
A A Demonstration of Gromov’s Embedding

We now present a practical demonstration of Gromov’s embedding applied to a dataset. Figure 1 is a
720px by 960px .bmp image that visually looks like a tree. Each black pixel is interpreted as a point,
and the collection of all 3798 points is endowed with the Euclidean distance. The resulting metric
space is treelike with diameter 1 and hyperbolicity 0.0977. We take a dense subsample X consisting
of 500 points from this space, choose a point p that maximizes ‖dX − tX,p‖∞, and compute the
Gromov embedding with respect to p. By our stability result (Theorem 6), the result of applying the
Gromov embedding to the full dataset is faithfully represented by first taking such a subsample.

Because the data is treelike to begin with, we obtain ‖dX − tX,p‖∞ = 0.1732. For our upper bound,
we use Inequality 2 from Theorem 7 and obtain 0.8686. In particular, the optimal ε obtained in
Inequality 2 was 0.0142, and the corresponding covering number was NX(ε) = 71. Notice that
without the stability and covering number bounds obtained in our work, one would be forced to use
the bound in Gromov’s embedding theorem (Theorem 3)—and due to the fact that there are 3798
points in the data, Gromov’s bound of 1.2591 performs worse than even the trivial diameter bound.

Quantity Value
Diameter 1

Hyperbolicity 0.0977
‖dX − tX,p‖∞ 0.1732

Number of Points 3798
Gromov’s Upper Bound 1.2591

Optimal ε 0.0142
NX(ε) 71

Our Upper Bound 0.8686

Figure 1: An image of a tree, with tabulated values of results obtained by applying Gromov’s
embedding, as described in §A. Notice that our upper bound performs significantly better than
Gromov’s bound in approximating the true additive distortion ‖dX − tX,p‖∞. We remark that it has
been claimed in [1] that Gromov’s embedding is a 3-approximation to the optimal tree representation.

Remark 13. The supplementary material contains additional demos in Matlab format. The script
test_all.m runs the computations described above on three images of trees. Two of these images
depict trees with large hyperbolicity, and we have added them to illustrate situations where our bounds
do not perform better than the trivial diameter bound.
Remark 14. It is easy to produce examples where the Gromov-style bound performs arbitrarily
worse than our covering number upper bound. For an example, let (V, dV ) be the space consisting of
two points at distance 16, let (Ln, dLn) be the line metric space consisting of n equally spaced points
with diameter 1

16 , and let Xn := V × V × V × Ln be the space endowed with the following metric:

dXn

(
(v1, v2, v3, l), (v

′
1, v
′
2, v
′
3, l
′)
)

:= max
(
dV (v1, v

′
1), 12dV (v2, v

′
2), 14dV (v3, v

′
3), dLn

(l, l′)
)
,

where v1, v′1, v2, v
′
2, v3, v

′
3 ∈ V, l, l′ ∈ Ln.

Then by the proof of Claim 1 in Proposition 11, one can verify that ult(Xn, dXn) ≈ 1
32 , and that

Gromov’s bound is Gn ≈ 1
32 log2(16n), which grows without bound as n→∞. On the other hand,

our covering number bound is never worse than Bn ≈ 4 + 1
32 log2(16) (using ε = 1 for NXn

(ε)),
which is a constant!

B Proofs

B.1 Proof of Lemma 2

Proof of Lemma 2. Fix ε ∈ (0,diam(X)], and let S be an ε-net in X . Note that S ⊂
B(s, 2 diam(X)) for any s ∈ S. By applying the doubling property once, this ball can be cov-
ered by 2d balls of half the radius, and in particular, by applying the doubling property k times, this
ball can be covered by 2kd balls of radius 2 diam(X)

2k
. In particular, we may pick k to be the smallest

integer such that:
2 diam(X)

2k
≤ ε

2
.
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Then we must have:
2 diam(X)

2k−1
≥ ε

2
.

And so 2k ≤ 8 diam(X)
ε . Thus the original ball containing Y is now contained in 2kd balls of radius

≤ ε
2 . Since any two points in S are at least ε-separated by definition, it follows that each ball can

contain only one point of S. Thus we have:

|S| ≤ 2kd ≤
(

8 diam(X)

ε

)d
.

B.2 Proof of Theorem 4

Proof of Theorem 4. First we prove the inequality, and subsequently we construct a sequence of
metric spaces for which the error term asymptotically matches the Gromov-style bound.

Proof of the inequality. Let δ = ult(X, dX). First we claim that for any sequence of 2k + 1 points,
we have:

max
1≤i≤2k

dX(xi, xi+1) ≥ dX(x1, x2k+1)− kδ.

