“Short-Dot”’: Computing Large Linear Transforms
Distributedly Using Coded Short Dot Products
Supplement

Sanghamitra Dutta Viveck Cadambe Pulkit Grover
Carnegie Mellon University Pennsylvania State University =~ Carnegie Mellon University
sanghamd@andrew.cmu.edu viveck@engr.psu.edu pgrover@andrew.cmu.edu

1 Analysis of expected computation time for exponential tail models

We now provide a probabilistic analysis of the computational time required by Short-Dot and compare
it with uncoded parallel processing, repetition and MDS codes as shown in Fig. [1]

2.5 "Uncoded
ﬂg’) MDS Codin
.[-'I Repetition
l,61.5—
1]
-
g | =S
§.05 '\ P=1000
8 Short-Dot |
0 L 1 I I
0 200 400 600 800 1000
No. of Dot-Products (IM)

Figure 1: Comparison of theoretical computation time: Short-Dot outperforms MDS Codes when
M < P and Uncoded when M ~ P, and is universally faster over the entire range of M. For the
choice of straggling parameters, repetition performs worse than all other strategies.

We assume that the time required by a processor to compute a single dot-product follows an exponen-
tial distribution and is independent of other parallel processors.

Let us assume, the time required to compute a single dot-product of length N, follow the distribution:-

Pr(TNSt):F(t)zl—exp(—u (]’;_1» Vi> N ()

Here, 1 is a straggling parameter, that determines the "unpredictable latency" in computation time.
We also assume, that if the length of the dot-product reduces by a factor of 7, i.e., if the length of the
dot-product to be computed changes to N/7 from NN, the probability distribution of the computational
time varies as:-

Pr(T < t) = F(rt) = 1 — exp (-u (;\’; _ 1)) Vi> N/ @)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Thus, if length of the dot-product is s where s is the sparsity of the vector, the computation time would
follow the distribution F’ (%) Now we derive the expected computation time using our proposed
strategy and compare it with existing strategies in the regimes where the number of dot-products M
is linear and sub-linear in P.

Table |1{ shows the order-sense expected computation time in the regimes where M is linear and
sub-linear in P.

1.1 Proposed Strategy — Short-Dot:

The computation time over each of the P processors behaves as independent, identically distributed
exponential random variables following the distribution:-

Pr(TSt):F(?):l—exp(—u (Z—l)) Vt>s 3)

Now, the expected computation time is the expected value of the K-th order statistic of these P
independent, identically distributed exponential random variables, which is given by:-

) s (1) 1og(ZPK)> _ (P—KP+ M)N (1) 1og(ZPK)>

Here we use the result that the K — th order statistic of P exponential random variables that are
independent and identically distributed as ~ exp(—T) VT > 0 is given by 37 | 1 — Zf:lK 1.

=17
For large P and K < P, this can be approximated as log(P) — log(P — K). '

4)

Note that, the expected computation time is minimized when P — K = ©(M), and is given by:-

MN log(P/M
E(T):(’)((1+ o8P/)>)
P Iz

If M is linear in P, the expected time is (’)(w). If M is sub-linear in P, the expected time is

O (%(P/M) . Note that, s = w is actually an upper bound on the length of each

(&)

dot-product, using Short-Dot. Thus the expression obtained in (3] is an upper bound for the actual
computation time. Thus we use O(.) instead of ©(.).

Table 1: Probabilistic Computation Times

Method E(T) M linear in P M sub-linear in P
Only one Processor MN (1 + i) ©(MN) O (MN)
Uncoded ! MN (14 ka2 0 (MM jog(P)) O (M log(P))
Repetition ! N (1 + %W) O (M log(P)) ©(N)

MDS N (1 + lg(ff)) O(N) O(N)

Short-Dot N(P7;(+M) <1 + log(ZPK)> O(2Y) O (¥ 1og (£))

" A more accurate analysis taking integer effects into account is also presented.

