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A Sub-gaussian random vector

In our analysis, we make use of some useful properties of sub-gaussian random variables, which are
defined by the following equivalent properties. More discussions on this topic can be found in [1].
Lemma A.1 ([1]). The sub-gaussian norm of X is denoted by ‖X‖ψ2

,

‖X‖ψ2 = sup
p≥1

p−1/2(E|X|p)1/p.

Every sub-gaussian random variable X satisfies:

(1) P (|X| > t) ≤ exp(1− ct2/‖X‖2ψ2
) for all t ≥ 0;

(2) (E|X|p)1/p ≤ ‖X‖ψ2

√
p for all p ≥ 1. In particular, Var(X) ≤ 2‖X‖2ψ2

.

(3) Consider a finite number of independent centered sub-gaussian random variables Xi. Then∑
iXi is also a centered sub-gaussian random variable. Moreover,

‖
∑
i

Xi‖2ψ2
≤ C

∑
i

‖Xi‖2ψ2

We say that a random vector X ∈ Rn is sub-gaussian if the one-dimensional marginals 〈X,x〉 are
sub-gaussian random variables for all x ∈ Rn.

We will also see the square of sub-gaussian random variables, the following lemma shows it will be
sub-exponential. A random variable is sub-exponential if the following equivalent properties hold
with parameters Ki > 0 differing from each other by at most an absolute constant factor.

P (|X| > t) ≤ exp(1− t/K1) for all t ≥ 0; (A.1)

(E|X|)1/p ≤ K2p for all p ≥ 1; (A.2)
E exp(X/K3) ≤ e. (A.3)

Lemma A.2 ([1]). A random variable X is sub-gaussian if and only if X2 is sub-exponential.
Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2ψ2

We have a Bernstein-type inequality for independent sum of sub-exponential random variables.
Lemma A.3 ([1]). Let X1, · · · , XN be independent centered sub-exponential random variable, and
M = maxi ‖Xi‖ψ1 . Then for every a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

P

(∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

[
−cmin

(
t2

M2‖a‖22
,

t

M‖a‖∞

)]
where c > 0 is an absolute constant.
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B Proof of Theorem 1

To prove Theorem 1, we work with the elementwise expansion. We use c to represent any constant
that does not depend on the parameters, and its value can change from line to line. For i ∈ Ck, j ∈ C`,
recall that Wi is sub-gaussian random vector with mean 0, covariance σ2

kI and sub-gaussian norm
bounded by b. We have

‖Yi − Yj‖22 = ‖µk − µ`‖22 + 2
(Wi −Wj)

T

√
p

(µk − µ`) +
‖Wi −Wj‖22

p
(B.1)

As Wi and Wj are independent, Wi −Wj has mean 0 and covariance (σ2
k + σ2

` )I .

Define

βij = ‖Wi −Wj‖22/p− (σ2
k + σ2

` ),

αij = (Wi −Wj)
′(µk − µ`)/

√
p.

Hence Eβij = 0. By the Lipschitz continuity of f ,

|Kij − K̃ij | ≤ 2C0|βij + 2αij | (B.2)

By Lemma A.1-(3), αij is also sub-gaussian, with sub-gaussian norm upper bounded by 2bd2k`C/p,
for some C > 0. Then by Lemma A.1-(1), ∃C1 > 0 s.t.

P

(
|αij | ≥ c

√
log p

p

)
≤ p−C1c

2

(B.3)

βij =

p∑
d=1

(W
(d)
i −W (d)

j )2/p− (σ2
k + σ2

` ). (B.4)

To bound βij , note each summand in Eq. (B.4) is a squared sub-gaussian random variable, thus is

a sub-exponential random variable by Lemma A.2. By Lemma A.3 with t = c
√

log p
p , we see that

with a = (1, . . . , 1)/p, min
(
c2 t2

M2‖a‖22
, c t
M‖a‖∞

)
= min

(
c2 log p
M2 , c

√
p log p
M

)
≥ c′ log p for large

enough p. Thus ∃C2 > 0 such that for large enough p,

P

(
|βij | ≤ c

√
log p

p

)
≥ 1− p−C2c

2

(B.5)

By union bound, for some ρ > 0, with probability at least 1− n2p−ρc2 ,

sup
i,j∈I

|Kij − K̃ij | ≤ c

√
log p

p
.

