
A Appendix to: “Robust k-means: a theoretical revisit”

A.1 Proof of Corollary 1

Proof. The proof for the first part appears also in the Rejoiner paper of [1] but we repeat it since the
second part is a straightforward extension of it. If s = ||z||2, then eFλ in (5b) can be written as

eFλ(x) := min
s

min
z∈Rp, ||z||2=s

1

2
||x− z||22 + fλ(s). (24)

The minimizing argument for the inner problem is zs = sx/||x||2. Substituting this value into (24),
we get

eFλ(x) = min
s

1

2
(||x||2 − s)2 + fλ(s). (25)

The optimal point in (25) is s∗ = Pfλ(||x||2). Recalling that the minimum of fλ is attained at 0 and
plugging s∗ into zs = sx/||x||2, we get the proximal map for (5b),

PFλ(x) =

{
x

||x||2Pfλ(||x||2), if x ̸= 0,

0, otherwise.

With a similar reasoning, we have

eFλ(x) := min
z∈Rp

1

2
||x− z||22 + Fλ(z)

= min
s

min
z:||z||2=s

1

2
||x− z||22 + fλ(s) (since Fλ(·) := fλ(|| · ||2))

= min
s

1

2

∥∥∥x− s
x

||x||2

∥∥∥
2

2
+ fλ(s)

= min
s

1

2
(||x||2 − s)2 + fλ(s)

= efλ(||x||2).

(26)

A.2 Proof of Lemma 1

We recall some definitions. As already mentioned in the text, in the general non-smooth and non-
convex setting, the usual subgradient does not fully characterize the differentiability of (RKM). In-
stead, we use generalized subgradients. First, we define the regular (or Frechét) subdifferential
∂̂Φ(x) of a function Φ : Rp → R at x, as the collection of vectors v, such that [19]

∀z ∈ Rp, Φ(z) ≥ Φ(x) + (z − x)⊤v + o(||z − x||2).

Taking the graphical closure of ∂̂Φ(x):

∂Φ(x) := {v ∈ Rp : ∃xn → x, Φ(xn)→ Φ(x), vn ∈ ∂̂Φ(xn), vn → v},
we arrive at the (generalized) subdifferential [19]. The points {x : 0 ∈ ∂Φ(x)} are the critical points
of Φ. Clearly ∂̂Φ(x) ⊆ ∂Φ(x) for all x. Usually, the sets ∂̂Φ(x) and ∂Φ(x) coincide and in this case
Φ is called regular at x, but there exist cases where they differ, see also Example 1 in Appendin A.8
(for a thorough presentation of generalized subgradients see Chapter 8 in [19]).

Proof. It is easier to transform the initial problem (RKM) into the equivalent form

min
c1,...,ck
w1,...,wn

n∑

i=1

k∑

l=1

wi[l]
{
min
oi

1

2
||xi − cl − oi||22 + fλ(||oi||2)

}

︸ ︷︷ ︸
Φ(xi−cl)

subject to cl ∈ Rp, l = 1, . . . , k,

wi ∈ ∆k
+, i = 1, . . . , n,

oi ∈ Rp, i = 1, . . . , n,

(SRKM)
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where wi = (wi[1], . . . , wi[k]) ∈ ∆k
+, and ∆k

+ := {(t1, . . . , tk) ∈ Rk :
∑k

i=1 ti = 1, ti ≥
0 for all i} (see also Section 4.1 in [21]). Although in this way we remove the non-smooth term
min1≤l≤k from (RKM), the problem (SRKM) still remains non-smooth due to the presence of fλ.10

A quick inspection of (SRKM) reveals that the necessary (generalized) first order optimality condi-
tion for the center cl is

0 ∈ ∂
∑

i∈Al

Φ(xi − cl) ⊆
∑

i∈Al

∂Φ(xi − cl), for l = 1, . . . , k, (27)

where Al is defined in (1) and the inclusion follows from the calculus rules of the generalized
subgradients (Theorem 9.13 and Corollary 10.9 in [19]). If fλ is convex, the Moreau envelope efλ
is also convex [19] and, in this case

∇Φ(x) = ∇eFλ(x) = x− PFλ(x). (28)

Since we deal with the general non-convex, (28) becomes (Theorem 10.13 in [19], Proposition 7
in [26])

∂Φ(x) ∈ x− Pf (x). (29)
Expressions (27) and (29) imply that

0 ∈
∑

i∈Al

∂Φ(xi − cl) ⊆
∑

i∈Al

(cl − xi + Pf (xi − cl)) , for l = 1, . . . , k. (30)

A.3 Proof of Proposition 1

Proof. We will show that the optimal solution, when y is sufficiently distant from all the other
samples, contains the single-point cluster, {y}; this implies the statement of proposition since ||y||2
can grow without bound. Let the solution {c′1, . . . , c′k} be optimal for Xn

1 under the assumption that
y does not form a single-point cluster. We will show that the clustering risk

R′
n(c

′
1, . . . , c

′
k) =

∑

u∈Xn
1

min
l

φ(||u− c′l||2), (31)

with φ = efλ , is larger than the clustering risk

R′
n(ĉ1, . . . , ĉk) =

∑

u∈Xn
1

min
l

φ(||u− ĉl||2), (32)

where {ĉ1, . . . , ĉk} are defined as

ĉl :=

{
0, for l < k,
y, for l = k.

