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A A simple Bayesian distributed system based on S?’G-MCMC

We provide the detailed architecture of the simple Bayesian distributed system described in Section 4}
We put the single-chain and multiple-chain distributed SG-MCMCs into a unified framework. Suppose
there are S servers and W workers, the one with S = 1 corresponds to the single-chain distributed
SG-MCMC, whereas the one with S > 1 corresponds to the multiple-chain distributed SG-MCMC.
The servers and workers are responsible for the following tasks:

e Each worker runs independently and communicates with a specific server. They are respon-
sible for computing the stochastic gradientﬂ of the parameter given by the server. Once the
stochastic gradient is computed, the worker sends it to its assigned server and receive a new
parameter sample from the server.

e Fach server independently maintains its own state vector and timestamp. At the [-th
timestam it receives a stale stochastic gradient VU, () £ VgU(O(l_n yn) from worker
w, updates the state vector X, t0 X(;4.1);, and increments the timestamp, then sends the new
parameter sample 6(; 1), to worker w.

The sending and receiving in the servers and workers are performed asynchronously, enabling
minimum communication cost and latency between the servers and workers. At testing, all the
samples from the servers are collected and applied to a test function. Apparently, the training
time using multiple servers is basically the same as using a single server because the sampling in
different servers is independent. Figure[5|depicts the architecture of the proposed Bayesian distributed
framework. Algorithm 2]details the algorithm on the servers and workers.

Algorithm 2 Asynchronous Distributed SG-MCMC
Server

Output: {xp,...,Xrn}

Initialize x5 € R™;

Send 6y to all assigned workers;

for/=0,1,...,L —1do
Receive a stale stochastic gradient VU(;_r,;, from a worker w.
Update x5, to X(j4-1)5, using VU_7yp. (*)
Send 0 ;1 1)}, to the worker w.

end for

Worker
repeat

Receive 0y, from server s.
Compute VU;;, with a minibatch.
Send VU, to server s.

until stop

SThis is the most expensive part in an SG-MCMC algorithm.
TEach server is equipped with a timestamp because they are independent with each other.
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Figure 5: Architecture of the proposed Bayesian distributed framework. In the multi-server case, the
dash lines on the servers indicate a simple averaging operation for testing, otherwise the servers are
independent. Section[3.3]provides more details.

Database

The update rule (*) of the state vector in Algorithm 2]depends on which SG-MCMC algorithm is
employed. For instance, Algorithm [T]describes the update rule of the SGHMC with a 1st-order Euler
integrator.

B Assumptions

First, following [25]], we will need to assume the corresponding SDE of SG-MCMC to be either
elliptic or hypoelliptic. The ellipticity/hypoellipticity describes whether the Brownian motion is able
to spread over the whole parameter space. The SDE of the SGLD is elliptic, while for other SG-
MCMC algorithms such as the SGHMC, the hypoellipticity assumption is usually reasonable. When
the domain x is on the torus, the ellipticity and hypoellipticity of an SDE guarantees the existence of
a nice solution for the Poisson equation (5). The assumption is summarized in Assumption 2]

Assumption 2. The corresponding SDE of a SG-MCMC algorithm is either elliptic or hypoellipticm

When x is extended to the domain of R? for some integer p > 0, we need some assumptions on the
solution of the Poisson equation (3)). Note (3) can be equivalently written in an integration form [33]]
using Itd’s formula:

I -
 RCSEE: ©

4 W) = vx) — 1 [ Vo) gl

Intuitively, 1/ needs to be bounded if the discrepancy between ngb 1, and ¢ were to be bounded. This is
satisfied if the SDE is defined in a bounded domain [25]]. In the unbounded domain as for SG-MCMC
algorithms, it turns out the following boundedness assumptions on v suffice [17].

Assumption 3. 1) ¢ and its up to 3rd-order derivatives, D", are bounded by a function V),
ie, | D) < CpVPx for k = (0,1,2,3), Cr,px > 0. 2) the expectation of V on {x;;}
is bounded: sup; EVP(x;p,) < oo. 3) V is smooth such that sup,e 1) VP (sx+ (1 —s)y) <
C(VP(x)+ VP (y)), Vx,y,p < max{2py} for some C > 0.

