
A KL Divergence Between Gaussian Trajectory Distributions

In this appendix, we derive the KL-divergence between two Gaussian trajectory distributions corre-
sponding to time-varying linear-Gaussian dynamics p(xt+1|xt,ut) and two policies p(ut|xt) and
q(ut|xt). The two policies induce Gaussian trajectory distributions (with block-diagonal covariances)
according to

p(τ) = p(x1)

T∏
t=1

p(xt+1|xt,ut)p(ut|xt), q(τ) = p(x1)

T∏
t=1

p(xt+1|xt,ut)q(ut|xt).

We can therefore derive their KL-divergence as
DKL(p(τ)‖q(τ)) = Ep(τ) [log p(τ)− log q(τ)]

= Ep(τ)

[
T∑
t=1

log p(ut|xt)− log q(ut|xt)

]

=

T∑
t=1

Ep(xt,ut) [log p(ut|xt)− log q(ut|xt)]

=

T∑
t=1

−Ep(xt,ut) [log q(ut|xt)]− Ep(xt)[H(p(ut|xt))]

=

T∑
t=1

−Ep(xt,ut) [log q(ut|xt)]−H(p(ut|xt))

where the second step follows because the dynamics and initial state distribution cancel, the third step
follows by linearity of expectations, the fourth step from the definition of differential entropy, and the
last step follows from the fact that the entropy of a conditional Gaussian distribution is independent
on the quantity that it is conditioned on, since it depends only on the covariance and not the mean.
We therefore have

DKL(p(τ)‖q(τ)) =

T∑
t=1

−Ep(xt,ut) [log q(ut|xt)]−H(p(ut|xt)).

By the definition of KL-divergence, we can also write this as

DKL(p(τ)‖q(τ)) =

T∑
t=1

Ep(xt,ut) [DKL(p(ut|xt)‖q(ut‖xt))] .

B Details of the MDGPS Algorithm

A summary of the MDGPS algorithm appears in Algorithm 2, and is repeated below for convenience:

Algorithm 4 Mirror descent guided policy search (MDGPS): unknown nonlinear dynamics

1: for iteration k ∈ {1, . . . ,K} do
2: Generate samples Di = {τi,j} by running either pi or πθi
3: Fit linear-Gaussian dynamics pi(xt+1|xt,ut) using samples in Di
4: Fit linearized global policy π̄θi(ut|xt) using samples in Di
5: C-step: pi ← arg minpi Epi(τ)[

∑T
t=1 `(xt,ut)] such that DKL(pi(τ)‖π̄θi(τ)) ≤ ε

6: S-step: πθ ← arg minθ
∑
t,i,j DKL(πθ(ut|xt,i,j)‖pi(ut|xt,i,j)) (via supervised learning)

7: Adjust ε (see Section 4.2)
8: end for

B.1 C-Step Details

The C-step solves the following constrained optimization problem:

pi ← arg min
pi

Epi(τ)

[
T∑
t=1

`(xt,ut)

]
such that DKL(pi(τ)‖π̄θi(τ)) ≤ ε.
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The solution to this problem follows prior work [5], and is reviewed here for completeness. First, the
Lagrangian of this problem is given by

L(pi, η) = Epi(τ)

[
T∑
t=1

`(xt,ut)

]
+ η(DKL(pi(τ)‖π̄θi(τ))− ε)

=

T∑
t=1

Epi(xt,ut)[`(xt,ut)− η log π̄θi(ut|xt)]− ηH(p(ut|xt))− ηε,

where equality follows from the identity in Appendix A. As discussed in prior work [5], we can
minimize this Lagrangian with respect to pi by solving an LQR problem (assuming a quadratic
expansion of `(xt,ut)) with a surrogate cost

˜̀(xt,ut) =
1

η
`(xt,ut)− log π̄θi(ut|xt).