(33)

The set {ĉ1, . . . , ĉk} defines the clusters Â = {Â1, . . . , Âk} with

Â1 = {x1, . . . , xn−1}, Â2 = {∅}, . . . , Âk−1 = {∅}, Âk = {y}. (34)

We show that
R′

n(ĉ1, . . . , ĉk) < R′
n(c

′
1, . . . , c

′
k). (35)

Let I = {x1, . . . , xn−1} be any set with n − 1 points in Rp, which without loss of generality are
placed around the origin and can be covered with a ball of radius rad(I) < λ. We augment I with a
point y, such that

1. ||y − xi||2 ≥ K1, ∀i ∈ {1, . . . , n− 1},

10The computational cost of introducing n additional k-dimensional variables is negligible. If oi and the
set {c1, . . . , ck} are fixed to values from the previous iteration, then wi (at the current iteration) is given by
wi[l] = 1, if ||xi − oi − cl||2 ≤ ||xi − oi − cl′ ||2 for all l′ different from l.
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for a non-negative constant K1. For {ĉ1, . . . , ĉk}, we have

R′
n(ĉ1, . . . , ĉk) =

∑

xi∈I
φ(||xi||2) + φ(||y − y||2)

≤ (n− 1)φ(rad(I)).
(36)

Now, denote the closest center from {c′1, . . . , c′k} to a sample u ∈ Xn
1 by c′(u). Without loss of

generality, let {y, xj} ∈ A′
1, for some xj ∈ I , and denote ||y − c′(y)||2 = ||y − c′1||2 = δ. Then,

for the sample xj ∈ A′
1, we have

||xj − y||2 ≥ K1, (37)
and

||xj − c′1||2 = ||xj − y + y − c′1||2

≥
∣∣∣||xj − y||2 − ||y − c′1||2

∣∣∣

≥ |K1 − δ|.

(38)

For any xi ∈ Xn
1 , not necessarily in A′

1, we have

||xi − c′(xi)||2 = ||xi − xj + xj − c′(xi)||2

≥
∣∣∣||xj − c′(xi)||2 − ||xi − xj ||2

∣∣∣

≥
∣∣∣|K1 − δ|− 2rad(I)

∣∣∣,

(39)

where xj ∈ A′
1.

Thus, the clustering risk R′
n for {c′1, . . . , c′k} is at least

R′
n(c

′
1, . . . , c

′
k) ≥ (n− 1)φ(||K1 − δ|− 2rad(I)|) + φ(||y − c′1||2)
≥ (n− 1)φ(rad(I)) + φ(||y − c′1||2) ( for |K1 − δ| = 3rad(I))
> (n− 1)φ(rad(I))
= R′

n(ĉ1, . . . , ĉk),

(40)

and the claim follows.

A.4 Proof of Proposition 2

Proof. The proof is closely related to the proof of Theorem 2.9 in [18] with some adaptations. Let
the solution {c′1, . . . , c′k} be optimal for Xn

1 under the condition that y is not discarded as outlier
and recall that λ is chosen such that n ≥ r(λ) > k + 1. We will show that the clustering risk

R′
n(c

′
1, . . . , c

′
k) =

∑

u∈Xn
1

min
l

φ(||u− c′l||2),

where φ = efλ , is larger than the clustering risk

R′
n(ĉ1, . . . , ĉk) =

∑

u∈Xn
1

min
l

φ(||u− ĉl||2)), (41)

associated with a solution, say {ĉ1, . . . , ĉl}, which discards y if y is sufficiently distant. Let
d(v,Xn) = minu∈Xn ||v − u||2 and diam(Xn) = maxv∈Xn minu∈Xn ||v − u||2. Without loss
of generality, let R′ = {xi1 , . . . , xir−1 , y}, ij ∈ {1, . . . , r − 1}, be the set of points that (RKM)
reports as inliers when the candidate optimal set of centers is {c′1, . . . , c′k}. Accordingly, let
R̂ = {xi1 , . . . , xir}, ij ∈ {1, . . . , r} be the set of points that (RKM) reports as inliers when the
candidate set of optimal centers is {ĉ1, . . . , ĉk}.