Furthermore, in our proofs the expectation of a function under a diffusion needs to be expanded in a
Taylor expansion style, e.g., Ep(x;) = Zf:o %Eiqﬁ(xo) + 174 £ 4(x0) by using Kolmogorov’s

IThe SDE of the SGLD can be verified to be elliptic. For other SG-MCMC algorithms such as the SGHMC,
the hypoellipticity assumption is usually reasonable, see [25] on how to verify hypoellipticity of an SDE.
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backward equation. To ensure the remainder term 74 g 4(X0) to be bounded, it suffices to make the
following assumption on the smoothness and boundedness of F'(x) [35[17].

Assumption 4. F'(x) is infinitely differentiable with bounded derivatives of any order; and |F(x)| <
A(1 + | x|®) for some integer s > 0 and A > 0.

C Notation

For simplicity, we will simplify some notation used in the proof as follows:

VoUi(0in) £ Vel £ Guy,
VoUi(01) £ VoUi, = Gy,
V(Xin) = i

D Proof of Theorem 2|

In S2G-MCMC, for the [-th iteration, suppose a stochastic gradient with a staleness 7; is used, e.g.,
G(l )~ First, we will bound the difference between G(l )k and the stochastic gradient at the I-th

iteration Gy, by using the Lipschitz property of Gy, with the followmg lemma.
Lemma 8. Let flh = Hth —X(-1)h
by:

E(Gu-ryn — Gun )| = .Hllalx |Li fin] CTh 4+ O(h?), @)
i=l—7

where the expectation is taken over the randomness of the SG-MCMC algorithm, e.g., the randomness
from stochastic gradients and the injected Gaussian noise.

Proof. Note the randomness of Gy, comes from two sources, the injected Gaussian noise and the
stochastic gradient noise. We denote the expectations with respect to these two randomness as E,
and [E,, respectively. The whole expectation thus can be decomposed as E = E¢E,.

Applying the Lipschitz property of G, we have
|E (Gurin = Gun)|| = B¢ (Guorin — Gun) |

< B¢ [[(G—myn = Gin) |
< CE¢ |[(8(—ryn — i) |

-1
< CEc|| Y- (8any) — Opisryn)
i=l—T7
-1
<C Z Ec ||(8¢in) = Ovuyn) ||
i=l—T7;

-1

<C Z E¢ ||%(it1)n — Xin |
i:lle
From the definition of K th-order integrator, i.e., E¢ f(x;,) = eélhf(x(l_l)h) + O(RE+1), if we let

&) = [[xin —xq-1)n|| £ fin s

where x(;_1)y, is the starting point in the /-th iteration, and note that

f(Xa-1)n) =0.
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We have
-1 -1

C > Eclxarnn—xml| £C Y Ecf(xn) (8)
i=l—T i=l—T

<C Z e“ M f(x_1yn) + O(RETY) 9)
i=l—T
-1

<C Y |Lifinlh 4 O(h?) (10)

’L‘:l*‘l‘l

< _rill‘aﬁc \Ci fin| Cmh + O(h?)
1=l—T]

where (I0) is obtained by expanding the exponential operator and the assumption that the high order
terms are bounded. O

Now we proceed to prove Theorem[2] The basic technique follows [17], thus we skip some derivations
for some steps.

Proof of Theorem[Z] Before the proof, let us first define some notation. First, define the operator
AV, for each [ as a differential operator as for any function 1):

AVip 2 (Giry = G1) - Tyt

Second, define the local generator, ﬁl, for an Itd diffusio~n, where the true gradient in is replaced
with the stochastic gradient from the I-th iteration, i.e., £; f(X4) £

(Fitx) -9+ 5 (20007797 ) f0).

for a compactly supported twice differentiable function f, where F} is the same as F but with the full
gradient G, replaced with the stochastic gradient GGy;,. Based on these definitions, we have

El:,CJrAVl.

