
Deconvolving Feedback Loops
in Recommender Systems

Ayan Sinha
Purdue University
sinhayan@mit.edu

David F. Gleich
Purdue University

dgleich@purdue.edu

Karthik Ramani
Purdue University
ramani@purdue.edu

Abstract

Collaborative filtering is a popular technique to infer users’ preferences on new
content based on the collective information of all users preferences. Recommender
systems then use this information to make personalized suggestions to users. When
users accept these recommendations it creates a feedback loop in the recommender
system, and these loops iteratively influence the collaborative filtering algorithm’s
predictions over time. We investigate whether it is possible to identify items
affected by these feedback loops. We state sufficient assumptions to deconvolve
the feedback loops while keeping the inverse solution tractable. We furthermore
develop a metric to unravel the recommender system’s influence on the entire
user-item rating matrix. We use this metric on synthetic and real-world datasets
to (1) identify the extent to which the recommender system affects the final rating
matrix, (2) rank frequently recommended items, and (3) distinguish whether a
user’s rated item was recommended or an intrinsic preference. Our results indicate
that it is possible to recover the ratings matrix of intrinsic user preferences using a
single snapshot of the ratings matrix without any temporal information.

1 Introduction

Recommender systems have been helpful to users for making decisions in diverse domains such
as movies, wines, food, news among others [19, 23]. However, it is well known that the interface
of these systems affect the users’ opinion, and hence, their ratings of items [7, 24].Thus, broadly
speaking, a user’s rating of an item is either his or her intrinsic preference or the influence of the
recommender system (RS) on the user [2]. As these ratings implicitly affect recommendations to other
users through feedback, it is critical to quantify the role of feedback in content personalization [22].
Thus the primary motivating question for this paper is: Given only a user-item rating matrix, is it
possible to infer whether any preference values are influenced by a RS? Secondary questions include:
Which preference values are influenced and to what extent by the RS? Furthermore, how do we
recover the true preference value of an item to a user?

We develop an algorithm to answer these questions using the singular value decomposition (SVD)
of the observed ratings matrix (Section 2). The genesis of this algorithm follows by viewing the
observed ratings at any point of time as union of true ratings and recommendations:

Robs = Rtrue + Rrecom (1)
where Robs is the observed rating matrix at a given instant of time, Rtrue is the rating matrix due
to users’ true preferences of items (along with any external influences such as ads, friends, and so
on) and Rrecom is the rating matrix which indicates the RS’s contribution to the observed ratings.
Our more formal goal is to recover Rtrue from Robs. But this is impossible without strong modeling
assumptions; any rating is just as likely to be a true rating as due to the system.

Thus, we make strong, but plausible assumptions about a RS. In essence, these assumptions prescribe
a precise model of the recommender and prevent its effects from completely dominating the future.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

With these assumptions, we are able to mathematically relate Rtrue and Robs. This enables us to
find the centered rating matrix Rtrue (up to scaling). We caution readers that these assumptions
are designed to create a model that we can tractably analyze, and they should not be considered
limitations of our ideas. Indeed, the strength of this simplistic model is that we can use its insights
and predictions to analyze far more complex real-world data. One example of this model is that
the notion of Rtrue is a convenient fiction that represents some idealized, unperturbed version of the
ratings matrix. Our model and theory suggests that Rtrue ought to have some relationship with the
observed ratings, Robs. By studying these relationships, we will show that we gain useful insights
into the strength of various feedback and recommendation processes in real-data.

In that light, we use our theory to develop a heuristic, but accurate, metric to quantitatively infer the
influence of a RS (or any set of feedback effects) on a ratings matrix (Section 3). Additionally, we
propose a metric for evaluating the influence of a recommender system on each user-item rating pair.
Aggregating these scores over all users helps identify putative highly recommended items. The final
metrics for a RS provide insight into the quality of recommendations and argue that Netflix had a
better recommender than MovieLens, for example. This score is also sensitive to all cases where we
have ground-truth knowledge about feedback processes akin to recommenders in the data.

2 Deconvolving feedback

We first state equations ans assumptions under which the true rating matrix is recoverable (or
deconvolvable) from the observed matrix, and provide an algorithm to deconvolve using the SVD.