We construct the set of centers {ĉ1, . . . , ĉk} as,

ĉl =

{
xir , if d(c′l,Xn) > diam(Xn)
c′l, otherwise.

Now, we show that
R′

n(ĉ1, . . . , ĉk) < R′
n(c

′
1, . . . , c

′
k), (42)
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if y is such that d(y,Xn) > 3diam(Xn). Compare,

R′
n(ĉ1, . . . , ĉk) =

∑

u∈Xn
1

min
l

φ(||u− ĉl||2)

=
∑

u∈R̂

min
l

φ(||u− ĉl||2) +
∑

u/∈R̂

min
l

φ(||u− ĉl||2)

=
r∑

j=1

min
l

φ(||xij − ĉl||2)

︸ ︷︷ ︸
r points

+
∑

xi /∈R̂

min
l

φ(||xi − ĉl||2) + min
l

φ(||y − ĉl||2)

︸ ︷︷ ︸
n−r points

,

(43)

to,

R′
n(c

′
1, . . . , c

′
k) =

∑

u∈Xn
1

min
l

φ(||u− c′l||2)

=
∑

u∈R′

min
l

φ(||u− c′l||2) +
∑

u/∈R′

min
l

φ(||u− c′l||2)

=
r−1∑

j=1

min
l

φ(||xij − c′l||2) + min
l

φ(||y − c′l||2)

︸ ︷︷ ︸
r points

+
∑

xij /∈R′

min
l

φ(||xij − c′l||2)

︸ ︷︷ ︸
n−r points

.

(44)
Since n− r samples are outliers, the previous two expressions can be further simplified to

R′
n(ĉ1, . . . , ĉk) =

r∑

j=1

min
l

φ(||xij − ĉl||2) + (n− r)φ(λ), (45)

and,

R′
n(c

′
1, . . . , c

′
k) =

r−1∑

j=1

min
l

φ(||xij − c′l||2) + min
l

φ(||y − c′l||2) + (n− r)φ(λ), (46)

and so we compare the quantities

r∑

j=1

min
l

φ(||xij − ĉl||2) and
r−1∑

j=1

min
l

φ(||xij − c′l||2) + min
l

φ(||y − c′l||2).

It turns out that is sufficient to show that

||xij − xr||2 < ||xij − c′l||2, for j < r, if l is such that d(c′l,Xn) > diam(Xn),

and
||xr − c′l||2 < ||y − c′l||2, otherwise.

If d(c′l,Xn) > diam(Xn), then

||xij − xr||2 ≤ diam(Xn) < d(c′l,Xn) ≤ ||xij − c′l||2.

If d(c′l,Xn) ≤ diam(Xn), then

||y−c′l||2 ≥ d(y,Xn)−d(c′l,Xn) > 3diam(Xn)−d(c′l,Xn) ≥ diam(Xn)+d(c′l,Xn) ≥ ||xr−c′l||2.

We have shown that the optimal solution rejects the replacement y if d(y,Xn) > 3diam(Xn), im-
plying that the estimated cluster centers depend only on samples from Xn. Observing that every
candidate center should lie inside the convex hull of Xn, we deduce that all cl are bounded. In order
to complete the proof we note that, no matter the location of y, when y is not sufficiently distant so
as to be discarded, i.e., d(y,Xn) < 3diam(Xn), the estimated cluster centers are bounded (since
d(y,Xn) is bounded).
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A.5 Proof of Theorem 1

For the proof we need the following technical combinatorial lemma from [18].
Lemma 2 (Lemma 2.8 in [18]). Let k ≥ 2, d ≥ 2, q ≥ k − 2, and r = d + k be natural numbers
and let

M = {x1, . . . , xd} ∪ {y1, y2} ∪ {z1, . . . , zq},
with pairwise disjoint elements xi, yh, and zj . Any partition of a subset of M of size r in k clusters
is either of the form {

{x1, . . . , xd}, {y1, y2}, k − 2 singletons {zj}
}

or has a cluster C that contains some pair {xi, yh} or some pair {zj , u}, u ̸= zj .

Proof. The proof follows the lines of the proof of Theorem 2.9 in [18]. We proceed in several steps.

