ (0, 1). In particular, for any
(i, j) ∈ [d1]× [d2], we consider the Bernoulli model where

Y(i,j) =

{
(M∗ + S∗)(i,j), with probability p;
∗, otherwise.

(2)

We denote the support of Y by Φ = {(i, j) | Y(i,j) 6= ∗}. Note that we assume S∗ is not adaptive to
Φ. As is well-understood thanks to work in matrix completion, this task is impossible in general –
we need to guarantee that M∗ is not both low-rank and sparse. To avoid such identifiability issues,
we make the following standard assumptions on M∗ and S∗: (i) M∗ is not near-sparse or “spiky.”
We impose this by requiring M∗ to be µ-incoherent – given a singular value decomposition (SVD)
M∗ = L∗Σ∗R∗>, we assume that

‖L∗‖2,∞ ≤
√
µr

d1
, ‖R∗‖2,∞ ≤

√
µr

d2
.

(ii) The entries of S∗ are “spread out” – for α ∈ [0, 1), we assume S∗ ∈ Sα, where

Sα :=
{
A ∈ Rd1×d2

∣∣ ‖A(i,·)‖0 ≤ αd2 for all i ∈ [d1] ; ‖A(·,j)‖0 ≤ αd1 for all j ∈ [d2]
}
. (3)

In other words, S∗ contains at most α-fraction nonzero entries per row and column.

3 Algorithms
For both the full and partial observation settings, our method proceeds in two phases. In the first
phase, we use a new sorting-based sparse estimator to produce a rough estimate Sinit for S∗ based on
the observed matrix Y , and then find a rank r matrix factorized as U0V

>
0 that is a rough estimate

of M∗ by performing SVD on (Y − Sinit). In the second phase, given (U0, V0), we perform an
iterative method to produce series {(Ut, Vt)}∞t=0. In each step t, we first apply our sparse estimator
to produce a sparse matrix St based on (Ut, Vt), and then perform a projected gradient descent
step on the low-rank factorized space to produce (Ut+1, Vt+1). This flow is the same for full and
partial observations, though a few details differ. Algorithm 1 gives the full observation algorithm,
and Algorithm 2 gives the partial observation algorithm. We now describe the key details of each
algorithm.

Sparse Estimation. A natural idea is to keep those entries of residual matrix Y −M that have large
magnitude. At the same time, we need to make use of the dispersed property of Sα that every column
and row contain at most α-fraction of nonzero entries. Motivated by these two principles, we introduce
the following sparsification operator: For any matrix A ∈ Rd1×d2 : for all (i, j) ∈ [d1]× [d2], we let

Tα [A] :=

{
A(i,j), if |A(i,j)| ≥ |A

(αd2)
(i,·) | and |A(i,j)| ≥ |A

(αd1)
(·,j) |

0, otherwise
, (4)

3

where A(k)
(i,·) and A(k)

(·,j) denote the elements of A(i,·) and A(·,j) that have the k-th largest magnitude
respectively. In other words, we choose to keep those elements that are simultaneously among the
largest α-fraction entries in the corresponding row and column. In the case of entries having identical
magnitude, we break ties arbitrarily. It is thus guaranteed that Tα [A] ∈ Sα.

Algorithm 1 Fast RPCA

INPUT: Observed matrix Y with rank r and corruption fraction α; parameters γ, η; number of
iterations T .

// Phase I: Initialization.
1: Sinit ← Tα [Y] // see (4) for the definition of Tα [·].
2: [L,Σ, R]← SVDr[Y − Sinit]

2

3: U0 ← LΣ1/2, V0 ← RΣ1/2. Let U ,V be defined according to (7).
// Phase II: Gradient based iterations.
4: U0 ← ΠU (U0), V0 ← ΠV (V0)
5: for t = 0, 1, . . . , T − 1 do
6: St ← Tγα

[
Y − UtV >t

]
7: Ut+1 ← ΠU

(
Ut − η∇UL(Ut, Vt;St)− 1

2ηUt(U
>
t Ut − V >t Vt)

)
8: Vt+1 ← ΠV

(
Vt − η∇V L(Ut, Vt;St)− 1

2ηVt(V
>
t Vt − U>t Ut)

)
9: end for

OUTPUT: (UT , VT)

Initialization. In the fully observed setting, we compute Sinit based on Y as Sinit = Tα [Y]. In
the partially observed setting with sampling rate p, we let Sinit = T2pα [Y]. In both cases, we then
set U0 = LΣ1/2 and V0 = RΣ1/2, where LΣR> is an SVD of the best rank r approximation of
Y − Sinit.

