Improved Techniques for Training GANs

Tim Salimans Ian Goodfellow Wojciech Zaremba Vicki Cheung
timQ@openai.com ian@openai.com woj@openai.com vicki@openai.com
Alec Radford Xi Chen
alec@openai.com peter@openai.com
Abstract

We present a variety of new architectural features and training procedures that we
apply to the generative adversarial networks (GANSs) framework. Using our new
techniques, we achieve state-of-the-art results in semi-supervised classification on
MNIST, CIFAR-10 and SVHN. The generated images are of high quality as con-
firmed by a visual Turing test: our model generates MNIST samples that humans
cannot distinguish from real data, and CIFAR-10 samples that yield a human error
rate of 21.3%. We also present ImageNet samples with unprecedented resolution
and show that our methods enable the model to learn recognizable features of
ImageNet classes.

1 Introduction

Generative adversarial networks [1] (GANs) are a class of methods for learning generative models
based on game theory. The goal of GANSs is to train a generator network G(z; 8(¢)) that produces
samples from the data distribution, pgaa (), by transforming vectors of noise z as ¢ = G(z;0(%)).
The training signal for G is provided by a discriminator network D(z) that is trained to distinguish
samples from the generator distribution py,oqde1 () from real data. The generator network G in turn
is then trained to fool the discriminator into accepting its outputs as being real.

Recent applications of GANs have shown that they can produce excellent samples [2} 3]]. However,
training GANSs requires finding a Nash equilibrium of a non-convex game with continuous, high-
dimensional parameters. GANs are typically trained using gradient descent techniques that are
designed to find a low value of a cost function, rather than to find the Nash equilibrium of a game.
When used to seek for a Nash equilibrium, these algorithms may fail to converge [4].

In this work, we introduce several techniques intended to encourage convergence of the GANs game.
These techniques are motivated by a heuristic understanding of the non-convergence problem. They
lead to improved semi-supervised learning peformance and improved sample generation. We hope
that some of them may form the basis for future work, providing formal guarantees of convergence.

All code and hyperparameters may be found at https://github. com/openai/improved-gan.

2 Related work

Several recent papers focus on improving the stability of training and the resulting perceptual quality
of GAN samples [2, 3,15} 16]. We build on some of these techniques in this work. For instance, we
use some of the “DCGAN” architectural innovations proposed in Radford et al. [3]], as discussed
below.

One of our proposed techniques, feature matching, discussed in Sec. is similar in spirit to
approaches that use maximum mean discrepancy [7, [8, 9] to train generator networks [10} [11].

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

https://github.com/openai/improved-gan

Another of our proposed techniques, minibatch features, is based in part on ideas used for batch
normalization [12]], while our proposed virtual batch normalization is a direct extension of batch
normalization.

One of the primary goals of this work is to improve the effectiveness of generative adversarial
networks for semi-supervised learning (improving the performance of a supervised task, in this case,
classification, by learning on additional unlabeled examples). Like many deep generative models,
GANSs have previously been applied to semi-supervised learning [13}14], and our work can be seen
as a continuation and refinement of this effort. In concurrent work, Odena [[15] proposes to extend
GANS to predict image labels like we do in Section [5} but without our feature matching extension
(Section [3.1)) which we found to be critical for obtaining state-of-the-art performance.

3 Toward Convergent GAN Training

Training GANs consists in finding a Nash equilibrium to a two-player non-cooperative game.
Each player wishes to minimize its own cost function, J(”)(8(P) 8(%)) for the discriminator and
J(@(0(P) 9(%)) for the generator. A Nash equilibirum is a point (8(?), (%)) such that J(P) is at a
minimum with respect to 8(P) and J(%) is at a minimum with respect to 8(¢). Unfortunately, find-
ing Nash equilibria is a very difficult problem. Algorithms exist for specialized cases, but we are not
aware of any that are feasible to apply to the GAN game, where the cost functions are non-convex,
the parameters are continuous, and the parameter space is extremely high-dimensional.

The idea that a Nash equilibrium occurs when each player has minimal cost seems to intuitively mo-
tivate the idea of using traditional gradient-based minimization techniques to minimize each %)layer’s
cost simultaneously. Unfortunately, a modification to 8(P) that reduces J(?) can increase J(%), and
a modification to 0(%) that reduces J() can increase J(P). Gradient descent thus fails to converge
for many games. For example, when one player minimizes xy with respect to and another player
minimizes —zy with respect to y, gradient descent enters a stable orbit, rather than converging to
xz = y = 0, the desired equilibrium point [16]. Previous approaches to GAN training have thus
applied gradient descent on each player’s cost simultaneously, despite the lack of guarantee that this
procedure will converge. We introduce the following techniques that are heuristically motivated to
encourage convergence:

3.1 Feature matching

Feature matching addresses the instability of GANs by specifying a new objective for the generator
that prevents it from overtraining on the current discriminator. Instead of directly maximizing the
output of the discriminator, the new objective requires the generator to generate data that matches
the statistics of the real data, where we use the discriminator only to specify the statistics that we
think are worth matching. Specifically, we train the generator to match the expected value of the
features on an intermediate layer of the discriminator. This is a natural choice of statistics for the
generator to match, since by training the discriminator we ask it to find those features that are most
discriminative of real data versus data generated by the current model.