This follows because LQR can be shown to solve the following problem [5]

pi = arg min
pi

T∑
t=1

Epi(xt,ut)

[
˜̀(xt,ut)

]
−H(pi(ut|xt))

if we set pi(ut|xt) = N (Ktxt + kt, Q
−1
u,ut), where Kt and kt are the optimal feedback and

feedforward terms, respectively, andQu,ut is the action component of the Q-function matrix computed
by LQR, where the full Q-function is given by

Q(xt,ut) =
1

2
xT
t Qx,xtxt +

1

2
uT
t Qu,utut + uT

t Qu,xtxt + xT
t Qxt + uT

t Qut.

This maximum entropy LQR solution also directly from the so-called Kalman duality, which describes
a connection between LQR and Kalman smoothing.

Once we can minimize the Lagrangian with respect to pi, we can solve the original constrained
problem by using dual gradient descent to iteratively adjust the dual variable η. Since there is only a
single dual variable, we can find it very efficiently by using a bracketing line search, exploiting the
fact that the dual function is convex.

As discussed in the paper, the dynamics pi(xt+1|xt,ut) are estimated by using samples (drawn
from either the local policy or the global policy) and linear regression. Following prior work [5],
the dynamics at each step are fitted using linear regression with a Gaussian mixture model prior.
This prior incorporates samples from other time steps and previous iterations to allow the regression
procedure to use a very small number of sampled trajectories.

B.2 S-Step Details

The step solves the following optimization problem:

πθ ← arg min
θ

∑
t,i,j

DKL(πθ(ut|xt,i,j)‖pi(ut|xt,i,j)).

Since both πθ(ut|xt) = N (µπ(xt),Σ
π(xt)) and pi(ut|xt) = N (Ktixt + kti,Cti) are assumed to

be conditionally Gaussian, this objective can be rewritten in closed form as

πθ ← arg min
θ

∑
t,i,j

tr[C−1
ti Σπ(xt,i,j)]− log |Σπ(xt,i,j)|+

(µπ(xt,i,j)− µpti(xt,i,j))C
−1
ti (µπ(xt,i,j)− µpti(xt,i,j)).

Note that the last term is simply a weighted quadratic cost on the policy mean µπ(xt,i,j , which
lends itself to simple and straightforward optimization using stochastic gradient descent. In our
implementation, we use a policy where the covariance Σπ(xt) is independent of the state xt, and
therefore we can solve for the covariance in closed form, as discussed in prior work [6]. However, in
general, the covariance could also be optimized using stochastic gradient descent.

11



B.3 Step Size Adjustment

In prior work [8], the step size ε in the local policy optimization is adjusted by considering the
difference between the predicted change in the cost of the local policy p(ut|xt) under the fitted
dynamics, and the actual cost obtained when sampling from that policy. The intuition is that, because
the linearized dynamics are local, we incur a larger cost the further we deviate from the previous
policy. We can adjust the step size by estimating the rate at which the additional cost is incurred and
choosing the optimal tradeoff. Let `k−1

k−1 denote the expected cost under the previous local policy
p̄(ut|xt), `kk−1 the cost under the current local policy p(ut|xt) and the previous fitted dynamics
(which were estimated using samples from p̄(ut|xt) and used to optimize p(ut|xt)), and `kk the cost
of the current local policy under the dynamics estimated using samples from p(ut|xt) itself. Each
of these can be computed analytically under the linearized dynamics. We can view the difference
`kk − `kk−1 as the additional cost we incur from imperfect dynamics estimation. Previous work
suggested modeling the change in cost as a function of ε as following: `kk − `k−1

k−1 = aε2 + bε,
where b is the change in cost per unit of KL-divergence, and a is additional cost incurred due to
inaccurate dynamics [8]. This model is reasonable because the integral of a quadratic cost under
a linear-Gaussian system changes roughly linearly with KL-divergence. The additional cost due
to dynamics errors is assumes to scale superlinearly, allowing us to solve for b by looking at the
difference `kk − `kk−1 and then solving for a new optimal ε′ according to ε′ = −b/2a, resulting in the
update ε′ = ε(`kk−1 − `

k−1
k−1)/2(`kk−1 − `kk).