Following [17], for an SG-MCMC with a Kth-order integrator, and a test function ¢, we have:

E[4)(xin)] = (H + hz:l) Y(Xa-1)n) (11
K
hk & hK+1 ~K+1
+ Z Hﬁl Y(xa—1yn) + O <(K T 1) Ya- 1)h) )
k=2
where I is the identity map. Sum over { = 1,--- , L in (TI)), take expectation on both sides, and use

the relation £; = £ +AV] to expand the first order term. We obtain

L L—-1
> Efp(xin)] = (x0) + Y E[to(xun)]
=1 . =1 ;
hY EILY(xq-1n)] + b Y E[AVIY(xq-1)n)]
=1 =1
K opk &k
+)° o > BIL (X -1yn)]

k=2 =1
pE+1 K+1
+0<<K+ 'ZIEL b M).
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Divide both sides by Lh, use the Poisson equation (3], and reorganize terms. We have:

L
Bl 3 otun) =] = 7 D ElLwx-) (12

- (Bl Gxm)] — o)) - 7 ;E[szwxu—nh)l

L
1=

K k-1 1
-3 st +0 (et s )
k=2

1

According to [17]], the term ), E[ﬁfw(x(l,l)h)] is bounded by ), E[Zl (X (=1)n)]

K+1
=0 (h + R ZEL wul)h) : (13)
Substituting (T3) into (T2)), after simplification, we have: E (£ >, ¢(xin) — @)
1 1
=7, BleGan)] - Y(x0)) = 7 D E[AVIg(xa-1)]
o !
Ca

p—l K 1 _-K hE K+1
ZO< TXZ:E]EEI 1/)(1—1)h> mZEﬁ Ya—1yn

According to the assumption, the term C' is bounded. For term C'y, according to the Cauchy—Schwarz
inequality, we have

1 3
|Ca| = I (G(l—n)h - Glh) EVYa_1yn

S% zz: ‘]E (é(lfn)h - Glh) ']va(zq)h’
S% ; HE (G(l—n)h - Gm) H IEV Y1y
<7 2 ([ (Gomrin = Gun) |+ £ (G~ ) ) w1010

:% Z HE (G(Z—n)h - ém) H IEV Y1y ||
l

Applying (7) from Lemma|[g] we have
1 l
< — .
Cal < 7 El (ir_r}m; 1Ll IV | Cnh)

< max (1Ll max [EV Y| CTh .

As aresult, collecting low order terms, the bias can be expressed as:

E (é > olxin) — ¢>

Cl K ~k+1
—Cy+h Z G0 'LZE Ya—1)n

‘Eé_qzlz

(14)
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As a result, there exists some constant D; independent of (L, h, 7), such that

B - < D1 |

1
:Dl (UL + MlTh + M2hK> 5

k+1
where M, £ max; ||£;]| max; [[EV | C, My 2 S5 FIDT EL, " Yg_1)n- (B3) follows

by substituting the inequality for C'; above. This completes the proof O

E Proof of Theorem

Proof. Similar to the proof of Theorem [2| we first expand E1);;, using the property of Kth-order
integrator as

L L

L
D E@xm) =Y v(Xa—n) +h Y LY(X—1))

=1 =1 =1

K
+hZAvm X(1-1)h +Z 7l Zﬁz (X(@-1)n)
k=2 =

hE+ S K41
+0 ((K—H)' Zﬁz ¢(11)h> .
l

Substituting the Poisson equation (3] into the above equation, dividing both sides by Lk and rear-
ranging related terms arrives

o— ¢— (Ew(th) Y(x0)) (16)
L

1
(]E¢(z yh = Ya—1)n) Z AViba—1yn

Lh

K L

k—1 .
_ZhQL Zﬁllpx(l Dh +O< ,Z K+1 Yu-1)n )
-1

Taking square on both sides, we have there exists some positive constant D, such that

.2 Eprn —vo) | 1
(¢ - ¢>> <D ( LLthQ ) ST ; (Bg—1yn — 1/’(1—1);)2
Ay

Az
2

2 K+1
p2(k=1) - S L WY
k 1~ (I=1h 2K
( LE AVigp- m) +§Z A (Zwawh) +<L(K+1)‘> h

=1

A3 A4 AS
a7

After taking expectation, we have
A N\2
E <¢ - ¢) < C(]EAl + ]EA2 +EA3 +EA4 +EA5)

A is easily bounded by the assumption that ||| < VP < oco. From the proof of Theorem 3 in [17],
As and Ay are also bounded, which are summarized in Lemma 9]
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Lemma 9. The terms EA, and EA,4 are bounded by:

We are left to show a bound for EA5. First we have

. 2
EA3; =E (i Z AVW(th)
= 2
( Z (G I—7) Gm) V- 1)h>
=1

E [(é(i—n)h - Gm) “Vp¥u-1)n (é(j—rj)h - Gjh) ' Vplb(j—mh]

