
“Short-Dot”: Computing Large Linear Transforms
Distributedly Using Coded Short Dot Products

Supplement

Sanghamitra Dutta
Carnegie Mellon University
sanghamd@andrew.cmu.edu

Viveck Cadambe
Pennsylvania State University
viveck@engr.psu.edu

Pulkit Grover
Carnegie Mellon University
pgrover@andrew.cmu.edu

1 Analysis of expected computation time for exponential tail models

We now provide a probabilistic analysis of the computational time required by Short-Dot and compare
it with uncoded parallel processing, repetition and MDS codes as shown in Fig. 1.

Figure 1: Comparison of theoretical computation time: Short-Dot outperforms MDS Codes when
M � P and Uncoded when M ≈ P , and is universally faster over the entire range of M . For the
choice of straggling parameters, repetition performs worse than all other strategies.

We assume that the time required by a processor to compute a single dot-product follows an exponen-
tial distribution and is independent of other parallel processors.

Let us assume, the time required to compute a single dot-product of length N , follow the distribution:-

Pr(TN ≤ t) = F (t) = 1− exp

(
−µ

(
t

N
− 1

))
∀ t ≥ N (1)

Here, µ is a straggling parameter, that determines the "unpredictable latency" in computation time.
We also assume, that if the length of the dot-product reduces by a factor of τ , i.e., if the length of the
dot-product to be computed changes to N/τ fromN , the probability distribution of the computational
time varies as:-

Pr(T ≤ t) = F (τt) = 1− exp

(
−µ

(
τt

N
− 1

))
∀ t ≥ N/τ (2)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Thus, if length of the dot-product is s where s is the sparsity of the vector, the computation time would
follow the distribution F (Nts). Now we derive the expected computation time using our proposed
strategy and compare it with existing strategies in the regimes where the number of dot-products M
is linear and sub-linear in P .

Table 1 shows the order-sense expected computation time in the regimes where M is linear and
sub-linear in P .

1.1 Proposed Strategy – Short-Dot:

The computation time over each of the P processors behaves as independent, identically distributed
exponential random variables following the distribution:-

Pr(T ≤ t) = F

(
Nt

s

)
= 1− exp

(
−µ

(
t

s
− 1

))
∀ t ≥ s (3)

Now, the expected computation time is the expected value of the K-th order statistic of these P
independent, identically distributed exponential random variables, which is given by:-

E(T) = s

(
1 +

log(P
P−K)

µ

)
=

(P −K +M)N

P

(
1 +

log(P
P−K)

µ

)
(4)

Here we use the result that the K− th order statistic of P exponential random variables that are
independent and identically distributed as ∼ exp(−T) ∀ T ≥ 0 is given by

∑P
i=1

1
i −

∑P−K
i=1

1
i .

For large P and K < P , this can be approximated as log(P)− log(P −K).

Note that, the expected computation time is minimized when P −K = Θ(M), and is given by:-

E(T) = O
(
MN

P

(
1 +

log(P/M)

µ

))
(5)

If M is linear in P , the expected time is O(MN
P). If M is sub-linear in P , the expected time is

O
(
MN log(P/M)

P

)
. Note that, s = (P−K+M)N

P is actually an upper bound on the length of each
dot-product, using Short-Dot. Thus the expression obtained in (5) is an upper bound for the actual
computation time. Thus we use O(.) instead of Θ(.).

Table 1: Probabilistic Computation Times
Method E(T) M linear in P M sub-linear in P

Only one Processor MN
(

1 + 1
µ

)
Θ (MN) Θ (MN)

Uncoded 1 MN
P

(
1 + log(P)

µ

)
Θ
(
MN
P log(P)

)
Θ
(
MN
P log(P)

)
Repetition 1 N

(
1 + M log(M)

Pµ

)
Θ
(
MN
P log(P)

)
Θ (N)

MDS N

(
1 +

log(P
P−M)
µ

)
Θ(N) Θ(N)

Short-Dot N(P−K+M)
P

(
1 +

log(P
P−K)
µ

)
O(MN

P) O
(
MN
P log

(
P
M

))
1 A more accurate analysis taking integer effects into account is also presented.

1.2 Existing Strategies

One Single Processor: For one single processor to compute all M dot-products of length N , the
computation time is distributed as

Pr(T ≤ t) = F (t/M) = 1− exp

(
−µ

(
t

NM
− 1

))
∀ t ≥ NM (6)

Thus, the expected computation time can be easily derived to be

E(T) = MN

(
1 +

1

µ

)
(7)

2

Uncoded - Divide into P parts and wait for all: Now, consider an uncoded strategy where the
computation is simply divided into P dot-products and sent to P processors. We assume that each
processor is sent only one dot-product at a time. We wait for all the processors to finish computation.
Note that, integer effects arise when M does not exactly divide P . Some rows can be divided among⌈
P
M

⌉
processors, while the remaining are divided among

⌊
P
M

⌋
processors. Let m1 and m2 denote

the number of rows that get
⌈
P
M

⌉
processors and

⌊
P
M

⌋
processors respectively. Clearly the values

can be obtained by solving:- [
1 1⌈
P
M

⌉ ⌊
P
M

⌋] [m1

m2

]
=

[
M
P

]
(8)

Now, we have two groups of exponential variables - one group consisting ofm1

⌈
P
M

⌉
independent and

identically distributed exponential random variables of task size N

d P
M e

and another group consisting

of m2

⌊
P
M

⌋
independent and identically distributed exponential random variables of task size N

b P
M c

.

