
Supplementary Material1

In this extra material, we provide the details about the derivation of the tight variational evidence lower2

bound of our proposed GP factorization model (Section 1) as well as its gradient calculation (Section3

2). Moreover, we give the convergence proof of the fixed point iteration used in our distributed4

inference algorithm for binary tensor (Section 3). Finally, we show the experimental results of our5

model’s application on real-world click-through-rate prediction problem (Section 4).6

1 Tight Variational Evidence Lower Bound7

The naive variational evidence lower bound (ELBO) derived from the sparse Gaussian process8

framework (see Section 4.1 of the main paper) is given by9

L1(U ,B, q(v)) = log(p(U)) +

∫
q(v) log

p(v|B)

q(v)
dv +

∑
j

∫
q(v)Fv(yij , β)dv (1)

for continuous tensor and10

L2(U ,B, q(v), q(z)) = log(p(U)) +

∫
q(v) log(

p(v|B)

q(v)
)dv +

∑
j
q(zj) log(

p(yij |zj)
q(zj)

)

+
∑

j

∫
q(v)

∫
q(zj)Fv(zj , 1)dzjdv (2)

for binary tensor, where Fv(·j , ∗) =
∫

log
(
N (·j |mij , ∗)

)
N (mij |µj , σ2

j )dmij and p(v|B) =11

N (v|0,KBB). Our goal is to further obtain a tight ELBO that subsumes the optimal variational12

posterior (i.e., q(v) and q(z)) so as to prevent the sequential E-M procedure for efficient parallel13

training and to improve the inference quality.14

1.1 Continuous Tensor15

First, let us consider the continuous data. Given U and B, we use functional derivatives (Bishop,16

2006) to calculate the optimal q(v). The functional derivative of L1 with respect to q(v) is given by17

δL1(q)

δq(v)
= log

p(v|B)

q(v)
− 1 +

∑
j
Fv(yij , β).

Because q(v) is a probability density function, we use Lagrange multipliers to impose the constraint18

and obtain the optimal q(v) by solving19

δ
(
L1(q) + λ(

∫
q(v)dv − 1)

)
δq(v)

= 0,

∂
(
L1(q) + λ(

∫
q(v)dv − 1)

)
∂λ

= 0.

Though simple algebraic manipulations, we can obtain the optimal q(v) to be the following form20

q∗(v) = N (v|µ,Λ),

where µ = βKBB(KBB + βKBSKSB)−1KBSy and Λ = KBB(KBB + βKBSKSB)−1KBB .21

Now substituting q(v) in L1 with N (v|µ,Λ), we obtain the tight ELBO presented in Theorem 4.122

of the main paper:23

log
(
p(y,U|B)

)
≥ L∗1(U ,B) =

1

2
log |KBB | −

1

2
log |KBB + βA1| −

1

2
βa2 −

1

2
βa3

+
β

2
tr(K−1BBA1)− 1

2

K∑
k=1

‖U(k)‖2F +
1

2
β2a>4 (KBB + βA1)−1a4 +

N

2
log(

β

2π
), (3)

where ‖ · ‖F is Frobenius norm, and24

A1 =
∑

j
k(B,xij )k(xij ,B), a2 =

∑
j
y2ij , a3 =

∑
j
k(xij ,xij ), a4 =

∑
j
k(B,xij )yij .
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1.2 Binary Tensor25

Next, let us look at the binary data. The case for binary tensors is more complex, because we have26

the additional variational posterior q(z) =
∏
j q(zj). Furthermore, q(v) and q(z) are coupled in the27

original ELBO (see (2)). To eliminate q(v) and q(z), we use the following steps. We first fix q(z),28

calculate the optimal q(v) and plug it into L2 (this is similar to the continuous case) to obtain an29

intermediate bound,30

L̂2(q(z),U ,B) = max
q(v)