1.2 Existing Strategies

One Single Processor: For one single processor to compute all M dot-products of length N, the
computation time is distributed as

t
Pr(T <t)=F({t/M)=1-— — — —1 Vt>NM 6
(T <0 = Pt/ =1 - e (1 (g7 -1)) Ve ©
Thus, the expected computation time can be easily derived to be
1
E(T) = MN (1 + u))

Uncoded - Divide into P parts and wait for all: Now, consider an uncoded strategy where the
computation is simply divided into P dot-products and sent to P processors. We assume that each
processor is sent only one dot-product at a time. We wait for all the processors to finish computation.
Note that, integer effects arise when M does not exactly divide P. Some rows can be divided among
[£] processors, while the remaining are divided among | £ | processors. Let iy and ms denote

the number of rows that get (%] processors and L%J processors respectively. Clearly the values
can be obtained by solving:-
1 1 ml} [M}
P P = (8)
hM] LMJ:| L”Q P

Now, we have two groups of exponential variables - one group consisting of m; f%} independent and

identically distributed exponential random variables of task size % and another group consisting
M

of my L%J independent and identically distributed exponential random variables of task size LNTJ
M

The two groups are independent of each other. Note that, for each of calculations we assume that N

is large compared to P and is divisible by P, L%J , L%J , so that the integer effects with respect to

N do not appear and the plots can be scaled with respect to IV for ease of understanding.

The expected computation time is thus given by the expectation of the maximum of all these

P =my [£]| + ms |47 | exponential random variables.

s o= (1o o (L))
(ol

E(T) = /00o (1—Pr(T <t))dt (10)

“
|
—_
_/
_/
v
3
[V
E
gl
| E—
<C
~
[\
!
:\w\ =
| E—
R
O
p——

The expectation is thus obtained as

This expression is computed using MATLAB and plotted in the plot of theoretical computation time (
Refer Fig.[I). When M divides P exactly, the expressions are simpler. The computation time for
each processor is distributed as

Pt
Pr(T<t):F(t/M):1—exp<—,u (]\4N_1>) Vt>NM/P (11)
The expected computation time is the maximum of P such independent and identically distributed
random variables, as given by:-

MN log(P)
E(T) = (1 + (12)
P %
The expected time is © %g(m) whether M is linear or sub-linear in P. Our strategy offers a

speed-up of Q(log(P)) when M is linear in P.

Repetition: When a (P, M) repetition strategy is used, we separate the matrix into M rows and
repeat each row P/M times, so as to obtain a total of P tasks. Note that, integer effects arise when
M does not exactly divide P. Some rows are repeated (%1 times, while the remaining are repeated

L%J times. Let m and mo denote the number of rows that are repeated {%] times and Lﬁj times
respectively. Clearly the values can be obtained by solving:-

51 5]] = 1) a»

Now, the minimum of [4] (or similarly | - |) independent and identically distributed exponential

random variables is also exponential with parameter scaled by [4-] (or similarly |£-|). The
expected computation time is thus given by the expectation of the maximum of m; independent

exponential variables with parameter scaled by (%] and mo independent exponential variables with
parameter scaled by |1 |.

5= (-on ([£] (3))
(-emo 5] (5) v 0

2.5 : : : E—

1.5
___Upper Bound
1 (uniform repetition, overutilization)

___Lower Bound
(uniform repetition, underutilization)
0.5¢ __True expected time

(non-uniform repetition)

. . . |
1 200 400 600 800 1,000

Figure 2: Theoretical Plot of expected computation time of repetition taking integer effects into
account: straggling parameter p = 5, total processors P = 1000 and number of dot-products M is
varied from 1 to P.

The expectation is thus obtained as

E(T) = /OOO (1—Pr(T <t))dt (15)

This expression is computed using MATLAB in the plot of theoretical expected computation time
(Fig. 1). When, M exactly divides P, the analysis is simpler, and both the two types of exponential
distributions are identical. Following an analysis similar to [1], it simplifies to

Eun:N<1+M@§9“) (16)

When M is linear in P, the expected computation time is © (2 log(P)) while our strategy achieves
O(N) in this regime. When M is sub-linear in P, the expected computation time is ©(N') while our

(MN log(P/M)>
P

strategy Short-Dot achieves O that offers speed-up by a factor diverging to infinity.

MDS codes-based strategy: The matrix is separated into M rows and coded into P rows using a
(P, M) MDS code. Thus, each processor effectively computes a dot-product of length N. We have to
wait for any M processors to finish. Assuming the computation of each processor is independent,
following an analysis similar to [1], we obtain that,

N log(P) log(P — M))
7 7

When M is linear in P, the expected computation time is ©(/N) as compared to our strategy that

achieves O(M N/ P). However, in the regime where M is sub-linear in P, the expected computation

MN log(P/M))
P

ﬂﬂ:NO (17)

time is also © (V') while our strategy achieves O , and thus outperforms MDS codes

by a factor that diverges to infinity for large P.

	Analysis of expected computation time for exponential tail models
	Proposed Strategy – Short-Dot:
	Existing Strategies