Gradient Method on Factorized Space. After initialization, we proceed by projected gradient
descent. To do this, we define loss functions explicitly in the factored space, i.e., in terms of U, V and
S:

L(U, V ;S) :=
1

2
|||UV > + S − Y |||2F , (fully observed) (5)

L̃(U, V ;S) :=
1

2p
|||ΠΦ

(
UV > + S − Y

)
|||2F . (partially observed) (6)

Recall that our goal is to recover M∗ that satisfies the µ-incoherent condition. Given an SVD
M∗ = L∗ΣR∗>, we expect that the solution (U, V) is close to (L∗Σ1/2, R∗Σ1/2) up to some
rotation. In order to serve such µ-incoherent structure, it is natural to put constraints on the row
norms of U, V based on |||M∗|||op. As |||M∗|||op is unavailable, given U0, V0 computed in the first phase,
we rely on the sets U , V defined as

U :=

{
A ∈ Rd1×r

∣∣ ‖A‖2,∞ ≤√2µr

d1
|||U0|||op

}
, V :=

{
A ∈ Rd2×r

∣∣ ‖A‖2,∞ ≤√2µr

d2
|||V0|||op

}
.

(7)
Now we consider the following optimization problems with constraints:

min
U∈U,V ∈V,S∈Sα

L(U, V ;S) +
1

8
|||U>U − V >V |||2F , (fully observed) (8)

min
U∈U,V ∈V,S∈Spα

L̃(U, V ;S) +
1

64
|||U>U − V >V |||2F . (partially observed) (9)

The regularization term in the objectives above is used to encourage that U and V have the same
scale. Given (U0, V0), we propose the following iterative method to produce series {(Ut, Vt)}∞t=0
and {St}∞t=0. We give the details for the fully observed case – the partially observed case is similar.

1 SVDr[A] stands for computing a rank-r SVD of matrix A, i.e., finding the top r singular values and vectors
of A. Note that we only need to compute rank-r SVD approximately (see the initialization error requirement in
Theorem 1) so that we can leverage fast iterative approaches such as block power method and Krylov subspace
methods.

4

For t = 0, 1, . . ., we update St using the sparse estimator St = Tγα
[
Y − UtV >t

]
, followed by a

projected gradient update on Ut and Vt:

Ut+1 = ΠU

(
Ut − η∇UL(Ut, Vt;St)−

1

2
ηUt(U

>
t Ut − V >t Vt)

)
,

Vt+1 = ΠV

(
Vt − η∇V L(Ut, Vt;St)−

1

2
ηVt(V

>
t Vt − U>t Ut)

)
.

Here α is the model parameter that characterizes the corruption fraction, γ and η are algorithmic
tunning parameters, which we specify in our analysis. Essentially, the above algorithm corresponds
to applying projected gradient method to optimize (8), where S is replaced by the aforementioned
sparse estimator in each step.

Algorithm 2 Fast RPCA with partial observations

INPUT: Observed matrix Y with support Φ; parameters τ, γ, η; number of iterations T .
// Phase I: Initialization.
1: Sinit ← T2pα [ΠΦ(Y)]
2: [L,Σ, R]← SVDr[1

p (Y − Sinit)]

3: U0 ← LΣ1/2, V0 ← RΣ1/2. Let U ,V be defined according to (7).
// Phase II: Gradient based iterations.
4: U0 ← ΠU (U0), V0 ← ΠV (V0)
5: for t = 0, 1, . . . , T − 1 do
6: St ← Tγpα

[
ΠΦ

(
Y − UtV >t

)]
7: Ut+1 ← ΠU

(
Ut − η∇U L̃(Ut, Vt;St)− 1

16ηUt(U
>
t Ut − V >t Vt)

)
8: Vt+1 ← ΠV

(
Vt − η∇V L̃(Ut, Vt;St)− 1

16ηVt(V
>
t Vt − U>t Ut)

)
9: end for

OUTPUT: (UT , VT)

