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1 Proofs

Lemma 1 ([2]). For any x ∈ Ω1 and ε > 0, we have

‖x− x†ε‖ ≤
dist(x†ε ,Ω∗)

ε
(F (x)− F (x†ε))

where x†ε ∈ Sε is the closest point in the ε-sublevel set to x.

The lemma is an immediate result from [2]. For completeness, we give the proof here.

1.1 Proof of Lemma 1

Proof. Consider ‖x‖ to be an Euclidean norm. We first recall the definition of x†ε :

x†ε = arg min
z∈Sε
‖z − x‖2 (1)

where Sε = {x ∈ Ω1 : F (x) ≤ F∗ + ε} is the sublevel set. We assume x 6∈ Sε, otherwise the
conclusion holds trivially. Thus F (x†ε) = F∗ + ε. By the first-order optimality conditions of (1), we
have for any z ∈ Ω1, there exists ζ ≥ 0 (the Lagrangian multiplier of problem (1))

(x†ε − x+ ζ∂F (x†ε))
>(z − x†ε) ≥ 0 (2)

Let z = x we have
ζ∂F (x†ε)

>(x− x†ε) ≥ ‖x− x†ε‖2

We argue that ζ > 0, otherwise x = x†ε contradicting to the assumption x 6∈ Sε. Therefore

F (x)− F (x†ε) ≥ ∂F (x†ε)
>(x− x†ε) ≥

‖x− x†ε‖2

ζ
=
‖x− x†ε‖

ζ
‖x− x†ε‖ (3)

Next we prove that ζ is upper bounded. Since

−ε = F (x∗ε )− F (x†ε) ≥ (x∗ε − x†ε)>∂F (x†ε)

where x∗ε is the closest point to x†ε in the optimal set. Let z = x∗ε in the inequality of (2), we have

(x†ε − x)>(x∗ε − x†ε) ≥ ζ(x†ε − x∗ε )>∂F (x†ε) ≥ ζε

Thus

ζ ≤ (x†ε − x)>(x∗ε − x†ε)
ε

≤ dist(x†ε ,Ω∗)‖x†ε − x‖
ε
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Therefore
‖x− x†ε‖

ζ
≥ ε

dist(x†ε ,Ω∗)

Combining the above inequality with (3) we have

‖x− x†ε‖ ≤
dist(x†ε ,Ω∗)

ε
(F (x)− F (x†ε))

which completes the proof.

1.2 Proof of Theorem 5

Proof. Let x†s,ε denote the closest point to xs in the ε sublevel set. Define εs , ε0
bs . Note that

µs = εs/D
2. We will show by induction that F (xs) − F∗ ≤ εs + ε for s = 0, 1, . . . which

leads to our conclusion when s = m. The inequality holds obviously for s = 0. Assuming
F (xs−1)− F∗ ≤ εs−1 + ε, we need to show that F (xs)− F∗ ≤ εs + ε. We apply Corollary 3 to the
s-th epoch of Algorithm 2 and get

F (xs)− F (x†s−1,ε) ≤
D2µs

2
+

2‖A‖2‖xs−1 − x†s−1,ε‖2

µst2
(4)

First, we assume F (xs−1)− F∗ ≤ ε, i.e. xs−1 ∈ Sε. Then we have x†s−1,ε = xs−1 and

F (xs)− F (x†s−1,ε) ≤
D2µs

2
≤ εs

2

As a result,

F (xs)− F∗ ≤ F (x†s−1,ε)− F∗ +
εs
2
≤ ε+ εs

Next, we consider F (xs−1) − F∗ > ε, i.e. xs−1 /∈ Sε. Then we have F (x†s−1,ε) − F∗ = ε. By
Lemma 1, we have

‖xs−1 − x†s−1,ε‖ ≤
dist(x†s−1,ε,Ω∗)

ε
(F (xs−1)− F (x†s−1,ε))

≤
dist(x†s−1,ε,Ω∗)

ε
[εs−1 + ε− ε] =

dist(x†s−1,ε,Ω∗)εs−1

ε

≤
c(F (x†s−1,ε)− F∗)θεs−1

ε

≤ c(ε)θεs−1

ε
=
cεs−1

ε1−θ
(5)