To see this, we proceed by induction. Notice that for k = 1, the claim holds by the definition of
ult(X, dX). Let k ∈ N, and suppose the claim holds for k. By the base case, we obtain:

dX(x1, x2k+1+1) ≤ max
(
dX(x1, x2k+1), dX(x2k+1, x2k+1+2k)

)
+ δ

But by the induction step, we have:

dX(x1, x2k+1) ≤ max
1≤i≤2k

dX(xi, xi+1) + kδ

dX(x2k+1, x2k+1+2k) ≤ max
2k+1≤i≤2k+1

dX(xi, xi+1) + kδ

Thus, taking the maximum of the two, we obtain:

dX(x1, x2k+1+1) ≤ max
1≤i≤2k+1

dX(xi, xi+1) + (k + 1)δ.

This proves the claim. Next, let x, x′ ∈ X . Let c ∈ CX(x, x′). Write c = {x = x1, . . . , xp = x′}.
Note that if c contains any repetition, i.e. if there exist i < j ≤ p with xi = xj , then we may replace
c by c′ = {x1, . . . , xi, xj+1, . . . , xp}. Thus by reindexing if necessary, we obtain a chain of distinct
elements c′ =

{
x = x′1, . . . , x

′
q = x′

}
, with q < p. Also note that costX(c′) ≤ costX(c). Next let

k be the greatest integer such that 2k ≤ n. Then we have n ≤ 2k+1 ≤ 2n. Since c′ has length q ≤ n,
we can define:

c̄ =
{
x′1, . . . , x

′
q, x
′
q, . . . , x

′
q

}
,

where c̄ is obtained from c′ by padding copies of the endpoint x′q until c̄ has length 2k+1 + 1. Notice
that costX(c̄) = costX(c′).

By applying the claim to c̄, we obtain costX(c) ≥ costX(c̄) ≥ dX(x, x′)− (k + 1)δ. Since c was
arbitrary, we also have:

min
c∈C(x,x′)

costX(c) = uX(x, x′) ≥ dX(x, x′)− (k + 1)δ.

Since x, x′ were also arbitrary, we obtain:

max
x,x′∈X

(
dX(x, x′)− uX(x, x′)

)
≤ (k + 1)δ ≤ log2(2n) · ult(X, dX). �

Proof of tightness. We demonstrate tightness by constructing a sequence of finite metric spaces via a
snowflake metric transform that realizes the logarithmic error rate. Recall that a metric transform is a
continuous, monotone increasing, concave function Ψ : R+ → R+ with Ψ(0) = 0; in particular, Ψ
maps metrics to metrics.
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For any metric space (X, dX), we let Ψ(X) denote (X,Ψ(dX)). For spaces X and transforms Ψ(X)
such that ult(Ψ(X)) 6= 0, we define the following quantity:

R(Ψ) :=
‖Ψ(dX)−Ψ(uX)‖∞

ult(Ψ(X))
.

For any x, x′ ∈ X , we also define:

d
(1)
X (x, x′) := min

{
max

(
dX(x, z), dX(z, x′)

)
: z ∈ X

}
.

This leads to the following reformulation of ult(X):

Claim 4.
ult(X) = ‖dX − d(1)X ‖∞.

Proof. If ult(X) = 0, then it follows from the definitions that dX = d
(1)
X . Suppose ult(X) > 0.

0 < ult(X) = max
x,x′,x′′

{dX(x, x′)−max(dX(x, x′′), dX(x′′, x′))}

= max
x,x′

max
x′′
{dX(x, x′)−max(dX(x, x′′), dX(x′′, x′))}

= max
x,x′

{
dX(x, x′)−min

x′′
max(dX(x, x′′), dX(x′′, x′))

}
= max

x,x′

{
dX(x, x′)− d(1)X (x, x′)

}
= ‖dX − d(1)X ‖∞.

This shows the equality and proves the claim. �

Let 0 < ε� 1, where we write� to mean that ε is much smaller than 1. Consider the snowflake
metric transform Ψε(α) = αε, see [9]. In the limit, when ε → 0, all non-zero distances would
become 1. That is, limε↓0 Ψε(X) would be equal to the metric space with underlying set X and the
discrete metric (i.e. the metric attaining only the values 0 and 1). Note that the discrete metric is
actually an ultrametric.