=

th
M= =

7L
1

<.
Il

1y
Using the Cauchy—Schwartz inequality, we have

é XL: XL: B (Giiron = Gan) | [E (Grpn = Gin )| IEV 6 syn | [EV -1y

i:ljfl
TR
(H (G@ o = Gin) |+ [ (Gin = Gan) ) BT 1yn | 1BV -1y

;;;HE (Gooron = Gan )| | (Giorn = G ) | [EZ 06 1yall [EZ 5]

Applying (7) from Lemmal[g] we have
E4; < max IEV12 max (£ fin)? C?r%h2

IA

1

IN

IIMh

Collecting low order terms from the above bounds, we have there exists some constant Dy independent
of (L, h, T), such that
. N2
2(0-9)

S% + Cyh*E max \|IEV1/th||2mlax ||£z|\20272h2

1
SDQ (h + M1T2h2 + M h2K>

- K+1 2 .
where NIy £ max; [EV 4, |” max (C0fin)” 2, Mo 2 B (g 02y Y wn) - This

completes the proof. O

F Proof of Theorem 4

In the proof, we will use the following simple result stated Lemma[I0]

Lemma 10. Ler (M, , My) be a set of independent martingale, i.e, E [M,,|F] = 0, where F
is the filtration generated by M,,. Then we have

N 2 N
(ZMH> F| =Y E[MEF] . (18)
n=1 n=1
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Proof.

N 2 N N

E (ZA@) IF| =E DD MMy|F
n=1 i=1 j=1
N

—E ZM?V + ) E[M|FIE[M;|F]

i

N
Z [(M2|F] .
O

In the following we will omitted the filtration F in the expectation for simplicity. We we now ready
to prove Theorem 4]

Proof. By definition, we have
. . A\ 2
Var (61) =E (é1 — 6 — (Eér - 9))
Substitute (T2) and (16) into the above equation, we have

¢ —Ep = L (E¢(z—1)h —u—1)n)

Lh
1 hk 1 hK
_le:(Al_]EAl)_zk:k!LZ —EAy) - mzl:(/lia—ﬂ*:fh)a
where
Ay £ AVig_1yn
As & L¥_1yn

A & LE gy, -

Take square on both sides, following by expectation, and note that all (4; — EA;) are martingale
for i = 1, 2,3, which allows us to use (I8) from Lemma We have there exists a constant D
independent of (L, h, 7), such that

2
Var <¢L> <D ﬁE (Z (Ep—1yn — 1/}(1—1);1)>
)

h2k 1)

L2ZE (A; — EAy) +Z P ZE — EA,)?

h2K

«KHE%ZE&M@>

2
<D L2h2 (Z Evq_1)n —1/J(l1)h)>

l

By

1 X K
+§ZI:]E(A17EA1)2 Z HD2 ZEA2 WZEA2>.
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According to Lemma([9} B, is bounded by

1

Furthermore, according to the assumptions, both EA3 and EA2 are bounded. The delayed parameter
Texistsin E (A — EA1)2, we have

E(4; — EA;)?
2
=E (AVit_1yn — EAVIYg_1)n)

~ . 2
=E ((G(l—n)h - Gm) “VpYu-1n — E (G(l—n)h - Glh) ' Vpl/f(z—nh)
Expanding the terms, we have there exists a constant D such that

E(A; — EAy)?
- _ 2
<D:E (G(lfn)h “VpYa—1yn —EGq_ryn - pr(zq)h)
2
+ D1E (Gin - Vptu-1yn — EGun - Vptha—1)n)

~ 2
=D\E (G(lfn)h : Vpiﬁ(zq)h) + D1E (Gin - (Vp¥u—1)n — va(lfl)h))2
- 2
<D, <]E HG(Z—TZ)}LH E ||Vp%/1(l—1)h||2 +E||Ginll” E || Vptba—1yn — Vp1/)(1—1)h||2>

-2
<Dysup {E|[Gun [ B 195 + E 16l B [Vpuml* |
According to the assumptions, the above bound is bounded, and does not depend on 7. As a result,
1 2 Dy
ﬁZE(fh —EA)" < T
l

In addition, the bounds for both EA% and EA?% are given in Lemma@, which are higher-order terms
with respect to h, i.e., O (h?5).