The two groups are independent of each other. Note that, for each of calculations we assume that N
is large compared to P and is divisible by P,

⌊
P
M

⌋
,
⌊
P
M

⌋
, so that the integer effects with respect to

N do not appear and the plots can be scaled with respect to N for ease of understanding.

The expected computation time is thus given by the expectation of the maximum of all these
P = m1

⌈
P
M

⌉
+m2

⌊
P
M

⌋
exponential random variables.

Pr(T ≤ t) =

(
1− exp

(
−µ

(⌈
P
M

⌉
t

N
− 1

)))m1d P
M e
×

(
1− exp

(
−µ

(⌊
P
M

⌋
t

N
− 1

)))m2b P
M c
∀ t ≥ N⌊

P
M

⌋ (9)

The expectation is thus obtained as

E(T) =

∫ ∞
0

(1− Pr(T ≤ t)) dt (10)

This expression is computed using MATLAB and plotted in the plot of theoretical computation time (
Refer Fig. 1). When M divides P exactly, the expressions are simpler. The computation time for
each processor is distributed as

Pr(T ≤ t) = F (t/M) = 1− exp

(
−µ

(
Pt

MN
− 1

))
∀ t ≥ NM/P (11)

The expected computation time is the maximum of P such independent and identically distributed
random variables, as given by:-

E(T) =
MN

P

(
1 +

log(P)

µ

)
(12)

The expected time is Θ
(
MN log(P)

P

)
whether M is linear or sub-linear in P . Our strategy offers a

speed-up of Ω(log(P)) when M is linear in P .

Repetition: When a (P,M) repetition strategy is used, we separate the matrix into M rows and
repeat each row P/M times, so as to obtain a total of P tasks. Note that, integer effects arise when
M does not exactly divide P . Some rows are repeated

⌈
P
M

⌉
times, while the remaining are repeated⌊

P
M

⌋
times. Let m1 and m2 denote the number of rows that are repeated

⌈
P
M

⌉
times and

⌊
P
M

⌋
times

respectively. Clearly the values can be obtained by solving:-[
1 1⌈
P
M

⌉ ⌊
P
M

⌋] [m1

m2

]
=

[
M
P

]
(13)

3

Now, the minimum of
⌈
P
M

⌉
(or similarly

⌊
P
M

⌋
) independent and identically distributed exponential

random variables is also exponential with parameter scaled by
⌈
P
M

⌉
(or similarly

⌊
P
M

⌋
). The

expected computation time is thus given by the expectation of the maximum of m1 independent
exponential variables with parameter scaled by

⌈
P
M

⌉
and m2 independent exponential variables with

parameter scaled by
⌊
P
M

⌋
.

Pr(T ≤ t) =

(
1− exp

(
−µ
⌈
P

M

⌉(
t

N
− 1

)))m1

×(
1− exp

(
−µ
⌊
P

M

⌋(
t

N
− 1

)))m2

∀ t ≥ N (14)

Figure 2: Theoretical Plot of expected computation time of repetition taking integer effects into
account: straggling parameter µ = 5, total processors P = 1000 and number of dot-products M is
varied from 1 to P .

The expectation is thus obtained as

E(T) =

∫ ∞
0

(1− Pr(T ≤ t)) dt (15)

This expression is computed using MATLAB in the plot of theoretical expected computation time
(Fig. 1). When, M exactly divides P , the analysis is simpler, and both the two types of exponential
distributions are identical. Following an analysis similar to [1], it simplifies to

E(T) = N

(
1 +

M log(M)

Pµ

)
(16)

When M is linear in P , the expected computation time is Θ(MN
P log(P)) while our strategy achieves

O(N) in this regime. When M is sub-linear in P , the expected computation time is Θ(N) while our
strategy Short-Dot achieves O

(
MN log(P/M)

P

)
that offers speed-up by a factor diverging to infinity.

MDS codes-based strategy: The matrix is separated into M rows and coded into P rows using a
(P,M) MDS code. Thus, each processor effectively computes a dot-product of length N . We have to
wait for any M processors to finish. Assuming the computation of each processor is independent,
following an analysis similar to [1], we obtain that,

E(T) = N

(
1 +

log(P)

µ
− log(P −M)

µ

)
(17)

When M is linear in P , the expected computation time is Θ(N) as compared to our strategy that
achieves O(MN/P). However, in the regime where M is sub-linear in P , the expected computation
time is also Θ(N) while our strategy achieves O

(
MN log(P/M)

P

)
, and thus outperforms MDS codes

by a factor that diverges to infinity for large P .

4

	Analysis of expected computation time for exponential tail models
	Proposed Strategy – Short-Dot:
	Existing Strategies