All of these terms can be computed analytically, since the fitted dynamics, local policies, and
linearized global policy π̄θ(ut|xt) are all linear-Gaussian. The state-action marginals p(xt,ut) in
linear-Gaussian policies can be computed simply by propagating Gaussian densities forward in time,
according to

µxt,ut =

[
µxt
Ktµxt + kt

]
Σxt,ut =

[
Σxt ΣxtK

T
t

KtΣxt KtΣxtK
T
t + Ct

]
µxt+1

= ftµxt,ut + fct Σxt+1
= ftΣxt,utf

T
t + Ft

where we have p(xt+1|xt,ut) = N (ft(xt,ut)
T + fct,Ft) and p(ut|xt) = N (Ktxt +kt,Ct), and

then we can estimate the expectation of the cost at time t simply by integrating the quadratic cost
under the Gaussian state-action marginals.

In MDGPS, we propose to use two step size adjustment rules. The first rule simply adapts the
previous method to the case where we constrain the new local policy p(ut|xt) against the global
policy πθ(ut|xt), instead of the previous local policy p̄(ut|xt). In this case, we simply replace
`k−1
k−1 with the expected cost under the previous global policy, given by `k−1,π

k−1 , obtained using its
linearization π̄θ(ut|xt). We call this the “classic” step size: ε′ = ε(`kk−1 − `

k−1,π
k−1 )/2(`kk−1 − `kk).

However, we can also incorporate intuition from the bound in Section 4.1 to obtain a more conservative
step adjustment that reduces ε not only when the obtained local policy improvement doesn’t meet
expectations, but also when we detect that the global policy is unable to reproduce the behavior of the
local policy. In this case, reducing ε reduces the KL-divergence between the global and local policies
which, as shown in the previous section, tightens the bound on the global policy return. As mentioned
previously, directly optimizing the bound tends to perform poorly because the bound is quite loose.
However, if we estimate the cost of the global policy using its linearization, we can instead adjust
the step size based on a simple model of global policy cost. We use the same model for the change
in cost, given by `k,πk − `k−1,π

k−1 = aε2 + bε. However, for the term `kk, which reflects the actual cost
of the new policy, we instead use the cost of the new global policy `k,πk , so that a now models the
additional loss due to both inaccurate dynamics and inaccurate projection: if `k,πk is much worse than
`kk−1, then either the dynamics were too local, or S-step failed to match the performance of the local
policies. In either case, we decrease the step size.4 As before, we can solve for the new step size ε′

according to ε′ = ε(`kk−1 − `
k−1,π
k−1 )/2(`kk−1 − `

k,π
k ). We call this the “global” step size.

4Although we showed before that the discrepancy depends on
∑T
t=1

√
2εt, here we use ε2. This is a

simplification, but the net result is the same: when the global policy is worse than expected, ε is reduced.
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C Global Policy Cost Bounds

In this appendix, we prove the bound on the policy cost discussed in Section 4.1. The proof combines
the earlier results from Ross et al. [15] and Schulman et al. [17], and extends them to the case of
finite-horizon episodic tasks.

C.1 Policy State Distribution Bound

We begin by proving Lemma 4.1, which we restate below with slightly simplified notation, replacing
πθ by q:

Lemma C.1 Let εt = maxxt DKL(p(ut|xt)‖q(ut|xt). Then DTV(p(xt)‖q(xt)) ≤ 2
∑T
t=1

√
2εt.

The proof first requires introducing a lemma that relates the total variation divergence
maxxt ‖p(ut|xt)− q(ut|xt)‖1 between two policies to the probability that the policies will take the
same action in a discrete setting (extensions to the continuous setting are also possible):

Lemma C.2 Assume that maxxt ‖p(ut|xt)− q(ut|xt)‖1 ≤
√

2εt, then the probability that p and q
take the same action at time step t is 1−

√
2εt.