Collecting low order terms, we have there exists a constant D independent of (L, h, 7), such that the
variance is bounded by:

G Proof of Theorem
We separate the proof for the bias and MSE, respectively.
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Proof for the bias. According to the definition of q@f, we have

S
ALEDY o, &‘
(e -)
siTT Edr, — 4|
:Sz:?le (L:hs + (Myrh, +M2h§)) (19)
(i i erhs+M2hf)>
<D, (; + 5L (o, +M2hK)) (20)

where T,,, £ max; T}, h,,, = max; hy, (]"1;9[) follows by substituting the bias from Theoremfor each
server into the formula. O

Similarly, for the MSE bound, we have

E(3-¢) =E (Zsj? (4. —¢>)>2

s=1

I
]
3

E( oL, —¢> +Z L JE[¢L —¢} [¢EL]‘—¢3]

ZML*@+Z

V)
Il
-

IA
M«
=i

.~ 0| [Edr, — 4| -

w
Il
—

Substituting the bounds for single chain bias and MSE from Theorem 2]and Theorem 3] respectively,
we have

T? 1 . .
<> 5D (T + (3nr*n? + MghiK))

T,T; 1 1
I T2J D (T + (My7h; + MM)) Dy <T + (MyTh; + Mghf)>
i#] 4 J
52 -5 TT 2 212 2K
<Dy | o+ =g + D (METPh, + MERGY)

0,J
22
SD2<1 S?2—-S 8272

Tt

wwa+m%ﬂ,

where Dy = max{D}, D?}, T, £ max; T}, h,, = max; h;, the last equality collects the low order
terms. This completes the proof.
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H Proof of Theorem [7
Proof. Following the proof of Theorem 6] for the variance, we have

. N2 ST, /s )
E(¢F - E0) =E<Z;(¢LS—E¢LS))
1

s=

E(QBLS—@L) +)° d jE[¢L —E¢L] [¢ -—E¢L]
i#j

KRN

I
M«
e

V)
Il
-

®

E (br, —61.)

I
]«
’ﬂ"ﬂ

Il
-

S

Substituting the variance bound in Theorem@for each server, we have

~ ~ S 2
E (3 ~Ed) SDZ% (L:hs ; )
S

4)2 (T2 I h2K)

I Additional Results

See Figure [6][7[BOTO|TT] The content of the figures is described in the titles.

20



0.6 T T T 0.6 T
——1 worker ——1 worker
——2 workers ——2 workers
0.55 ——3 workers| 0.55 ——3 workers|
——4 workers ——4 workers
5 workers 5 workers
0.5 ——6 workers| | 0.5 ——6 workers| |
——7 workers ——7 workers
8 workers 8 workers
——9 workers ——9 workers
© 045 1 9045 1
S S
0.4+ B 0.4 1
0.35F 1 0.35 4
10° 10’ 102 10° 10* 107 10° 10°
#iterations Time (s)
—1 worker —1 worker
0 —2 workers 0 —2 workers
10 ——3 workers|] 107 ——3 workers |1
——4 workers ——4 workers
\ 5 workers 5 workers
——6 workers ——6 workers
——7 workers ——7 workers
8 workers 8 workers
4 —9 workers 9 —9 workers
172 (%2}
o ]
| 4
2000 4000 6000 8000 1000C 0 100 200 300 400 500 600
#iterations Time (s)
2.2 T T 1 ] T T T 4
——1 worker 22 ——1 worker
2 ——2 workers| ] o[ ——2 workers| ]
\ ——3 workers ——3 workers
18 ——4 workers| | ——4 workers
E 5 workers 1.8 F 5 workers| ]
\ ——6 workers \ ——6 workers
16} ——7 workers | 16} ——7 workers|]
8 workers 8 workers
——9 workers ——9 workers
w14t wil4b \ ]
@ %]
S 3 \
1.2} 121 ]
N
\
1+ 1+ 1
e
0.8t 0.8 | | : ;
. . 0 1000 2000 3000 4000
#iterations x10* Time (s)

Figure 6: Testing loss vs. #workers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively.
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Figure 7: Testing loss vs. #servers. From left to right, the first row corresponds to the a9a, MNIST
datasets, and the second row corresponds to the CIFAR dataset, respectively.
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Figure 8: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 1 worker.
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Figure 9: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 2 workers.
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Figure 10: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 4 workers.
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Figure 11: Testing loss vs. #servers. From top down, each row corresponds to the a9a, MNIST and
CIFAR dataset, respectively. Each server is associated with 6 workers.
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