Next let X be a finite set with n > 1 points, and let E be a subset of X ×X such that G = (X,E)
is a connected graph. Endow G with edge weights 0 (for absence of an edge) or 1 (for presence of an
edge). Let (X, dX) represent the finite metric space with n points arising from computing the graph
(or path length) distance on G. Specifically,

dX(x, x′) := min{|c| : c ∈ CX(x, x′)},

where CX(x, x′) is the set of all chains connecting x and x′ over edges in the graph G. In this case,
uX , the SLHC output ultrametric, will be 1 between different points. Also note that dX takes integer
values, and for any two points x, x′, we have d(1)X (x, x′) = ddX(x,x′)

2 e. Such a space will be called a
graph metric space. In particular, we are interested in the line graph metric spaces Xn, n ∈ N. We
define each Xn to be the graph metric space arising from the connected line graph having (n+ 1)
points x0, . . . , xn as vertices, and edges (xi, xi+1) for each 0 ≤ i ≤ n− 1.

For n ≥ 2, fix εn = 1
log2(2n)

and consider the line graph metric space X2n on (2n+ 1) points. Note

that diam(X2n) = 2n for each n. Next let X2n = Ψεn(X2n). Notice that the numerator of R(Ψεn)
is now:

max
α∈[0,2n]

(αεn − 1εn) = (2n)εn − 1.

By applying the reformulation of ultrametricity proved above, the denominator of R(Ψεn) becomes:

max
α∈[0,2n]

(αεn −
⌈α

2

⌉εn
) ≈ max

α∈[0,n]
(αεn −

(α
2

)εn
) = (2n)εn(1− 2−εn) =

(
2n

2

)εn
(2εn − 1).
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Notice that equality holds above for even values of n. The expression for R(Ψεn) now becomes:

R(Ψεn) ≈ ((2n)εn − 1)2εn

(2n)εn(2εn − 1)
=

(2n)εn − 1

(2n)εn
· 2εn

2εn − 1
=
eεn log 2n − 1

eεn log 2n
· 2εn

eεn log 2 − 1

=
e

1
log 2n − 1

e
1

log 2n

· 2εn

e
log 2

log2(2n) − 1

Using a Taylor expansion, we see that for large n this becomes ≈
1

log 2n

log 2
log2(2n)

= log2(2n). �

B.3 Proof of Theorem 5

Proof of Theorem 5. Let x, x′ ∈ X be such that:

|uX(x, x′)− uAX(x, x′)| = |uX(x, x′)− uA(η(x), η(x′))| = ‖uX − uAX‖∞.
Next let c∗ ∈ CA(η(x), η(x′)) be an optimal chain, i.e. a chain over points inA such that costA(c∗) =
uA(η(x), η(x′)). Write c∗ = {η(x) = x1, x2, . . . , xn = η(x′)}.
Next we define a new chain c′ ∈ CX(x, x′) by setting c′ = {x = x0, x1, . . . , xn, xn+1 = x′}, i.e. c′
is just the composed chain c′ = x ◦ c∗ ◦ x′. Now we have:

uX(x, x′) ≤ costX(c′) = max
0≤i≤n

dX(xi, xi+1)

≤ ‖dX − dAX‖∞ + max
0≤i≤n

dAX(xi, xi+1)

Note that dAX(x0, x1) = dX(η(x), η(x)) = 0 and dAX(xn, xn+1) = dX(η(x′), η(x′) = 0, so:

= ‖dX − dAX‖∞ + max
1≤i≤n−1

dAX(xi, xi+1).

By our choice of c∗, each xi ∈ A for 1 ≤ i ≤ n, so we have

= ‖dX − dAX‖∞ + max
1≤i≤n−1

dA(xi, xi+1)

= ‖dX − dAX‖∞ + uAX(x, x′).

Thus we obtain uX(x, x′)− uAX(x, x′) ≤ ‖dX − dAX‖∞.

For the next part of the proof, let c∗ ∈ CX(x, x′) now be an optimal chain over points in X
beginning at x and ending at x′. Write c∗ = {x = x1, . . . , xn = x′}. Then define η(c∗) =
{η(x1), η(x2), . . . , η(xn)}. Note that η(c∗) ∈ CA(η(x), η(x′)). Now we have:

uAX(x, x′) = uA(η(x), η(x′)) ≤ costA(η(c∗)) = max
1≤i≤n−1

dA(η(xi), η(xi+1))

≤ ‖dX − dAX‖∞ + max
1≤i≤n−1

dX(xi, xi+1)

= ‖dX − dAX‖∞ + uX(x, x′).

Thus we obtain uAX(x, x′)−uX(x, x′) ≤ ‖dX − dAX‖∞. Finally we have |uX(x, x′)−uAX(x, x′)| ≤
‖dX − dAX‖∞. By our choice of x, x′ ∈ X , it follows that:

‖uX − uAX‖∞ ≤ ‖dX − dAX‖∞.

B.4 Proof of Theorem 6

Proof of Theorem 6. Let x, x′ ∈ X be such that:

|tX,p(x, x′)− tAX,p(x, x′)| = |tX,p(x, x′)− tA,a(η(x), η(x′))| = ‖tX,p − tAX,p‖∞.