4 Main Results
4.1 Analysis of Algorithm 1
We begin with some definitions and notation. It is important to define a proper error metric because
the optimal solution corresponds to a manifold and there are many distinguished pairs (U, V) that
minimize (8). Given the SVD of the true low-rank matrix M∗ = L∗Σ∗R∗>, we let U∗ := L∗Σ∗1/2

and V ∗ := R∗Σ∗1/2. We also let σ∗1 ≥ σ∗2 ≥ . . . ≥ σ∗r be sorted nonzero singular values of
M∗, and denote the condition number of M∗ by κ, i.e., κ := σ∗1/σ

∗
r . We define estimation error

d(U, V ;U∗, V ∗) as the minimal Frobenius norm between (U, V) and (U∗, V ∗) with respect to the
optimal rotation, namely

d(U, V ;U∗, V ∗) := min
Q∈Qr

√
|||U − U∗Q|||2F + |||V − V ∗Q|||2F , (10)

for Qr the set of r-by-r orthonormal matrices. This metric controls reconstruction error, as

|||UV > −M∗|||F .
√
σ∗1d(U, V ;U∗, V ∗), (11)

when d(U, V ;U∗, V ∗) ≤
√
σ∗1 . We denote the local region around the optimum (U∗, V ∗) with

radius ω as
B2 (ω) :=

{
(U, V) ∈ Rd1×r × Rd2×r

∣∣ d(U, V ;U∗, V ∗) ≤ ω
}
.

The next two theorems provide guarantees for the initialization phase and gradient iterations, respec-
tively, of Algorithm 1.
Theorem 1 (Initialization). Consider the paired (U0, V0) produced in the first phase of Algorithm 1.
If α ≤ 1/(16κµr), we have

d(U0, V0;U∗, V ∗) ≤ 28
√
καµr

√
r
√
σ∗1 .

5

Theorem 2 (Convergence). Consider the second phase of Algorithm 1. Suppose we choose γ = 2
and η = c/σ∗1 for any c ≤ 1/36. There exist constants c1, c2 such that when α ≤ c1/(κ2µr), given

any (U0, V0) ∈ B2

(
c2
√
σ∗r/κ

)
, the iterates {(Ut, Vt)}∞t=0 satisfy

d2(Ut, Vt;U
∗, V ∗) ≤

(
1− c

8κ

)t
d2(U0, V0;U∗, V ∗).

Therefore, using proper initialization and step size, the gradient iteration converges at a linear
rate with a constant contraction factor 1 − O(1/κ). To obtain relative precision ε compared to
the initial error, it suffices to perform O(κ log(1/ε)) iterations. Note that the step size is chosen
according to 1/σ∗1 . When α . 1/(µ

√
κr3), Theorem 1 and the inequality (11) together imply that

|||U0V
>
0 −M∗|||op ≤ 1

2σ
∗
1 . Hence we can set the step size as η = O(1/σ1(U0V

>
0)) using being the

top singular value σ1(U0V
>
0) of the matrix U0V

>
0

Combining Theorems 1 and 2 implies the following result that provides an overall guarantee for
Algorithm 1.

Corollary 1. Suppose that

α ≤ cmin

{
1

µ
√
κr

3 ,
1

µκ2r

}
for some constant c. Then for any ε ∈ (0, 1), Algorithm 1 with T = O(κ log(1/ε)) outputs a pair
(UT , VT) that satisfies

|||UTV >T −M∗|||F ≤ ε · σ∗r . (12)

Remark 1 (Time Complexity). For simplicity we assume d1 = d2 = d. Our sparse estimator (4)
can be implemented by finding the top αd elements of each row and column via partial quick sort,
which has running time O(d2 log(αd)). Performing rank-r SVD in the first phase and computing the
gradient in each iteration both have complexity O(rd2).3 Algorithm 1 thus has total running time
O(κrd2 log(1/ε)) for achieving an ε accuracy as in (12). We note that when κ = O(1), our algorithm
is orderwise faster than the AltProj algorithm in [21], which has running time O(r2d2 log(1/ε)).
Moreover, our algorithm only requires computing one singular value decomposition.
Remark 2 (Robustness). Assuming κ = O(1), our algorithm can tolerate corruption at a sparsity
level up to α = O(1/(µr

√
r)). This is worse by a factor

√
r compared to the optimal statistical

guarantee 1/(µr) obtained in [11, 18, 21]. This looseness is a consequence of the condition for
(U0, V0) in Theorem 2. Nevertheless, when µr = O(1), our algorithm can tolerate a constant α
fraction of corruptions.