Figure 1: Subfigure A shows a ratings matrix with rec-
ommender induced ratings and true ratings; Figure B:
Feedback loop in RS wherein the observed ratings is a
function of the true ratings and ratings induced by a RS

2.1 A model recommender system

Consider a ratings matrix R of dimen-
sion m × n where m is the number of
users and n is the number of items being
rated. Users are denoted by subscript u,
and items are denoted by subscript i, i.e.,
Ru,i denotes user u’s rating for item i. As
stated after equation (1), our objective
is to decouple Rtrue from Rrecom given
the matrix Robs. Although this problem
seems intractable, we list a series of as-
sumptions under which a closed form
solution of Rtrue is deconvolvable from
Robs alone.
Assumption 1 The feedback in the RS occurs through the iterative process involving the observed
ratings and an item-item similarity matrix S: 1

Robs = Rtrue + H � (RobsS). (2)

Here � indicates Hadamard, or entrywise product, given as: (H � R)u,i = Hu,i · Ru,i. This assumption
is justified because in many collaborative filtering techniques, Rrecom is a function of the observed
ratings Robs and the item-item similarity matrix, S . The matrix H is an indicator matrix over a set
of items where the user followed the recommendation and agreed with it. This matrix is essentially
completely unknown and is essentially unknowable without direct human interviews. The model RS
equation (2) then iteratively updates Robs based on commonly rated items by users. This key idea is
illustrated in Figure 1. The recursion progressively fills all missing entries in matrix Robs starting
from Rtrue. The recursions do not update Rtrue in our model of a RS. If we were to explicitly consider
the state of matrix Robs after k iterations, Rk+1

obs we get:

Rk+1
obs = Rtrue + H(k) � (Rk

obsSk) = Rtrue + H(k) �
((

Rtrue + H(k−1) � (Rk−1
obs Sk−1)

)
Sk

)
= . . . (3)

Here Sk is the item-item similarity matrix induced by the observed matrix at state k. The above
equation 3 is naturally initialized as R1

obs = Rtrue along with the constraint S1 = Strue, i.e, the similarity

1For an user-user similarities, Ŝ, the derivations in this paper can be extended by considering the expression:
RT

obs = RT
true + HT � (RT

obsŜ). We restrict to item-item similarity which is more popular in practice.

2

matrix at the first iteration is the similarity matrix induced by the matrix of true preferences, Rtrue.
Thus, we see that Robs is an implicit function of Rtrue and the set of similarity matrices Sk,Sk−1, . . .S1.
Assumption 2 Hadamard product H(k) is approximated with a probability parameter αk ∈ (0, 1].

We model the selection matrix H(k) and it’s Hadamard problem in expectation and replace the
successive matrices H(k) with independent Bernoulli random matrices with probability αk. Taking
the expectation allows us to replace the matrix H(k) with the probability parameter αk itself:

Rk+1
obs = Rtrue + αk(Rk

obsSk) = Rtrue + αk

((
Rtrue + αk−1(Rk−1

obs Sk−1)
)
Sk

)
= . . . (4)

The set of Sk,Sk−1, · · · are apriori unknown. We are now faced with the task of constructing a valid
similarity metric. Towards this end, we make our next assumption.

Assumption 3 The user mean R̄u in the observed and true matrix are roughly equal: R̄(obs)
u ≈ R̄(true)

u .
The Euclidean item norms ‖Ri‖ are also roughly equal: ‖R(obs)

i ‖ ≈ ‖R(true)
i ‖.

These assumptions are justified because ultimately we are interested in relative preferences of items
for a user and unbiased relative ratings of items by users. These can be achieved by centering
users and the normalizing item ratings, respectively, in the true and observed ratings matrices. We
quantitatively investigate this assumption in the supplementary material. Using this assumption, the
similarity metric then becomes:

S(i, j) =

∑
u∈U(Ru,i − R̄u)(Ru, j − R̄u)√∑

u∈U(Ru,i − R̄u)2
√∑

u∈U(Ru, j − R̄u)2
(5)

This metric is known as the adjusted cosine similarity, and preferred over cosine similarity because it
mitigates the effect of rating schemes over users [25]. Using the relations R̃u,i = Ru,i − R̄u, and,R̂u,i =
R̃u,i