Next let c∗ = {x1 = x, x2, . . . , xn = x′} ∈ CX(x, x′) be a chain over points in X such that
gTX,p(x, x

′) = min1≤i≤n−1 gX,p(xi, xi+1).
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Claim 5. For any xi, xi+1 ∈ c∗, |gX,p(xi, xi+1)− gA,a(η(xi), η(xi+1)| ≤ 3
2‖dX − d

A
X‖∞.

To verify Claim 5, note that:

2gX,p(xi, xi+1) = dX(xi, p) + dX(xi+1, p)− dX(xi, xi+1)

≤ dA(η(xi), a) + dA(η(xi+1), a) + 2‖dX − dAX‖∞ − dX(xi, xi+1)

≤ dA(η(xi), a) + dA(η(xi+1), a) + 3‖dX − dAX‖∞ − dA(η(xi), η(xi+1))

= 2gA,a(η(xi), η(xi+1)) + 3‖dX − dAX‖∞.

Thus gX,p(xi, xi+1)− gA,a(η(xi), η(xi+1)) ≤ 3
2‖dX − d

A
X‖∞. To complete the proof of the claim,

note that we can similarly obtain gA,a(η(xi), η(xi+1))− gX,p(xi, xi+1) ≤ 3
2‖dX − d

A
X‖∞.

Claim 6. |gTX,p(x, x′)− gTA,a(η(x), η(x′))| ≤ 3
2‖dX − d

A
X‖∞.

To prove Claim 6, first note the following consequence of Claim 5:

gTX,p(x, x
′) = min

1≤i≤n−1
gX,p(xi, xi+1) ≤ min

1≤i≤n−1
gA,a(η(xi), η(xi+1)) + 3

2‖dX − d
A
X‖∞

≤ gTA,a(η(x), η(x′)) + 3
2‖dX − d

A
X‖∞. (6)

We now wish to prove an analogous inequality, but with the positions of gTX,p and gTA,a reversed. Let
c′ = {a1 = η(x), a2, . . . , an = η(x′)} ∈ CA(η(x), η(x′)) be a chain such that gTA,a(η(x), η(x′)) =

min1≤i≤n−1 gA,a(ai, ai+1). Next define c′′ = {x1 = x, x2 = a2, x3 = a3, . . . , xn = x′} ∈
CX(x, x′), and note that η(c′′) = c′. Next we observe:

gTA,a(η(x), η(x′)) = min
1≤i≤n−1

gA,a(ai, ai+1) ≤ min
1≤i≤n−1

gX,p(xi, xi+1) + 3
2‖dX − d

A
X‖∞

≤ gTX,p(x, x′) + 3
2‖dX − d

A
X‖∞. (7)

Inequalities 6 and 7 together imply Claim 6. By Claim 6, we have:

|tX,p(x, x′)− tA,a(η(x), η(x′))| = |dX(x, p) + dX(x′, p)− 2gTX,p(x, x
′)

− dA(η(x), a)− dA(η(x′), a) + 2gTA,a(η(x), η(x′))|
≤ |dX(x, p)− dA(η(x), a)|+ |dX(x′, p)− dA(η(x′), a)|

+ 2|gTX,p(x, x′)− gTA,a(η(x), η(x′))|
≤ ‖dX − dAX‖∞ + ‖dX − dAX‖∞ + 3‖dX − dAX‖∞
= 5‖dX − dAX‖∞.

By our choice of x, x′ ∈ X , the result now follows.

B.5 Proof of Claim 1 in Proposition 11

Proof of Claim 1. Recall that V consists of two equidistant points, as in the endpoints of a unit
interval. Let n ∈ N, and let x = (v, l), x′ = (v′, l′), x′′ = (v′′, l′′) ∈ Xn. Suppose first that not all
of these points have the same V coordinate. Without loss of generality, this means we can write
v 6= v′ = v′′. Then we have:

Ψult
Xn

(x, x′, x′′) = dV (v, v′′)− dV (v, v′) = 1− 1 = 0.

Here the first equality holds by the definition of dXn
and because sep(V, dV ) > diam(Ln, dLn

), and
the second equality follows because all points in V are equidistant. Next, suppose that none of the
x, x′, x′′ differ in the V coordinate, i.e. v = v′ = v′′. Then we have:

Ψult
Xn

(x, x′, x′′) = dLn
(l, l′′)−max

(
dLn

(l, l′), dLn
(l′, l′′)

)
≥ 0.

Maximizing over all choices of x, x′, x′′, it follows that ult(Xn, dXn) = ult(Ln, dLn).
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