Combining (4) and (5) and using the fact that µs =
εs
D2

and t ≥ 2bcD‖A‖
ε1−θ

, we have

F (xs)− F (x†s−1,ε) ≤
εs
2

+
ε2s−1

2εsb2
= εs

which together with the fact that F (x†s−1,ε) = F∗ + ε implies

F (xs)− F∗ ≤ ε+ εs

Therefore by induction, we have

F (xm)− F∗ ≤ εm + ε =
ε0
bm

+ ε ≤ 2ε

where the last inequality is due to the value of m.
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Algorithm 3 An Accelerated Proximal Gradient Method (g is smooth): APG(x0, t, Lµ)

1: Input: the number of iterations t, the initial solution x0, and the smoothness constant Lµ
2: Let θ0 = 1, U−1 = 0, z0 = x0

3: Let αk and θk be two sequences given in Theorem 2.
4: for k = 0, . . . , t− 1 do
5: Compute yk = (1− θk)xk + θkzk
6: Compute uk = ∇fµ(yk) +∇g(yk), Uk = Uk−1 + uk

αk

7: Compute zk+1 = Π̃
(Lµ+M)/σ1

Uk
(x0) and xk+1 = Π̃

Lµ+M
uk (yk)

8: end for
9: Output: xt

2 HOPS with a smooth g(x)

In the Preliminaries section, we assume that g(z) is simple enough such that the proximal mapping
defined below is easy to compute:

Pλg(x) = min
z∈Ω1

1

2
‖z − x‖2 + λg(z) (6)

We claimed that if g(z) is smooth, this assumption can be relaxed. In this section, we present the
discussion and result for a smooth function g(x) without assuming that its proximal mapping is easy
to compute. In particular, we will consider g as a smooth component in fµ + g and use the gradient
of both fµ and g in the updating. The detailed updates are presented in Algorithm 3, where

Π̃c
u(x) = arg min

z∈Ω1

〈u, z〉+
c

2
‖z − x‖2 (7)

To present the convergence guarantee, we assume that the function g is M -smooth w.r.t ‖x‖, then the
smoothness parameter of objective function Fµ(x) = fµ(x) + g(x) is

L = Lµ +M =
‖A‖2

µ
+M (8)

Then, we state the convergence result of Algorithm 3 in the following corollary.

Corollary 6. Let θk = 2
k+2 , αk = 2

k+1 , k ≥ 0 or αk+1 = θk+1 =

√
θ4k+4θ2k−θ

2
k

2 , k ≥ 0. For any
x ∈ Ω1, we have

F (xt)− F (x) ≤ µD2

2
+

2‖A‖2‖x− x0‖2

µt2
+

2M‖x− x0‖2

t2
(9)

Remark: In order to have F (xt) ≤ F (x∗) + ε, we can consider x = x∗ in Corollary 6, i.e.

F (xt)− F (x∗) ≤
µD2

2
+

2‖A‖2‖x∗ − x0‖2

µt2
+

2M‖x∗ − x0‖2

t2
(10)

In particular, we set

µ =
2ε

3D2
(11)

and

t ≥ max

{
3D‖A‖‖x∗ − x0‖

ε
,

√
6M‖x∗ − x0‖√

ε

}
(12)

Algorithm 3 also achieves the iteration complecity of O(1/ε).

Similarly, we can develop the HOPS algorithm and present it in Algorithm 4. The iteration complexity
of HOPS is established in Theorem 7.
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Algorithm 4 Homotopy Smoothing (HOPS) for solving (1) (g is smooth)
1: Input: the number of stages m and the number of iterations t per-stage, and the initial solution
x0 ∈ Ω1 and a parameter b > 1.

2: Let µ1 = 2ε0
3bD2

3: for s = 1, . . . ,m do
4: Let xs = APG(xs−1, t, Lµs)
5: Update µs+1 = µs/b
6: end for
7: Output: xm

Theorem 7. Suppose Assumption 1 holds and F (x) obeys the local error bound condition. Let

HOPS run with t = O(1/ε1−θ) ≥ max
{

3D‖A‖bc
ε1−θ

,
√

6Mεsbc
ε1−θ

}
iterations for each stage, and m =

dlogb(
ε0
ε )e. Then

F (xm)− F∗ ≤ 2ε.

Hence, the iteration complexity for achieving an 2ε-optimal solution is Õ(1/ε1−θ).