L2(q(v), q(z),U ,B) =
1

2
log |KBB | −

1

2
log |KBB + A1| −

1

2

∑
j
〈z2j 〉

− 1

2
a3 +

1

2
tr(K−1BBA1)− N

2
log(2π) +

1

2
(KBS〈z〉)>(KBB + A1)−1)(KBS〈z〉)

+
∑

j

∫
q(zj) log(

p(yij |zj)
q(zj)

)dzj −
1

2

∑K

k=1
‖U(k)‖2F (4)

where 〈·〉 denotes the expectation under the variational posteriors. Note that L̂2 has a similar form to31

L∗1 in (3).32

Now we consider to calculate the optimal q(z) for L̂2. To this end, we calculate the functional33

derivative of L̂2 with respect to each q(zj):34

δL̂2

δq(zj)
= log

p(yij |zj)
q(zj)

− 1− 1

2
z2j + cjj〈zj〉zj +

∑
t6=j

ctj〈zt〉zj .

where ctj = k(xit ,B)(KBB + A1)−1k(B,xij ) and p(yij |zj) = 1
(
(2yij − 1)zj ≥ 0

)
.35

Solving δL̂2

δq(zj)
being 0 with Lagrange multipliers, we find that the optimal q(zj) is a truncated36

Gaussian,37

q∗(zj) ∝ N (zj |cjj〈zj〉+
∑
t6=j

ctj〈zt〉, 1)1
(
(2yij − 1)zj ≥ 0

)
.

This expression is unfortunately not analytical. Even if we can explicitly update each q(zj), the38

updating will depend on all the other variational posteriors {q(zt)}t 6=j , making distributed calculation39

very difficult. This arises from the quadratic term 1
2 (KBS〈z〉)>(KBB + A1)−1(KBS〈z〉) in (4),40

which couples all {〈zj〉}j .41

To resolve this issue, we introduce an extra variational parameter λ to decouple the dependencies42

between {〈zj〉}j using the following lemma.43

Lemma 1.1. For any symmetric positive definite matrix E,44

η>E−1η ≥ 2λ>η− λ>Eλ. (5)

The equality is achieved when λ = E−1η.45

Proof. Define the function f(η) = η>E−1η and it is easy to see that f(η) is convex because46

E−1 � 0. Then using the convex conjugate, we have f(η) ≥ λ>η− g(λ) and g(λ) ≥ η>λ− f(η).47

Then by maximizing η>λ− f(η), we can obtain g(λ) = 1
4λ
>Eλ. Thus, f(η) ≥ λ>η− 1

4λ
>Eλ.48

Since λ is a free parameter, we can use 2λ to replace λ and obtain the inequality (5). Further, we can49

verify that when λ = E−1η the equality is achieved.50

We now apply the inequality on the term 1
2 (KBS〈z〉)>(KBB + A1)−1KBS〈z〉 in (4). Note that the51

quadratic term regarding all {zj} now vanishes, and instead a linear term λ>KBS〈z〉 is introduced52

so that these annoying dependencies between {zj}j are eliminated. We therefore obtain a more53
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friendly intermediate ELBO,54

L̃2(U ,B, q(z),λ) =
1

2
log |KBB | −

1

2
log |KBB + A1| −

1

2

∑
j
〈z2j 〉 −

1

2
a3 +

1

2
tr(K−1BBA1)

− N

2
log(2π) +

∑
j
λ>k(B,xij )〈zj〉 −

1

2
λ>(KBB + A1)λ +

∑
j

∫
q(zj) log(

p(yij |zj)
q(zj)

)dzj

− 1

2

K∑
k=1

‖U(k)‖2F . (6)

The functional derivative with respect to q(zj) is then given by55

δL̃2

δq(zj)
= log

p(yij |zj)
q(zj)

− 1− 1

2
z2j + λ>k(B,xij )zj .

Now solving δL̃2

δq(zj)
= 0, we see that the optimal variational posterior has an analytical form:56

q∗(zj) ∝ N (zj |λ>k(B, xij ), 1)1
(
(2yij − 1)zj ≥ 0

)
.