1. Construction of the modification Xn
2 . Let I = {x1, . . . , xr−k} be any set of r − k points

in Rp, placed around the origin, that can be covered with a ball of radius rad(I) < λ, such
that φ(rad(I)) ≤ φ(λ)− φ(1) (this assumption is needed for the purpose of contradiction).
We augment I with n − r + k − 2 samples {z1, . . . , zn−r+k−2} which we control by a
non-negative constant K1 such that F = I ∪ {z1, . . . , zn−r+k−2} and

(a) ||xi − zj ||2 ≥ K1 for all i ∈ {1, . . . , r − k} and all j ∈ {1, . . . , n− r + k − 2};
(b) ||zi − zj ||2 ≥ K1 for all i ̸= j.

The set of x’s and z’s is of size n− 2. The dataset F is augmented by two arbitrary points
{y1, y2}, which we control by a non-negative constant K2, such that

(c) ||y1 − y2||2 = 1;
(d) ||u− yh||2 ≥ K2, for all u ∈ F, h = 1, 2,

and thus the modification Xn
2 = F ∪ {y1, y2}. We will show that the optimal partition

of the dataset Xn
2 into k clusters, when r ≥ max{k − 2, kp + 1}, does not discard the

replacements {y1, y2} if K1 and K2 are sufficiently large.

2. Consider the clustering risk on Xn
2 for the set of centers {c1, . . . , ck}

R′
n(c1, . . . , ck) =

k∑

l=1

∑

u∈Al

φ(||u− cl||2), (47)

where A = {A1, . . . , Ak} denote the corresponding clusters and u an point from Xn
2 . We

claim that the clustering risk R′
n is bounded above by a constant that depends only on

rad(I), k and r.

In order to show this, it is sufficient to find a partition Â = {Â1, . . . , Âk} and vectors
{ĉ1, . . . , ĉk} such that R′

n(ĉ1, . . . , ĉk} is bounded from above. Consider the following
clusters, Â1 = I, Â2 = {y1, y2}, and Âj = {zj}, for j = 1, . . . , k − 2, with centers
ĉ1 = 0, ĉ2 = y1, and ĉj = zj , for 1 ≤ j ≤ k − 2; note that ĉ1 = 0 is the center of the ball
covering I. With this configuration, the remaining n− r points (outliers) from Xn

2 are zj’s
and due to (b) above, we have

R′
n(ĉ1, . . . , ĉk) = R′

n(0, y1, z1, . . . , zk−2)

=
∑

i∈A1

φ(||xi||2) + φ(1) + 0 + (n− r)φ(λ)

≤ |I|φ(rad(I)) + φ(1) + (n− r)φ(λ).

The dataset Xn
2 , by construction, satisfies the assumptions of Lemma 2 and thus any parti-

tion of size r inlier samples in k clusters is one of two kinds:
(i) {{x1, . . . , xr−2}, {y1, y2}, k − 2 singletons {zj}

or
(ii) there exists a cluster Al, with |Al| ≥ 2, containing some pair {xi, yh}

or some pair {zj , u}, zj ̸= u.

(48)

14



3. We claim that the optimal partition of size r ≥ max{k − 1, kp + 1} for Xn
2 is of kind (i).

Assume on the contrary that it is of kind (ii) and let A′ = {A′
1, . . . , A

′
k} and {c′1, . . . , c′k}

be the corresponding set of clusters and centers, respectively. We denote the closest center
from {c′1, . . . , c′k} to a sample u ∈ Xn

2 by c′(u). Without loss of generality, let {xj , yh} ∈
A′

1 for some xj ∈ I, j ∈ {1, . . . , r − k}. This implies that ||yh − c′(yh)||2 = ||yh −
c′1||2 ≤ λ, since otherwise yh would be rejected (the case where {u, zl} ∈ A′

1 is handled
analogously). Note that, by (a), (b), and (d) the cluster A′

1 contains two distant elements zi
and yh. For a point xj ∈ A′

1, we have

|K2 − λ| ≤ ||xj − c′(xj)||2,
which follows from∣∣∣∣||xj − yh||2 − ||yh − c′(xj)||2

∣∣∣∣ = ||xj − c′(xj)||2,

along with assumption 1(d). For any xi ∈ I (not necessarily in A′
1),

∣∣∣|K2 − λ|− 2rad(I)
∣∣∣ ≤ ||xi − c′(xi)||2,

which follows from
∣∣∣|K2−λ|−2rad(I)

∣∣∣ =
∣∣∣∣||xj−c′(xi)||2−||xi−xj ||2

∣∣∣∣ ≤ ||xi−c′(xi)||2 = ||xi−xj+xj−c′(xi)||2,

where xj ∈ A′
1. Thus, due to the contribution of outliers, the clustering risk R′

n(c
′
1, . . . , c

′
k)

is at least

R′
n(c

′
1, . . . , c

′
k) ≥ (r − k)φ(||K2 − λ|− 2rad(I)|) + (n− r)φ(λ). (49)

For a partition of kind (i), under the previous assumptions, we have

R′
n(ĉ1, . . . , ĉk) ≤ (r − k)φ(rad(I)) + φ(1) + (n− r)φ(λ), (50)

and since φ(rad(I)) + φ(1) < φ(λ) we have the upper bound

R′
n(ĉ1, . . . , ĉk) ≤ (r − k)φ(rad(I)) + φ(1) + (n− r)φ(λ)

< (r − k)φ(λ) + (n− r)φ(λ)

= (n− k)φ(λ).