Proof. Let x†s,ε denote the closest point to xs in the ε sublevel set and define εs , ε0
bs . We will show

by induction that F (xs)− F∗ ≤ εs + ε for s = 0, 1, . . . which leads to our conclusion when s = m.
The inequality holds obviously for s = 0. Assuming F (xs−1)− F∗ ≤ εs−1 + ε, we need to show
that F (xs)− F∗ ≤ εs + ε. We apply Corollary 6 to the s-th epoch of Algorithm 3 and get

F (xs)− F (x†s−1,ε) ≤
µsD

2

2
+

2‖A‖2‖x†s−1,ε − xs−1‖2

µst2
+

2M‖x†s−1,ε − xs−1‖2

t2
(13)

First, we assume F (xs−1)− F∗ ≤ ε, i.e. xs−1 ∈ Sε. Then we have x†s−1,ε = xs−1 and

F (xs)− F (x†s−1,ε) ≤
D2µs

2
≤ εs

3

As a result,

F (xs)− F∗ ≤ F (x†s−1,ε)− F∗ +
εs
3
≤ ε+ εs

Next, we consider F (xs−1)− F∗ > ε, i.e. xs−1 /∈ Sε. Then we have F (x†s−1,ε)− F∗ = ε. Recall
that

‖xs−1 − x†s−1,ε‖ ≤
cεs−1

ε1−θ
(14)

Combining (13) and (14) and using the fact that µs = 2εs
3D2 and t ≥ max

{
3D‖A‖bc
ε1−θ

,
√

6Mεsbc
ε1−θ

}
, we

get

F (xs)− F (x†s−1,ε) ≤
εs
3

+
3D2‖A‖2c2ε2s−1

εsε2(1−θ)t2
+

2Mc2ε2s−1

ε2(1−θ)t2

≤ εs
3

+
ε2s−1

3εsb2
+
ε2s−1

3εsb2
= εs

which together with the fact that F (x†s−1,ε) = F∗ + ε implies

F (xs)− F∗ ≤ ε+ εs

Therefore by induction, we have

F (xm)− F∗ ≤ εm + ε =
ε0
bm

+ ε ≤ 2ε

where the last inequality is due to the value of m = dlogb(
ε0
ε )e.
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In fact, the number of iteration in each stage depends on s, then the iteration complexity for achieving
an 2ε-optimal solution is

m∑
s=1

max

{
3D‖A‖bc
ε1−θ

,

√
6Mεsbc

ε1−θ

}
≤

m∑
s=1

3D‖A‖bc+
√

6Mεsbc

ε1−θ

=
3D‖A‖bc
ε1−θ

⌈
logb

(ε0
ε

)⌉
+

m∑
s=1

√
6Mε0bc√
bsε1−θ

≤ 3D‖A‖bc
ε1−θ

⌈
logb

(ε0
ε

)⌉
+

√
6Mε0bc

(
√
b− 1)ε1−θ

3 Primal-Dual Homotopy Smoothing

We note that the required number of iterations per-stage t for finding an ε accurate solution depends
on unknown constant c and sometimes θ. Thus, an inappropriate setting of t may lead to a less
accurate solution. To address this issue, we present a primal-dual homotopy smoothing. Basically,
we also apply the homotopy smoothing to the dual problem:

max
u∈Ω2

Φ(u) , −φ(u) + min
x∈Ω1

〈A>u, x〉+ g(x)︸ ︷︷ ︸
ψ(u)

(15)

Denote by Φ∗ the optimal value of the above problem. It is easy to see that Φ∗ = F∗. By extending
the analysis and result to the dual problem, we can obtain that F (xm)− Φ(um) ≤ 4ε. Thus, we can
use the duality gap F (xs)− Φ(us) as a certificate to monitor the progress of optimization. In this
section, we present more details.