‖R̃i‖
=

Ru,i−R̄u√∑
u∈U (Ru,i−R̄u)2

, the expression of our recommender (4) becomes:

R̂obs = R̂true(I + f1(a1)R̂T
trueR̂true + f2(a2)(R̂T

trueR̂true)2 + f3(a3)(R̂T
trueR̂true)3 + . . .) (6)

Here, f1, f2, f3 . . . are functions of the probability parameters ak = [α1, α2, . . . αk, . . .] of the form
fz(az) = cαc1

1 α
c2
1 . . . αck

k . . . such that
∑

k ck = z, and c is a constant. The proof of equation 6 is
in the supplementary material. We see that the centering and normalization results in R̂obs being
explicitly represented in terms of R̂true and coefficients f (a). It is now possible to recover R̂true, but
the coefficients f (a) are apriori unknown. Thus, our next assumption.
Assumption 4 fz(az) = αz, i.e., the coefficients of the series (6) are induced by powers of a constant
probability parameter α ∈ (0, 1].

Note that in recommender (3), Robs becomes denser with every iteration, and hence the higher order
Hadamard products in the series fill fewer missing terms. The effect of absorbing the unknowable
probability parameters, αk’s into single probability parameter α is similar. Powers of α, produce
successively less of an impact, just as in the true model. The governing expression now becomes:

R̂obs = R̂true(I + αR̂T
trueR̂true + α2(R̂T

trueR̂true)2 + α3(R̂T
trueR̂true)3 + . . .) (7)

In order to ensure convergence of this equation, we make our final assumption.

Assumption 5 The spectral radius of the similarity matrix αR̂T
trueR̂true is less than 1.

This assumption enables us to write the infinite series representing R̂obs, R̂true(I + αR̂T
trueR̂true +

α2(R̂T
trueR̂true)2 +α3(R̂T

trueR̂true)3 + . . .) as (1−αR̂T
trueR̂true)−1. It states that given α, we scale the matrix

R̂T
trueR̂true such that the spectral radius of αR̂T

trueR̂true is less than 1 2. Then we are then able to recover
R̂T

true up to a scaling constant.

Discussion of assumptions. We now briefly discuss the implications of our assumptions. First,
assumption 1 states the recommender model. Assumption 2 states that we are modeling expected

2See [10] for details on scaling similarity matrices to ensure convergence

3

Figure 2: (a) to (f): Our procedure for scoring ratings based on the deconvolved scores with true
initial ratings in cyan and ratings due to recommender in red. (a) The observed and deconvolved
ratings. (b) The RANSAC fit to extract straight line passing through data points for each item. (c)
Rotation and translation of data points using fitted line such that the scatter plot is approximately
parallel to y-axis and recommender effects are distinguishable along x-axis. (d) Scaling of data points
used for subsequent score assignment. (e) Score assignment using the vertex of the hyperbola with
slope θ = 1 that passes through the data point. (f) Increasing α deconvolves implicit feedback loops
to a greater extent and better discriminates recommender effects as illustrated by the red points which
show more pronounced deviation when α = 1.

behavior rather than actual behavior. Assumptions 3-5 are key to our method working. They
essentially state that the RS’s effects are limited in scope so that they cannot dominate the world.
This has a few interpretations on real-world data. The first would be that we are considering the
impact of the RS over a short time span. The second would be that the recommender effects are
essentially second-order and that there is some other true effect which dominates them. We discuss
the mechanism of solving equation 7 using the above set of five assumptions next.

2.2 The algorithm for deconvolving feedback loops

Theorem 1 Assuming the RS follows (7), α is between 0 and 1, and the singular value decomposition
of the observed rating matrix is, R̂obs = UΣobsVT , the deconvolved matrix Rtrue of true ratings is
given as UΣtrueVT , where the Σtrue is a diagonal matrix with elements:

σtrue
i =

−1
2ασobs

i

+

√
1

4α2(σobs
i)2

+
1
α

(8)

The proof of the theorem is in the supplementary material. In practical applications, the feedback
loops are deconvolved by taking a truncated-SVD (low rank approximation) instead of the complete
decomposition. In this process, we naturally concede accuracy for performance. We consider the
matrix of singular values Σ̃obs to only contain the k largest singular values (the other singular values
are replaced by zero). We now state Algorithm 1 for deconvolving feedback loops. The algorithm is
simple to compute as it just involves a singular value decomposition of the observed ratings matrix.