(51)

As K2 →∞, the clustering risk R′
n(c

′
1, . . . , c

′
k) is at least equal to (n− r)φ(λ) since

R′
n(c

′
1, . . . , c

′
k) ≥ (r − k)φ(||K2 − λ|− 2rad(I)|) + (n− r)φ(λ)

K2→∞
= (n− k)φ(λ),

(52)

and finally, due to (51), we arrived at a contradiction; R′
n(c

′
1, . . . , c

′
k) is greater than

R′
n(ĉ1, . . . , ĉk). Now, by (d) the difference between yh and u ∈ F can be made arbitrarily

large and the claim of the theorem follows.

A.6 Proof of Corollary 2

Proof. The function g is continuous (by definition), increasing in [0,∞) (since∇g(x) = x−h(x) ≥
0, ∀x ≥ 0), and unbounded (limx→∞∇g(x) → ∞). The continuity of efλ , along with Lemma 1
and expressions (16)-(17), give a description of the epigraph of efλ in [0,∞) in terms of g. In [0,λ),
efλ shares the same epigraph with g up to an additive constant b. At the point x = λ, the epigraph
of efλ has an inward corner point; at this point, the graph of g(·) + b intersects the graph of the
constant function g(λ) + b; the slope with which g(·) + b intersects with g(λ) + b at x = λ is
λ − Pfλ(λ) = λ − h(λ). For x > λ, efλ is constant and equal to g(λ) + b. Finally, we note that
the slope with which the graph of the constant function g(λ) + b intersects the graph of g(·) + b at
x = λ is λ − Pfλ(λ) = λ − λ = 0 since g(λ) + b is constant. Hence, the function efλ(||x||2) is
expressed as

efλ(||x||2) = min{g(||x||2), g(λ)},
which, due to the monotonicity of g, is equivalent to g(min{||x||2,λ}).

15



A.7 Proof of Theorem 3

The complete proof of the theorem is a typical consistency proof for an estimator defined by opti-
mization of a random criterion function. First, one forces the optimal solution, in our case C∗, to
lie into a restricted (often compact) region. That is usually the hardest part of the proof. Other-
wise, one should assume that µ is supported on a closed ball of radius M centered at the origin
(this assumption is also known as the ‘peak power’ constraint). Fortunately, the hardest part has
been done; Pollard [15] shows that when φ is a general, lsc and non-decreasing function, like the
Moreau envelopes we work with, the optimal population set of centers C∗ lies inside a compact ball
B(M) ⊂ Rp with radius M > 0 centered at the origin (it turns out that the empirical optimal set
Ĉ lies also in B(M)). Then, an appeal to a uniform strong law over the restricted region gives the
desired results. In what follows, assuming that Ĉ and C∗ lie in B(M) and are unique, we make slight
modifications to the non-asymptotic consistency result in ([11], Theorem 3) and show that it holds
also for bounded φ like the Moreau envelopes associated with unbiased proximal maps.

Proof. The main probabilistic tool for proving the loss consistency of robust k-means, i.e.,
limn→∞ R(Ĉ) → R(C∗), is the statement of uniform convergence of the empirical to the true
measure. This can be easily seen by the so called VC (Vapnik-Chervonenkis) inequality (Lemma
8.2 in [4]),

R′(Ĉ)−R′(C∗) = R′(Ĉ)− inf
c1,...,ck

R′(c1, . . . , ck)

= R′(Ĉ)−R′
n(Ĉ) +R′

n(Ĉ)− inf
c1,...,ck

R′(c1, . . . , ck)

≤ R′(Ĉ)−R′
n(Ĉ) + sup

c1,...,ck
|R′

n(c1, . . . , ck)−R′(c1, . . . , ck)|

≤ 2 sup
c1,...,ck

|R′
n(c1, . . . , ck)−R′(c1, . . . , ck)|.

(53)

Thus, an upper bound for supc1,...,ck |R
′
n −R′| provides a bound for R′(Ĉ)−R′(C).