3.1 Nesterov’s smoothing on the Dual problem

We construct a smooth function from ψη(u) that well approximates ψ(u):

ψη(u) = min
x∈Ω1

〈A>u, x〉+ g(x) + ηω(x)

where ω(x) is a 1-strongly convex function w.r.t. x in terms of a norm ‖ · ‖ 1. Similarly, we know that
ψη(u) is a smooth function of u with respect to an Euclidean norm ‖u‖ with smoothness parameter
Lη = 1

η‖A‖
2
+, where ‖A‖+ is defined by ‖A‖+ = max‖x‖≤1 max‖u‖+≤1〈A>u, x〉. Denote by

xη(u) = arg min
x∈Ω1

〈A>u, x〉+ g(x) + ηω(x)

The gradient of ψη(u) is computed by ∇ψη(u) = Axη(u). We can see that when η is very small,
ψη(u) gives a good approximation of ψ(u). This motivates us to solve the following composite
optimization problem

max
u∈Ω2

Φη(u) , −φ(u) + ψη(u)

Similar to solving the primal problem, an accelerated proximal gradient method for dual problem
can be employed to solve the above problem. We present the details in Algorithm 5. We present the
convergence results for Algorithm 5 in the following theorem:

Theorem 8. Let θk = 2
k+2 , αk = 2

k+1 , k ≥ 0 or αk+1 = θk+1 =

√
θ4k+4θ2k−θ

2
k

2 , k ≥ 0. For any
u ∈ Ω2, we have

Φη(u)− Φη(ut) ≤
2Lη‖u− u0‖2

t2
(16)
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Algorithm 5 An Accelerated Proximal Gradient Method for the dual problem: DAPG(u0, t, Lη)

1: Input: the number of iterations t, the initial solution u0, and the smoothness constant Lη
2: Let θ0 = 1, V−1 = 0, Γ−1 = 0, r0 = u0

3: Let αk and θk be two sequences given in Theorem 8.
4: for k = 0, . . . , t− 1 do
5: Compute wk = (1− θk)uk + θkrk
6: Compute vk = ∇ψη(wk), Vk = Vk−1 − vk

αk
, and Γk = Γk−1 + 1

αk

7: Compute rk+1 = Π
Lη/σ2

Vk,Γkφ
(u0) and uk+1 = Π

Lη
−vk,φ(wk)

8: end for
9: Output: ut

Algorithm 6 Homotopy Smoothing (HOPS) for solving dual problem
1: Input: the number of stages m and the number of iterations t per-stage, and the initial solution
u0 ∈ Ω2 and a parameter b > 1.

2: Let η1 = ε0/(bD̃
2)

3: for s = 1, . . . ,m do
4: Let us = DAPG(us−1, t, Lηs)
5: Update ηs+1 = ηs/b
6: end for
7: Output: um

3.2 HOPS for the Dual Problem

Similar to primal problem, we can also develop the HOPS for dual problem, which is presented in
Algorithm 6. A convergence can be established similarly by exploring a local error bound condition
on Φ(u). To present the convergence result, we make the following assumptions, which are similar
as the primal problem.

Assumption 9. For a concave maximization problem (15), we assume (i) there exist u0 ∈ Ω2 and
ε0 ≥ 0 such that maxu∈Ω2

Φ(u) − Φ(u0) ≤ ε0; (ii) let ψ(u) = minx∈Ω1
〈A>u, x〉 + g(x), where

g(x) is a convex function; (iii) There exists a constant D̃ such that maxx∈Ω1 ω(x) ≤ D̃2/2.

Let Ω̃∗ denote the optimal solution set of (15). For any u ∈ Ω2, let u∗ denote the closest optimal
solution in Ω̃∗ to u, i.e., u∗ = arg minv∈Ω̃∗

‖v − u‖2. We denote by L̃ε the ε-level set of Φ(u) and

by S̃ε the ε-sublevel set of Φ(u), respectively, i.e.,

L̃ε = {u ∈ Ω2 : Φ(u) = Φ∗ − ε}, S̃ε = {u ∈ Ω2 : Φ(u) ≥ Φ∗ − ε} (17)

A local error bound condition is also imposed.

Definition 10 (Local error bound). A function Φ(u) is said to satisfy a local error bound condition if
there exist θ̃ ∈ (0, 1] and c̃ > 0 such that for any u ∈ S̃ε

dist(u, Ω̃∗) ≤ c̃(Φ∗ − Φ(u))θ̃ (18)

Theorem 11. Suppose Assumption 9 holds and Φ(u) obeys the local error bound condition. Let

HOPS for dual problem run with t = O
(

2bc̃D̃‖A‖+
ε1−θ̃

)
≥ 2bc̃D̃‖A‖+

ε1−θ̃
iterations for each stage, and

m = dlogb(
ε0
ε )e. Then

Φ∗ − Φ(um) ≤ 2ε.