Plugging each q∗(zj) into (6), we finally obtain the tight ELBO as presented in Theorem 4.2 of the57

main paper:58

log
(
p(y,U|B)

)
≥ L∗2(U ,B,λ) =

1

2
log |KBB | −

1

2
log |KBB + A1| −

1

2
a3

+
∑
j

log
(
Φ((2yij − 1)λ>k(B,xij ))

)
− 1

2
λ>KBBλ +

1

2
tr(K−1BBA1)− 1

2

K∑
k=1

‖U(k)‖2F . (7)

2 Gradients of the Tight ELBO59

In this section, we present how to calculate the gradients of the tight ELBOs in (3) and (7) with60

respect to the latent factors U , the inducing points B and the kernel parameters.61

Let us first consider the tight ELBO for continuous data. Because U , B and the kernel parameters are62

all inside the terms involving the kernel functions, such as KBB and A1, we calculate the gradients63

with respect to these terms first and then use the chain rule to calculate the gradients with respect to64

U and B and the kernel parameters. Specifically, we consider the derivatives with respect to KBB ,65

A1, a3 and a4. Using matrix derivatives and algebras (Minka, 2000), we obtain66

dL∗1 =
1

2
tr
(
(K−1BB − (KBB + βA1)−1)dKBB

)
− β

2
tr
(
(KBB + βA1)−1dA1

)
− β

2
da3 −

β

2
tr(K−1BBA1K

−1
BBdKBB) + β2tr(a>4 (KBB + βA1)−1da4)

+
β

2
tr(K−1BBdA1)− 1

2
β2tr

(
(KBB + βA1)−1a4a

>
4 (KBB + βA1)−1dKBB

)
− 1

2
β3tr

(
(KBB + βA1)−1a4a

>
4 (KBB + βA1)−1dA1

)
. (8)

Next, we calculate the derivatives dKBB , dA1, da3 and da4, which depend on the specific kernel67

function form used in the model. For example, if we use the linear kernel, dKBB = 2B>dB68

and dA1 =
∑N
j=1 k(B,xij )(xijdB> + dxijB

>) + (dBx>ij + Bdx>ij )k(xij ,B) where xij =69

[u
(1)
ij1
, . . . ,u

(K)
ijK

]. Note that because A1, a3 and a4 all have additive structures which involve70

individual tensor entry ij (1 ≤ j ≤ N ) and the major computation of the derivatives in (8) also71

involve similar summations, the computation of the final gradients with respect to U and B and the72

kernel parameters can easily be performed in parallel.73
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The gradient calculation for the tight ELBOs for binary tensors is very similar to the continuous case.74

Specifically, we obtain75

dL∗2 =
1

2
tr
(
K−1BB − (KBB + A1)−1dKBB

)
− 1

2
tr
(
(KBB + A1)−1dA1

)
− 1

2
da3 −

1

2
tr(K−1BBA1K

−1
BBdKBB) +

1

2
tr(K−1BBdA1)− 1

2
tr(λλ>dKBB)

+

N∑
j=1

(2yij − 1)
N
(
λ>k(B,xij )|0, 1

)
Φ
(
(2yij − 1)λ>k(B,xij )

)λ>dk(B,xij ). (9)

We can then calculate the derivatives dKBB , dA1, da3 and each dk(B,xij )(1 ≤ j ≤ N) and then76

apply the chain rule to calculate the gradient with respect to U , B and the kernel parameters.77

3 Fixed Point Iteration for λ78

In this section, we give the convergence proof of the fixed point iteration of the variational parameters79

λ in the tight ELBO for binary tensors. While λ can be jointly optimized via gradient based80

approaches with U , B and the kernel parameters, we empirically find that combining this fixed point81

iteration can converge much faster. The fixed point iteration is given by82

λ(t+1) = (KBB + A1)−1(A1λ
(t) + a5) (10)

where83

A1 =
∑

j
k(B,xij )k(xij ,B), a5 =

∑
j

k(B,xij )(2yij − 1)
N
(
k(B,xij )>λ(t)|0, 1

)
Φ
(
(2yij − 1)k(B,xij )>λ(t)