For every set of k centers C = {c1, . . . , ck} with cl ∈ B(M) ⊂ Rp, we define the function

φC(x) := min
1≤l≤k

φ(||x− cl||2). (54)

Note that 0 ≤ φC(x) ≤ φ(λ), since φ is upper-bounded (by construction) for all x ∈ B(M) and
cl ∈ B(M). Exploiting the identity EY =

∫∞
0 P{Y ≥ t}dt for any non-negative real random

variable Y , we have (see also Lemma 29.1 in [4]))

sup
c1,...,ck

|R′
n(c1, . . . , ck)−R′(c1, . . . , ck)| = sup

c1,...,ck

∣∣∣∣∣
1

n

n∑

i=1

φC(xi)− EφC(x)

∣∣∣∣∣

= sup
c1,...,ck

∣∣∣∣∣

∫ φ(λ)

0

(
1

n

n∑

i=1

1{φC(xi)>t} − P{φC(x) > t}
)
dt

∣∣∣∣∣

≤ φ(λ) sup
c1,...,ck

t>0

∣∣∣∣∣
1

n

n∑

i=1

1{φC(xi)>t} − P{φC(x) > t}

∣∣∣∣∣

≤ φ(λ) sup
A∈Fk

|µn(A)− µ(A)| ,

(55)
where A varies over the family of sets Fk in Rp defined as

Fk := {{x : φC(x) > t}, where C = {c1, . . . , ck}, cl ∈ B(M), and t > 0} ,

and µn(A) =
1
n

∑n
i=1 {xi∈A} is the empirical measure associated with Xn = {x1, . . . , xn}. Next,

we recall the concept of shatter coefficient and VC dimension for a collection of measurable sets.

Definition 3 (shatter coefficient [4]). Let A be a family of sets. For {x1, . . . , xn} ⊂ Rp, let
NA(x1, . . . , xn) be the number of different sets in

{{x1, . . . , xn} ∩ A; A ∈ A}.
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The n-th shatter coefficient of A is

s(A, n) = max
x1,...,xn

NA(x1, . . . , xn).

That is, the shatter coefficient is the maximal number of different subsets of n points that can be
picked out by sets belonging in A.

Definition 4 (VC dimension [4]). Let A be a collection of sets with |A| ≥ 2. The largest integer
k ≥ 1 for which s(A, k) = 2k is denoted by VA, and is called the VC dimension of the class A.

Regarding inequality (55), Vapnik-Chervonenkis’s Theorem 12.5 in [4] states that

P
{

sup
c1,...,ck

|R′
n(c1, . . . , ck)−R′(c1, . . . , ck)| > ϵ

}
≤ P

{
sup
A∈Gk

|µn(A)− µ(A)| > ϵ

φ(λ)

}

≤ 8s(Fk, n)e
− nϵ2

32φ(λ)2 .

(56)

The previous bound is meaningful only when VFk is finite and does not increase too quickly with n
(see also the last part of Theorem 4.3 in [11]). For example, if s(A,n) is a polynomial of degree a
with respect to n i.e., s(A,n) = na, which we show to be the case next, then limn→∞ nae−n → 0.

The set Fk is described by the sets of point x for which

φ(||x− cl||2) > t, for all l = 1, . . . , k, (57)

and thus each A ∈ Fk is the intersection of k sets of the form {x : φ(||x−cl||2) > t} for l = 1, . . . , k.
Let F denote the collection of all the latter sets, i.e.,

F := {x : φ(||x− c||2) > t}, for some c ∈ Rp. (58)

From Theorem 13.5 in [4] we know that the n-th shatter coefficient of Fk is upper bounded by

s(Fk, n) ≤ s(F , n)k for all n, k ≥ 1. (59)

So what remains is to find is the shatter coefficient of the sets in (58).

Consider the set of points {(x, t) ∈ Rd+1 : φ(||x − c||2) ≥ t}. Due to the monotonicity of
φ(|| · −c||2), a point (x0, t0) ∈ Rp+1 with t0 ≥ 0 belongs to the previously defined set if and only
if

||x0 − c||2 ≥ a(t0), (60)
where a(t0) denotes the smallest value of a for which φ(a) ≥ t0. In view of the previous equation,
we conclude that from a collection of points {(xi, ti)}ni=1 in Rp+1, only those points satisfying

||xi||22 − 2x⊤
i c+ ||c||22 − a(ti)

2 ≥ 0,

belong to {(x, t) ∈ Rd+1 : φ(||x − c||2) ≥ t}. Construct from {(xi, ti)}ni=1 the points zi =
(xi, ||xi||22 − a(ti)2). On Rp+1 define a vector space G of functions,