4.2 Analysis of Algorithm 2
We now move to the guarantees of Algorithm 2. We show here that not only can we handle partial
observations, but in fact subsampling the data in the fully observed case can significantly reduce the
time complexity from the guarantees given in the previous section without sacrificing robustness. In
particular, for smaller values of r, the complexity of Algorithm 2 has near linear dependence on the
dimension d, instead of quadratic.

In the following discussion, we let d := max{d1, d2}. The next two results control the quality of the
initialization step, and then the gradient iterations.

Theorem 3 (Initialization, partial observations). Suppose the observed indices Φ follow the Bernoulli
model given in (2). Consider the pair (U0, V0) produced in the first phase of Algorithm 2. There exist
constants {ci}3i=1 such that for any ε ∈ (0,

√
r/(8c1κ)), if

α ≤ 1

64κµr
, p ≥ c2

(
µr2

ε2
+

1

α

)
log d

d1 ∧ d2
, (13)

then we have
d(U0, V0;U∗, V ∗) ≤ 51

√
καµr

√
r
√
σ∗1 + 7c1ε

√
κσ∗1 ,

with probability at least 1− c3d−1.
3In fact, it suffices to compute the best rank-r approximation with running time independent of the eigen gap.

6

Theorem 4 (Convergence, partial observations). Suppose the observed indices Φ follow the Bernoulli
model given in (2). Consider the second phase of Algorithm 2. Suppose we choose γ = 3, and
η = c/(µrσ∗1) for a sufficiently small constant c. There exist constants {ci}4i=1 such that if

α ≤ c1
κ2µr

and p ≥ c2
κ4µ2r2 log d

d1 ∧ d2
, (14)

then with probability at least 1− c3d−1, the iterates {(Ut, Vt)}∞t=0 satisfy

d2(Ut, Vt;U
∗, V ∗) ≤

(
1− c

64µrκ

)t
d2(U0, V0;U∗, V ∗)

for all (U0, V0) ∈ B2

(
c4
√
σ∗r/κ

)
.

Setting p = 1 in the above result recovers Theorem 2 up to an additional factor µr in the contraction
factor. For achieving ε relative accuracy, now we needO(µrκ log(1/ε)) iterations. Putting Theorems
3 and 4 together, we have the following overall guarantee for Algorithm 2.
Corollary 2. Suppose that

α ≤ cmin

{
1

µ
√
κr

3 ,
1

µκ2r

}
, p ≥ c′κ

4µ2r2 log d

d1 ∧ d2
,

for some constants c, c′. With probability at least 1−O(d−1), for any ε ∈ (0, 1), Algorithm 2 with
T = O(µrκ log(1/ε)) outputs a pair (UT , VT) that satisfies

|||UTV >T −M∗|||F ≤ ε · σ∗r . (15)

This result shows that partial observations do not compromise robustness to sparse corruptions: as
long as the observation probability p satisfies the condition in Corollary 2, Algorithm 2 enjoys the
same robustness guarantees as the method using all entries. Below we provide two remarks on the
sample and time complexity. For simplicity, we assume d1 = d2 = d, κ = O(1).
Remark 3 (Sample complexity and matrix completion). Using the lower bound on p, it is sufficient
to have O(µ2r2d log d) observed entries. In the special case S∗ = 0, our partial observation model
is equivalent to the model of exact matrix completion (see, e.g., [8]). We note that our sample
complexity (i.e., observations needed) matches that of completing a positive semidefinite (PSD)
matrix by gradient descent as shown in [12], and is better than the non-convex matrix completion
algorithms in [19] and [23]. Accordingly, our result reveals the important fact that we can obtain
robustness in matrix completion without deterioration of our statistical guarantees. It is known that
that any algorithm for solving exact matrix completion must have sample size Ω(µrd log d) [8], and a
nearly tight upper bound O(µrd log2 d) is obtained in [10] by convex relaxation. While sub-optimal
by a factor µr, our algorithm is much faster than convex relaxation as shown below.
Remark 4 (Time complexity). Our sparse estimator on the sparse matrix with support Φ can be
implemented via partial quick sort with running time O(pd2 log(αpd)). Computing the gradient
in each step involves the two terms in the objective function (9). Computing the gradient of the
first term L̃ takes time O(r|Φ|), whereas the second term takes time O(r2d). In the initialization
phase, performing rank-r SVD on a sparse matrix with support Φ can be done in time O(r|Φ|). We
conclude that when |Φ| = O(µ2r2d log d), Algorithm 2 achieves the error bound (15) with running
time O(µ3r4d log d log(1/ε)). Therefore, in the small rank setting with r � d1/3, even when full
observations are given, it is better to use Algorithm 2 by subsampling the entries of Y .