Hence, the iteration complexity for achieving an 2ε-optimal solution is 2bc̃D̃‖A‖+
ε1−θ̃

dlogb(
ε0
ε )e in the

worst-case.

The above theorem can be proved similarly as Theorem 5.
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Algorithm 7 Primal-Dual Homotopy Smoothing (PD-HOPS) for solving (1)
1: Input: the number of stages m, initial solutions x0 ∈ Ω1, u0 ∈ Ω2 and a parameter b > 1.
2: Let ε1 = ε0

b , µ1 = ε1
D2 , η1 = ε1

D̃2

3: for s = 1, . . . ,m do
4: for k = 0, 1, . . . , do
5: Update the sequence of xk+1 as in Algorithm 1 starting from xs−1

6: Update the sequence of uk+1 as in Algorithm 5 starting from us−1

7: Check occasionally if F (xk+1)− Φ(uk+1) ≤ 2(εs + ε); break the loop if it is true
8: end for
9: Update xs = xk+1 and us = uk+1

10: Update εs+1 = εs/b, µs+1 = µs/b and ηs+1 = ηs/b
11: end for
12: Output: (xm, um)

3.3 Primal-Dual HOPS

As mentioned before, we can use the duality gap F (xs) − Φ(us) as a certificate to monitor the
progress of optimization to address the problem of detecting the number of iterations per-stage t. We
describe the details in Algorithm 7. Following the analysis as in the proof of Theorem 5, when the
number of iterations in the s-th epoch denoted by ts satisfies ts ≥ max{ 2bcD‖A‖

ε1−θ
, 2bc̃D̃‖A‖+

ε1−θ̃
}, we

can have F (xs)− F∗ ≤ ε+ εs and Φ∗ − Φ(us) ≤ ε+ εs, so that

F (xs)− Φ(us) ≤ 2(ε+ εs) (19)

Hence, as long as the above condition satisfies, we restart the next stage. Then with at most
m = dlogb(ε0/ε)e epochs we have

F (xm)− Φ(um) ≤ 2(ε+ εm) ≤ 4ε. (20)

4 Experimental Design

We conduct experiments for solving three problems: (1) an `1-norm regularized hinge loss for linear
classification on the w1a dataset; (2) a total variation based ROF model for image denoising on the
Cameraman picture; (3) a nuclear norm regularized absolute error minimization for low-rank and
sparse matrix decomposition on a synthetic data. The three problems are discussed in details below.

• Linear Classification: In linear classification problems, the goal is to solve the following
optimization problem:

min
x∈Rd

1

n

n∑
i=1

`(x>ai, yi) + λr(x)

where (ai, yi), i = 1, 2, . . . , n denote pairs of and label of training data, `(x>ai, yi) is loss
function, r(x) is regularizer, and λ is regularization parameter. In our experiment, we use
the hinge loss (a non-smooth function) `(zy) = max(0, 1− zy) = maxα∈[0,1] α(1− zy)
for loss function and the `1-norm for regularizer:

min
x∈Rd

F (x) ,
1

n

n∑
i=1

max
ui∈[0,1]

ui(1− yia>i x) + λ‖x‖1 (21)

We first write (21) into the following equivalent minimax formulation

min
x∈Rd

max
u∈[0,1]n

u>Ax+
u>1

n
+ λ‖x‖1 (22)

1This could be a general norm.
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where matrix A = − 1
n (y1a1, y2a2, . . . , ynan)> and 1 is a vector of all ones. Thus, f(x) =

maxu∈[0,1]n u
>Ax+ u>1

n and g(x) = λ‖x‖1. To apply Nesterov’s smoothing technique,
we construct the following smoothed function

fµ(x) = max
u∈[0,1]n

u>Ax+
u>1

n
− µ

2
‖u‖22 (23)

We construct the experiment on the w1a dataset, which contains 2, 477 training examples
and 300 features. We fix the regularization parameter λ = n−1.