G :=
{
g : Rp+1 → R such that gβ,γ,δ(x, t) = βx+ γt+ δ

}
, (61)

with parameters β ∈ Rp and γ, δ ∈ R. From Theorem 13.9 in [4], the sets

{(x, t) : gβ,γ,δ(x, t) ≥ 0}

pick out only a polynomial number of subsets from {zi}ni=1 and precisely VG ≤ p + 2. Those sets
corresponding to functions in G with β = −2c, γ = 1, and δ = ||c||22 pick out even fewer subsets
from {zi}ni=1; fortunately, we arrive at the bound,

VF < VG ≤ p+ 2. (62)

In view of (62) and Theorem 13.3 in [4], an upper bound for the shatter coefficient of the class Fk

in (59) is

s(Fk, n) <

(
ne

p+ 2

)k(p+2)

. (63)
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Plugging the previous bound in (56), we get

P
{

sup
c1,...,ck

|R′
n(c1, . . . , ck)−R′(c1, . . . , ck)| > ϵ

}
< 8

(
ne

p+ 2

)k(p+2)

e
− nϵ2

32φ(λ)2 , (64)

which gives

P
{
R′

n(Ĉ)−R′(C∗) > ϵ
}
< 8

(
ne

p+ 2

)k(p+2)

e
− nϵ2

128φ(λ)2 . (65)

We conclude almost sure convergence of R′
n to R′ by noting that

∞∑

n=0

P{R′
n(Ĉ)−R′(C∗) > ϵ} <∞,

for all ϵ > 0 and thus R′(Ĉ) n→∞−→ R′(C∗) a.s.

Now, we sketch the proof for strong consistency of the cluster centers. From Proposition 5.2.1

in [23], we know that Ĉ → C∗ if i) supC |R′
n(C) − R′(C)| P→ 0 and ii) the map C $→ R′(C) is

continuous on Rp. So what remains to conclude is the continuity of the map R′ which sends a set of
centers C to the values of the clustering risk R′(C). The continuity of R′, with respect to Hausdorff
metric, is also proved in [15].

A.8 Discussion of coordinate descent for (RKM)

Finding the true optimal partition for a fixed number of sets in a given p-dimensional space is known
to be an NP-hard problem [8] and so we rely on approximation algorithms to find a locally optimal
solution for (RKM). As a result, all current algorithms for robust k-means [5, 24] are nothing else
but the coordinate descent method or else alternating optimization [22]. Applying coordinate opti-
mization on (SRKM) (see proof of Lemma 1), at each iteration we:

1. Fix wi, cl and minimize with respect to oi i.e., set oi = PFλ(xi − cl) when xi ∈ Al.
2. Fix oi and minimize with respect to wi, cl i.e., we solve a k-means problem with xi replaced

by xi − PFλ(xi − cl).
3. Repeat the previous two steps until convergence of the centers.

If the computational complexity of the proximal map is low, then (RKM) retains the computational
simplicity of the classical quadratic k-means algorithm [12].

Recently, a lot of work has been done in understanding the convergence properties of coordinate
descent methods for the case of Lipschitz functions Φ : Rp → R, see [25] and references therein.
Does all proximal maps Pfλ guarantee the convergence of coordinate descent algorithms to a local
minimum or even a stationary point? The answer to the previous question is no and recalling one of
the basic assumptions on convergence of alternating optimization, i.e. every coordinate minimum
should be unique [22], it is not a surprise that the causes for this instability are multivaluedness of
Pfλ along with possible discontinuities.

Roughly speaking, two main assumptions must be met for convergence of coordinate descent to
a regular stationary point, i.e., a point x where the regular directional derivative Φ′(x; d) :=
lim inft↓0(Φ(x + td) − Φ(x))/t is non-negative. Either Φ should be regular at every point x in
its domain, i.e., ∂Φ(x) = ∂̂Φ(x), for all x in the domain of Φ, or Φ should have a unique mini-
mum along every coordinate [22]. For (RKM) and the class of proximal maps in (16), neither of
the previous two assumptions is met and so the price we have to pay for using coordinate descent
is the possible convergence to a non-stationary point, i.e., a point where the directional derivative as
previously defined is negative; see Example 1 below.

Example 1. Consider the non-convex l0 (pseudo) norm, λ|x|0 = λ2

2 1x̸=0 and the associated hard
thresholding proximal map (12). Note that Pλ|·|0(x) is discontinuous and multivalued at |x| = λ
implying the existence of two minimizing arguments for (5b). Resorting to the definition, we see that
the Moreau envelope of the l0-norm is given by

eλ|·|0(x) =
1

2
min{x2,λ2}.
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Figure 5: The graph of 1
5

∑
xi∈X Φ(xi − c) for the point set X = {−2,−1, 1, 2, 4} (red circles) in

Example 1 when Φ = eλ|·|0 . The x-axis represents the variable c while, the y-axis represents the
values of the objective function

∑
xi∈X eλ|·|0(xi−c) as a function of c. The subgradient set at c = 0

is empty (left cross mark) while at c = 0.8 (right cross mark), it contains only the zero vector. The
two dashed line arrows constitute the non-convex tangent cone of the epigraph at 0, i.e., the tangent
cone consists of only those two elements.