) .
We now show that the fixed point iteration not only always converges, but also improves the ELBO in84

(7) after every update of λ (see Lemma 4.3 in the main paper).85

Specifically, given U and B, from Section 1 we have86

L∗2
(
λ(t)

)
= maxq(z) L̃2

(
λ(t), q(z)

)
= L̃2

(
λ(t), qλ(t)(z)

)
where qλ(t)(z) is the optimal variational posterior: qλ(t)(z) =

∏
j qλ(t)(zj) and qλ(t)(zj) ∝87

N (zj |k(B,xij )>λ(t), 1)1
(
(2yij − 1)zj ≥ 0

)
.88

Now let us fix qλ(t)(z) and derive the optimal λ by solving ∂L̃2

∂λ = 0. We then obtain the update89

of λ: λ(t+1) = (KBB + A1)−1
(∑

j k(B,xij )〈zj〉
)

where 〈zj〉 is the expectation of the optimal90

variational posterior of zj given λ(t), i.e., qλ(t)(zj). Obviously, we have91

L̃2

(
λ(t), qλ(t)(z)

)
≤ L̃2

(
λ(t+1), qλ(t)(z)

)
.

Further, because L∗2(λ(t)) = L̃2

(
λ(t), qλ(t)(z)

)
and92

L̃2

(
λ(t+1), qλ(t)(z)

)
≤ L̃2

(
λ(t+1), qλ(t+1)(z)

)
= L∗2(λ(t+1))

we conclude that L∗2(λ(t)) ≤ L∗2(λ(t+1)). Now, we plug the fact that 〈zj〉 = w
(t)
j + k(B,xij )>λ(t)

93

given qλ(t)(zj) into the calculation of λ(t+1), merge and arrange the terms. We then obtain the fixed94

point iteration for λ in (10). Finally since L∗2 is upper bounded by the log model evidence, the fixed95

point iteration always converges.96

4 Application on Click-Through-Rate Prediction97

In this section, we report the results of applying our nonlinear tensor factorization approach on98

Click-Through-Rate (CTR) prediction for online advertising.99

We used the online ads click log from a major Internet company, from which we extracted a four mode100

tensor (user, advertisement, publisher, page-section). We used the first three days’s log on May 2015,101
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trained our model on one day’s data and used it to predict the click behaviour on the next day. The102

sizes of the extracted tensors for the three days are 179K×81K×35×355, 167K×78K×35×354103

and 213K × 82K × 37× 354 respectively. These tensors are very sparse (2.7× 10−8% nonzeros on104

average); in other words, the observed clicks are very rare. However, we do not want our prediction105

completely bias toward zero (i.e., non-click); otherwise, ads ranking and recommendation will be106

infeasible. Thus we sampled non-clicks of the same quantity as the clicks for training and testing.107

Note that training CTR prediction models with comparable clicks and non-click samples is common108

in online advertising systems (Agarwal et al., 2014). The number of training and testing entries used109

for the three days are (109K, 99K), (91K, 103K) and (109K, 136K) respectively.110

We compared with popular methods for CTR prediction, including logistic regression and linear111

SVM, where each tensor entry is represented by a set of binary features according to the indices of112

each mode in the entry. We used the distributed implementations in spark MLlib.113

The results are reported in Table 1, in terms of AUC. It shows that our model improves logistic114

regression and linear SVM by a large margin, on average 20.7% and 20.8% respectively. Therefore,115

although we have not incorporated side features, such as user profiles and advertisement attributes,116

our tentative experiments have shown a promising potential of our model on CTR prediction task.

Table 1: CTR prediction accuracy on the first three days of May 2015. "1-2" means using May 1st’s
data for training and May 2nd’s data for testing; similar are "2-3" and "3-4".

Method 1-2 2-3 3-4
Logistic regression 0.7360 0.7337 0.7538
Linear SVM 0.7414 0.7332 0.7540
Our model 0.8925 0.8903 0.9054

117
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