C Proof of Lemma 1

Define a diagonal matrix D where Dii = f(σ2
k), if i ∈ Ck and 0 if i ∈ O. Write K̃0 = K̃ − I +D2,

which is basically replacing the diagonal of K̃ to make it blockwise constant. By the fact f(d2k` +

σ2
k + σ2

` ) = f(d2k`)f(σ2
k)f(σ2

` ), K̃0 has the decomposition K̃0 = DZBZTD where B ∈ Rr×r and
Bk` = f(d2k`). In fact, B is exactly the Gaussian kernel matrix generated by {µi}ri=1 centers, and is
strictly positive semi-definite when the scale parameter η 6= 0 and centers are all different. Hence K̃0

is rank r.

λr(DZBZ
TD) = λr(B

1/2ZTD2ZB1/2) = λr(BZ
TD2Z)
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The first equality uses the fact that XXT and XTX has the same set of eigenvalues. The second
step uses the fact that B is full rank, since all clusters have distinct means. Now B and ZTD2Z are
both r × r positive definite matrices. So the rth eigenvalue is the smallest eigenvalue. Now we use,
λmin(BZTD2Z) ≥ λmin(B)λmin(ZTD2Z) and have

λr(K̃0) ≥ λr(ZTD2Z)λr(B) ≥ n

r
λmin(B) ·min

k

(
f(σ2

k)
)2
.

Then λr(K̃0) = Ω(nr ). On the other hand, ‖I −D2‖2 ≤ maxk(1− f(2σ2
k)). Let λr(K̃), λr+1(K̃)

be the rth and r + 1th eigenvalue of K̃, by Weyl’s inequality,

λr(K̃) ≥ λr(K̃0)−max
k

(1− f(2σ2
k)) = Ω(

n

r
λmin(B))

λr+1(K̃) ≤ max
k

(1− f(2σ2
k)) = O(1) (C.1)

Putting pieces together,

λr(K̃)− λr+1(K̃) ≥ n

r
λmin(B) ·min

k

(
f(σ2

k)
)2 − 2 max

k
(1− f(2σ2

k)) = Ω
(n
r
λmin(B)

)
.

D Proof of Lemma 2

Proof. First note that X̂ is the optimal solution of (SDP-1), so 〈K, X̂〉 ≥ 〈K,X0〉. Hence
〈K − K̃, X̂ −X0〉 ≥ 〈K̃,X0 − X̂〉.
Let a := mink f(2σ2

k), b := maxk 6=` f(d2k` + σ2
k + σ2

` ) and γmin := a− b, we have

〈K̃,X0 − X̂〉 =
∑
k

∑
i∈C̃k

∑
j∈C̃k

f(2σ2
k)(1− X̂ij)−

∑
` 6=k

∑
j∈C̃`

f(d2k` + σ2
k + σ2

` )X̂ij


≥
∑
k

∑
i∈C̃k

a ∑
j∈C̃k

(1− X̂ij)− b
∑
` 6=k

∑
j∈C̃`

X̂ij


≥
∑
k

∑
i∈C̃k

a ∑
j∈C̃k

(1− X̂ij)− b

n
r
−
∑
j∈C̃k

X̂ij


≥ γmin

∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij)

(D.1)

On the other hand, by the fact that X̂ij ≥ 0 and row sum is n/r,

‖X0 − X̂‖1 =
∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij) +
∑
` 6=k

∑
j∈C̃`

X̂ij


=
∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij) +

n/r − ∑
j∈C̃k

X̂ij


≤ 2

∑
k

∑
i∈C̃k

∑
j∈C̃k

(1− X̂ij)

(D.2)

Equations (D.1) and (D.2) gives us:

‖X0 − X̂‖1 ≤
2

γmin
〈K̃,X0 − X̂〉 ≤

2〈K − K̃, X̂ −X0〉
γmin
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E Proof of Theorem 2

By Lemma 2,

‖X0 − X̂‖1 ≤
2〈K̃,X0 − X̂〉

γmin
≤ 2〈K − K̃, X̂ −X0〉

γmin

Divide the inner product into inlier part and outlier part, and note that 0 < |Kij − K̃ij | < 1,∀i, j.
By Theorem 1, w.p. at least 1− n2p−ρc2 , we have

〈K − K̃, X̂ −X0〉

=
∑

(i,j)∈I×I

(Kij − K̃ij)(X̂ij − (X0)ij) +
∑

(i,j)∈R

(Kij − K̃ij)(X̂ij − (X0)ij)

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

(X̂ij − (X0)ij)(Kij − K̃ij)

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

X̂ij(Kij − K̃ij)−
∑

(i,j)∈R

(X0)ij(Kij − K̃ij)