Next, consider the set of points X = {−1,−2, 1, 2, 4} and the problem,

min
c

∑

xi∈X

1

5
Φ(xi − c),

where Φ = eλ|·|0 and λ = 4. Coordinate descent for the previous problem takes the form of the
following update rule,

ct+1 ← ct − 1

5

∑

xi∈X
(xi − Pλ|·|0(xi − ct)).

A common initialization method for k-means is sampling from data, i.e., k random points are sam-
pled uniformly from the dataset as initial centers. When the initial point is c0 ∈ {−2,−1} < 0, the
previous update scheme converges to c = 0 and the objective function equals,

∑

xi∈X

1

5
Φ(xi − 0) =

∑

xi∈X

1

5
eλ|·|0(xi − 0) = 2.6.

When c0 ∈ {1, 2, 4} ≥ 0 the solution is c = 0.8 and,
∑

xi∈X

1

5
Φ(xi − 0.8) =

∑

xi∈X

1

5
eλ|·|0(xi − 0.8) = 2.28,

which is the global minimum value; Figure 5 shows the graph of
∑

xi∈X
1
5eλ|·|0(xi−c). Although for

c = 0, both sets
∑

xi∈X
(
xi − Pλ|·|0(xi)

)
and

∑
xi∈X ∂eλ|·|0(xi) include the 0 element (horizontal

dashed arrow in Figure 5), c = 0 is not a local minimum. In fact, it is a saddle point in the general
sense, i.e., 0 ∈

∑
xi∈X ∂eλ|·|0(xi − 0), but not in the regular sense, i.e., 0 /∈

∑
xi∈X ∂̂eλ|·|0(xi − 0)

since, at that point the regular subgradient set is empty,
∑

xi∈X ∂̂eλ|·|0(xi − 0) = ∅. It useful to
recall the definition of the generalized subgradient for a function g at a point x as the set of all
vectors u ∈ ∂g(x) such that u⊤s ≤ 0, s ∈ T (x), where T (x) is the general tangent cone of the
epigraph of g at x; in this example, the general tangent cone of

∑
xi∈X eλ|·|0(xi − c) at c = 0 is

non-convex [19] (see explanation in Figure 5).

In Example 1, the epigraph of efλ at c = 0 has an inward corner (Figure 5) indicating absence of
regularity at that point (with the notation of [19], the regular normal cone N̂(c) and the generalized
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Figure 6: The graph of 1
5

∑
xi∈X efλ(xi − c) when fλ is Tukey’s penalty for the point set

{−2,−1, 1, 2, 4} (red circles) in Example 2.

normal cone N(c) of the epigraph of
∑

xi∈X
1
5eλ|·|0(xi − c) at c = 0 are different). Next, we

repeat the previous example with a continuous, single valued, and monotone proximal map. An
immediate corollary of single-valuedness and continuity is convergence of coordinate descent to a
stationary center c, i.e., 0 ∈

∑
xi∈X

1
5∇eλ|·|0(xi−c), since in this case the set of regular and general

subgradients coincides.
Example 2. Tukey’s non-convex penalty function [1, 20] comes from the literature of robust statistics
and has proximal map

Pfλ(x) =

{
x− x(1− (xλ )

2)2, if |x| ≤ λ,
x, otherwise.

An explicit representation for fλ for the previous proximal map can be derived following the three-
step construction described in Section 3 in [20]. The Moreau envelope of Tukey’s penalty is

efλ(x) =

{
λ2

6 (1− (1− (xλ )
2)3), if |x| ≤ λ,

λ2

6 , otherwise,

and is known as the biweight function. Since Pfλ is continuous and single-valued, every vector
Pfλ(xi − c) is associated with a gradient vector∇Φ(xi − c) and, therefore, we expect convergence
of coordinate descent to a stationary point in the regular sense (since we deal with the smooth case,
every generalized stationary point is also a regular stationary point). Consider the same set of points
X as in Example 1, k = 1, λ = 4 and the same initialization method i.e., sampling from the dataset.
Iterating a scheme of the form

ct+1
1 ← ct − 1

5

∑

xi∈X
(xi − Pfλ(xi − ct)),

until there is no change in ct, no matter the initial point, the algorithm converges to c = 0 that
happens to be the unique global minimum of

∑

xi∈X

1

5
efλ(xi − c),

see also Figure 6.
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