The proof for this lemma was presented by Schulman et al. [17]. We can use it to bound the state
distribution difference as following. First, we are acting according to p(ut|xt), the probability
that the same action would have been taken by q(ut|xt), based on Lemma C.2, is (1 −

√
2εt),

so the probability that all actions up to time t would have been taken by q(ut|xt) is given by∏t
t′=1(1−

√
2εt′). We can therefore express the state distribution p(xt) as

p(xt) =

[
t∏

t′=1

(1−
√

2εt′)

]
q(xt) +

(
1−

t∏
t′=1

(1−
√

2εt′)

)
p̃(xt)

=

[
t∏

t′=1

(1−
√

2εt′)

]
[q(xt)− p̃(xt)] + p̃(xt),

where p̃(xt) is some other distribution. In order to bound DTV(p(xt)‖q(xt)) = ‖p(xt)− q(xt)‖1,
we can substitute this equation into ‖p(xt)− q(xt)‖1 to get

‖p(xt)− q(xt)‖1 =

∥∥∥∥∥
[

t∏
t′=1

(1−
√

2εt′)

]
[q(xt)− p̃(xt)] + p̃(xt)− q(xt)

∥∥∥∥∥
=

∥∥∥∥∥
[

1−
t∏

t′=1

(1−
√

2εt′)

]
[q(xt)− p̃(xt)]

∥∥∥∥∥
=

[
1−

t∏
t′=1

(1−
√

2εt′)

]
‖q(xt)− p̃(xt)‖

≤ 2

[
1−

t∏
t′=1

(1−
√

2εt′)

]
,

where the last inequality comes from the fact that ‖q(xt)− p̃(xt)‖ ≤ 2 for discrete distributions. With
continuous densities, we could extend the result by taking the limit of an infinitely fine discretization.
Next, we note that

t∏
t′=1

(1−
√

2εt′) ≥ 1−
t∑
t′

√
2εt′ ,

and therefore we have

‖p(xt)− q(xt)‖1 ≤ 2

t∑
t′=1

√
2εt′

This completes the proof.
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C.2 Total Policy Cost Bound

In this appendix, we use the result above to prove Lemma 4.2. This result is based on Ross et al. [15],
but extends the proof to the case of time-varying finite-horizon systems. We first restate the lemma
under the same notation as the previous appendix:

Lemma C.3 If DTV(p(xt)‖πθ(xt)) ≤ 2
∑T
t=1

√
2εt, then we can bound the total cost of πθ as

T∑
t=1

Eπθ(xt,ut)[`(xt,ut)] ≤
T∑
t=1

[
Ep(xt,ut)[`(xt,ut)] + 2

√
εtQmax,t

]
,

where Qmax,t =
∑T
t′=t maxxt′ ,ut′ `(xt′ ,ut′), the maximum total cost from time t to T .

We bound the cost of q at time step t according to

Eq(xt,ut)[`(xt,ut)] = 〈q(xt,ut), `(xt,ut)〉
= 〈q(xt,ut)− p(xt)q(ut|xt), `(xt,ut)〉+ 〈p(xt)q(ut|xt), `(xt,ut)〉
= 〈q(ut|xt)[q(xt)− p(xt)], `(xt,ut)〉+ 〈p(xt)[q(ut|xt)− p(ut|xt)], `(xt,ut)〉+ Ep(xt,ut)[`(xt,ut)]

≤ Ep(xt,ut)[`(xt,ut)] + ‖q(xt)− p(xt)‖1 max
xt,ut

`(xt,ut) + ‖q(ut|xt)− p(ut|xt)‖1 max
xt,ut

`(xt,ut)

≤ Ep(xt,ut)[`(xt,ut)] + max
xt,ut

`(xt,ut)
√

2εt + 2 max
xt,ut

`(xt,ut)

t∑
t′=1

√
2εt′

If we add up the above quantity over all time t, we get

T∑
t=1

Eq(xt,ut)[`(xt,ut)] ≤
T∑
t=1

Ep(xt,ut)[`(xt,ut)]+

T∑
t=1

√
2εt max

xt,ut
`(xt,ut)+2

T∑
t=1

max
xt,ut

`(xt,ut)

t∑
t′=1

√
2ε′t

which we can rewrite as
T∑
t=1

Eq(xt,ut)[`(xt,ut)] ≤
T∑
t=1

[
Ep(xt,ut)[`(xt,ut)] +

√
2εt max

xt,ut
`(xt,ut) + 2

√
2εtQmax,t

]
where Qmax,t =

∑T
t′=t maxxt′ ,ut′ `(xt′ ,ut′).
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