3 Results and recommender system scoring

We tested our approach for deconvolving feedback loops on synthetic RS, and designed a metric to
identify the ratings most affected by the RS. We then use the same automated technique to study
real-world ratings data, and find that the metric is able to identify items influenced by a RS.

4

Algorithm 1 Deconvolving Feedback Loops
Input: Robs, α, k, where Robs is observed ratings matrix, α is parameter governing feedback loops

and k is number of singular values
Output: R̂true, True rating matrix

1: Compute R̃obs given Robs, where R̃obs is user centered observed matrix
2: Compute R̂obs ← R̃obsD−1

N , where R̂obs is item-normalized rating matrix, and D−1
N is diagonal matrix of item-norms

DN (i, i) =

√∑
u∈U (Ru,i − R̄u)2

3: Solve UΣobsVT ← S VD(R̂obs, k), the truncated SVD corresponding to k largest singular values.

4: Perform σtrue
i ←

(−1
2ασobs

i
+

√
1

4α2(σobs
i)2 + 1

α

)
for all i

5: return U,Σtrue,VT

Figure 3: Results for a synthetic RS with controllable effects. (Left to right): (a) ROC curves by
varying data sparsity (b) ROC curves by varying the parameter α (c) ROC curves by varying feedback
exponent (d) Score assessing the overall recommendation effects as we vary the true effect.

3.1 Synthetic data simulating a real-world recommender system

We use item response theory to generate a sparse true rating matrix Rtrue using a model related to that
in [12]. Let au be the center of user u’s rating scale, and bu be the rating sensitivity of user u. Let ti
be the intrinsic score of item i. We generate a user-item rating matrix as:

Ru,i = L[au + buti + ηu,i] (9)

where L[ω] is the discrete levels function assigning a score in the range 1 to 5: L[ω] =
max(min(round(ω), 5), 1) and ηu,i is a noise parameter. In our experiment, we draw au ∼ N(3, 1),
bu ∼ N(0.5, 0.5), tu ∼ N(0.1, 1), and ηu,i ∼ εN(0, 1), where N is a standard normal, and ε is a noise
parameter. We sample these ratings uniformly at random by specifying a desired level of rating
sparsity γ which serves as the input, Rtrue, to our RS. We then run a cosine similarity based RS,
progressively increasing the density of the rating matrix. The unknown ratings are iteratively updated

using the standard item-item collaborative filtering technique [8] as Rk+1
u,i =

∑
j∈i(sk

i, j R
k
u, j)∑

j∈i(|sk
i, j |)

, where k

is the iteration number and R0 = Rtrue, and the similarity measure at the kth iteration is given as

sk
i, j =

∑
u∈U Rk

u,i R
k
u, j

√∑
u∈U (Rk

u,i)2
√∑

u∈U (Rk
u, j)2

. After the kth iteration, each synthetic user accepts the top r recommen-

dations with probability proportional to (Rk+1
u,i)e, where e is an exponent controlling the frequency

of acceptance. We fix the number of iterative updates to be 10, r to be 10 and the resulting rating
matrix is Robs. We deconvolve Robs as per Algorithm 1 to output R̂true. Recall, R̂true is user-centered
and item-normalized. In the absence of any recommender effects Rrecom, the expectation is that R̂true

is perfectly correlated with R̂obs. The absence of a linear correlation hints at factors extraneous to
the user, i.e., the recommender. Thus, we plot R̂true (the deconvolved ratings) against the R̂obs, and
search for characteristic signals that exemplify recommender effects (see Figure 2a and inset).

3.2 A metric to assess a recommender system

We develop an algorithm guided by the intuition that deviation of ratings from a straight line suggest
recommender effects (Algorithm 2). The procedure is visually elucidated in Figure 2. We consider
fitting a line to the observed and deconvolved (equivalently estimated true) ratings; however, our
experiments indicate that least square fit of a straight line in the presence of severe recommender
effects is not robust. The outliers in our formulation correspond to recommended items. Hence, we
use random sample consensus or the RANSAC method [11] to fit a straight line on a per item basis

5