≤‖X̂ −X0‖1 · ‖KI×I − K̃I×I‖∞ +
∑

(i,j)∈R

X̂ij +
∑

(i,j)∈R

(X0)ij

≤C

√
log p

p
‖X0 − X̂‖1 +

4mn

r

Thus, (
γmin − 2C

√
log p

p

)
‖X̂ −X0‖1 ≤

4mn

r

When
√

log p
p = o(γmin), rearranging terms gives

‖X0 − X̂‖1 ≤
4mn
r

γmin − C
√

log p
p

≤ 4mn

rγmin

(
1 +

C ′

γmin

√
log p

p

)
= O

(
mn

rγmin

)

F Davis-Kahan Theorem

Theorem F.1 ([2]). Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥
· · · ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p and assume that min(λr−1 − λr, λs−1 − λs) > 0, where
λ0 := ∞ and λp+1 := −∞. Let d := s − r + 1, and let V = (vr, vr+1, · · · , vs) ∈ Rp×d and
V̂ = (v̂r, v̂r+1, · · · , v̂s) ∈ Rp×d have orthonormal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j ,
for j = r, r + 1, · · · , s. Then there exists an orthogonal matrix Ô ∈ Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2‖Σ̂− Σ‖F

min(λr−1 − λr, λs−1 − λs)
.

G Proof of Lemma 3

We prove the result for k-means on X̂ . Let Û be the top r eigenvectors of X̂ , U ∈ Rn×r be the top

r eigenvector of X0, then by construction, it can be written as U =

[
UI

UO

]
. Let ν ∈ Rr×r be the

population value of the eigenvector corresponding to each cluster, U = Zν. U is a unit basis so we
know I = UTU = νTZTZν = n

r ν
T ν. So νT ν = r

nIr.
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Define C = {M ∈ Rn×r : M has no more than r unique rows}. Then minimizing the k-means
objective for Û is equivalent to

min
{m1,··· ,mr}⊂Rr

∑
i

min
g
‖ûi −mg‖22 = min

M∈C
‖Û −M‖2F

So C = [c1, · · · , cn] = arg minM∈C ‖Û −M‖2F and ‖C − Û‖ ≤ ‖ZνO − Û‖. ci is the center
assigned to point i by running k-means on Û .

When i, j ∈ I, Zi 6= Zj ,

‖Ziν − Zjν‖ =‖(Zi − Zj)ν‖ ≥
√

2 min
x:‖x‖2=1

√
xT νT νx =

√
2r

n

So

‖ci − ZjνO‖2 ≥ ‖Ziν − Zjν‖ − ‖ci − ZiνO‖ ≥
√

2r

n
−
√

r

2n
=

√
r

2n
(G.1)

Therefore when i, j ∈ I and Zi 6= Zj , ‖ci − ZiνO‖ <
√

r
2n ⇒ ‖ci − ZiνO‖2 < ‖ci − ZjνO‖2,

which means node i is correctly clustered.

Now we bound the cardinality ofM.

|M| ≤ 2n

r

∑
i∈I
‖ci − ZiνO‖2F =

2n

r
‖CI − UIO‖2F

≤ 2n

r
(‖CI − ÛI‖F + ‖ÛI − UIO‖F )2

‖CI − ÛI‖2F = ‖Û − C‖2F − ‖CO − ÛO‖2F
≤ ‖Û − C‖2F ≤ ‖Û − UO‖2F

Therefore,

|M| ≤ 2n

r
(‖Û − UO‖F + ‖ÛI − UIO‖F )2 ≤ 8n

r
‖Û − UO‖2F

For k-means procedure on K, note that K̃ is blockwise constant except for the diagonals. It can be
shown that the top r eigenvectors of K̃ are also piecewise constant. The rest of the analysis is similar
to that of X̂ .

H Proof of Corollary 1

Proof. Denote by d0 the distance between clusters, α = f(2σ2), β = f(d20 + 2σ2), hence γmin =

α−β. Then K̃ has the form (α−β)X0+βE+(1−α)I , and λr(K̃) ≥ γminn/r, since βE+(1−α)I
is positive semidefinite.

On the other hand, from Lemma 1 and Eq. (C.1), λr+1(K̃) ≤ 1− f(2σ2) ≤ 1. Hence λr − λr+1 ≥
n
r γmin − 1. By Lemma 3 the misclassification rate of K-SVD becomes:

|Mksvd| ≤ C
n

r

(
23/2‖K̃ −K‖F
λr(K̃)− λr+1(K̃)

)2

≤ Cn
r

max
{
n
√

log p
p ,
√
mn
}

n
r γmin


2

≤ max

(
OP

(
mr

γ2min

)
, OP

(
nr log p/p

γ2min

))
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