5 Numerical Results
In this section, we provide numerical results and compare the proposed algorithms with existing
methods, including the inexact augmented lagrange multiplier (IALM) approach [20] for solving
the convex relaxation (1) and the alternating projection (AltProj) algorithm proposed in [21]. All
algorithms are implemented in MATLAB 4, and the codes for existing algorithms are obtained from
their authors. SVD computation in all algorithms uses the PROPACK library.5 We ran all simulations
on a machine with Intel 32-core Xeon (E5-2699) 2.3GHz with 240GB RAM.

4Our code is available at https://www.yixinyang.org/code/RPCA_GD.zip.
5http://sun.stanford.edu/~rmunk/PROPACK/

7

https://www.yixinyang.org/code/RPCA_GD.zip
http://sun.stanford.edu/~rmunk/PROPACK/

(a) (b) (c)

Figure 1: Results on synthetic data. (a) Plot of log estimation error versus number of iterations when using
gradient descent (GD) with varying sub-sampling rate p. It is conducted using d = 5000, r = 10, α = 0.1.
(b) Plot of running time of GD versus dimension d with r = 10, α = 0.1, p = 0.15r2 log d/d. The low-rank
matrix is recovered in all instances, and the line has slope approximately one. (c) Plot of log estimation error
versus running time for different algorithms in problem with d = 5000, r = 10, α = 0.1.

Original GD (49.8s) GD, 20% sample (18.1s) AltProj (101.5s) IALM (434.6s)

�� �������������� �� �	 �
����������� �� �	 �� ������ ������ ������ �
����������� �� ������ ������ �
������������� ���� �� � �
�����!�������

Figure 2: Foreground-background separation in Restaurant and ShoppingMall videos. In each line, the leftmost
image is an original frame, and the other four are the separated background obtained from our algorithms with
p = 1, p = 0.2, AltProj, and IALM. The running time required by each algorithm is shown in the title.

Synthetic Datasets. We generate a squared data matrix Y = M∗ + S∗ ∈ Rd×d as follows. The
low-rank part M∗ is given by M∗ = AB>, where A,B ∈ Rd×r have entries drawn independently
from a zero mean Gaussian distribution with variance 1/d. For a given sparsity parameter α, each
entry of S∗ is set to be nonzero with probability α, and the values of the nonzero entries are sampled
uniformly from [−5r/d, 5r/d]. The results are summarized in Figure 1. Figure 1a shows the
convergence of our algorithms for different random instances with different sub-sampling rate p.
Figure 1b shows the running time of our algorithm with partially observed data. We note that our
algorithm is memory-efficient: in the large scale setting with d = 2 × 105, using approximately
0.1% entries is sufficient for the successful recovery. In contrast, AltProj and IALM are designed
to manipulate the entire matrix with d2 = 4× 1010 entries, which is prohibitive on single machine.
Figure 1c compares our algorithms with AltProj and IALM by showing reconstruction error versus
real running time. Our algorithm requires significantly less computation to achieve the same accuracy
level, and using only a subset of the entries provides additional speed-up.
Foreground-background Separation. We apply our method to the task of foreground-background
(FB) separation in a video. We use two public benchmarks, the Restaurant and ShoppingMall
datasets.6 Each dataset contains a video with static background. By vectorizing and stacking the
frames as columns of a matrix Y , the FB separation problem can be cast as RPCA, where the static
background corresponds to a low rank matrix M∗ with identical columns, and the moving objects in
the video can be modeled as sparse corruptions S∗. Figure 2 shows the output of different algorithms
on two frames from the dataset. Our algorithms require significantly less running time than both
AltProj and IALM. Moreover, even with 20% sub-sampling, our methods still seem to achieve
better separation quality. The details about parameter setting and more results are deferred to the
supplemental material.

6http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

8