• Image Denoising: For total variation (TV) based image denoising problem, we consider
the following ROF model:

min
x

∫
Ω

|∇x|+ λ

2
‖x− h‖22, (24)

where h is the observed noisy image, Ω ⊂ Rm×n is the image domain,
∫

Ω
|∇x| is the TV

regularization term, and λ is the trade-off parameter between regularization and fidelity.
Following the ROF setting in [1], we obtain the following discrete version:

min
x∈X

F (x) , ‖∇x‖1 +
λ

2
‖x− h‖22. (25)

where X = Rmn is a finite dimensional vector space, ∇x ∈ Y and Y = X × X . The
discrete gradient operator∇x is defined as following that has two components:

(∇x)1
i,j =

{
xi+1,j − xi,j if i < m

0 if i = m

(∇x)2
i,j =

{
xi,j+1 − xi,j if j < n

0 if j = n,

and ‖∇x‖1 is defined as

‖∇x‖1 =
∑
i,j

|(∇x)i,j | =
∑
i,j

√
((∇x)1

i,j)
2 + ((∇x)2

i,j)
2.

According to [1], we have the minimax formulation of ROF model as

min
x∈X

max
u∈Ω2

−〈x, divu〉+
λ

2
‖x− h‖22 (26)

where Ω2 = {u : u ∈ Y, ‖u‖∞ ≤ 1}, ‖u‖∞ = maxi,j
√

(u1
i,j)

2 + (u2
i,j)

2, and divu is the

discrete divergence operator [1]. Thus, f(x) = maxu∈Ω2
−〈x, divu〉 and g(x) = λ

2 ‖x−h‖
2
2.

By using Nesterov’s smoothing technique, we have the following smoothed function

max
u∈Ω2

−〈x, divu〉 − µ

2
‖u‖22. (27)

In our experiment, we use Cameraman picture of size 256 × 256 with additive zero mean
Gaussian noise with standard deviation σ = 0.05 and we set λ = 20.

• Matrix Decomposition: In low-rank and sparse matrix decomposition problem, suppose
given a data matrix O ∈ Rm×n, we aim to decompose it as

O = X + E

where X ∈ Rm×n is a low-rank matrix, and E ∈ Rm×n represents errors and it is sparse.
We use nuclear norm regularized absolute error minimization:

min
X∈Rm×n

F (X) = ‖X‖∗ + λ‖E‖1

s.t. O = X + E

8



where ‖X‖∗ =
∑
i σi(X) denotes the nuclear norm of matrix X , i.e., the summation of

singular values of matrix X , and ‖E‖1 =
∑
ij |Eij | denotes the `1-norm of E. The above

formulation is equavilent to

min
X∈Rm×n

F (X) = ‖X‖∗ + λ‖O −X‖1 (28)

We first write (28) into the following equivalent minimax formulation

min
X∈Rm×n

max
‖U‖∞≤1

−λ〈X,U〉+ λ〈O,U〉+ ‖X‖∗ (29)

where U ∈ Rm×n and ‖U‖∞ = maxij |Uij |. Thus, f(X) = max‖U‖∞≤1−λ〈X,U〉 +
λ〈O,U〉 and g(X) = ‖X‖∗. To apply Nesterov’s smoothing technique, we consider the
following smoothed function

fµ(X) = max
‖U‖∞≤1

−λ〈X,U〉+ λ〈M,U〉 − µ

2
‖U‖2F (30)

We set the regularization parameter λ = (max{m,n})−0.5. We conduct experiment on
a synthetic data with m = n = 100. To generate the corrupted matrix O ∈ Rm×n, we
first obtain two orthogonal matrices S1 ∈ Rm×k and S2 ∈ Rn×k (k = 10) by Gaussian
distribution. The low rank matrix X can be calculated by X = S1S

>
2 . Then we randomly

add Gaussian noise to 10% elements of X and obtain the corrupted matrix O.

We compare HOPS-D, HOPS-F and PD-HOPS with PD, APG-D and APG-F in our experiments. To
make fair comparison, we stop each algorithm when the optimality gap is less than a given ε and count
the number of iterations and the running time that each algorithm requires. We set ε = 10−4, 10−5

for linear classification problem, and ε = 10−3, 10−4 for other two problems. For APG, we use the
backtracking trick to tune Lµ. For HOPS, we tune the number of iterations t in each epoch among
several values in {10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 1000} and the parameter b among
{1.2, 2, 2.5, 3, 3.5, 4, 5, 10, 25}, and report the best results. We also tune the values of parameters σ
and τ and report the best results for PD.
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