Letting f(x) denote activations on an intermediate layer of the discriminator, our new objective for
the generator is defined as: |[Eqgn~p,, f(2) — E.np, (2)f(G(2))|[3. The discriminator, and hence
f(x), are trained in the usual way. As with regular GAN training, the objective has a fixed point
where G exactly matches the distribution of training data. We have no guarantee of reaching this
fixed point in practice, but our empirical results indicate that feature matching is indeed effective in
situations where regular GAN becomes unstable.

3.2 Minibatch discrimination

One of the main failure modes for GAN is for the generator to collapse to a parameter setting where
it always emits the same point. When collapse to a single mode is imminent, the gradient of the
discriminator may point in similar directions for many similar points. Because the discriminator
processes each example independently, there is no coordination between its gradients, and thus no
mechanism to tell the outputs of the generator to become more dissimilar to each other. Instead,
all outputs race toward a single point that the discriminator currently believes is highly realistic.
After collapse has occurred, the discriminator learns that this single point comes from the generator,
but gradient descent is unable to separate the identical outputs. The gradients of the discriminator

then push the single point produced by the generator around space forever, and the algorithm cannot
converge to a distribution with the correct amount of entropy. An obvious strategy to avoid this type
of failure is to allow the discriminator to look at multiple data examples in combination, and perform
what we call minibatch discrimination.

The concept of minibatch discrimination is quite general: any discriminator model that looks
at multiple examples in combination, rather than in isolation, could potentially help avoid col-
lapse of the generator. In fact, the successful application of batch normalization in the dis-
criminator by Radford et al. [3] is well explained from this perspective. So far, however, we
have restricted our experiments to models that explicitly aim to identify generator samples that
are particularly close together. One successful specification for modelling the closeness between
examples in a minibatch is as follows: Let f(x;) € R4 denote a vector of features for in-
put x;, produced by some intermediate layer in the discriminator. We then multiply the vector
f(x;) by a tensor T € RAXBXC which results in a matrix M; € RP*C. We then compute
the L;-distance between the rows of the resulting matrix M; across samples ¢ € {1,2,...,n}
and apply a negative exponential (Fig. [I): cy(zi, ;) = exp(—||[Mip — MjullL,) € R
The output o(x;) for this minibatch layer for a sample x;

is then defined as the sum of the c,(;, «;)’s to all other — M

samples: f l M i
n I LJ
o(x;)y = Zcb(mi, zj) €R - — wn)

o(x;) = [0($i)1,0($1’)2, ...,o(x;)p| €RP -
o(X) € R"*5B

Next, we concatenate the output o(x;) of the minibatch U
layer with the intermediate features f(x;) that were its Figure 1: Figure sketches how mini-
input, and we feed the result into the next layer of the parch discrimination works. Features
discriminator. We compute these minibatch features sep- f(a;) from sample @; are multiplied
arately for samples from the generator and from the train- through a tensor 7', and cross-sample
ing data. As before, the discriminator is still required to gistance is computed.

output a single number for each example indicating how

likely it is to come from the training data: The task of the discriminator is thus effectively still to
classify single examples as real data or generated data, but it is now able to use the other examples in
the minibatch as side information. Minibatch discrimination allows us to generate visually appealing
samples very quickly, and in this regard it is superior to feature matching (Section[6). Interestingly,
however, feature matching was found to work much better if the goal is to obtain a strong classifier
using the approach to semi-supervised learning described in Section [5]

3.3 Historical averaging

When applying this technique, we modify each player’s cost to include a term |6 — + 7;:1 0[i]||%,
where]3] is the value of the parameters at past time i. The historical average of the parameters can
be updated in an online fashion so this learning rule scales well to long time series. This approach is
loosely inspired by the fictitious play [17] algorithm that can find equilibria in other kinds of games.
We found that our approach was able to find equilibria of low-dimensional, continuous non-convex
games, such as the minimax game with one player controlling z, the other player controlling y, and
value function (f(z) — 1)(y — 1), where f(z) = x forz < 0 and f(x) = 22 otherwise. For
these same toy games, gradient descent fails by going into extended orbits that do not approach the
equilibrium point.

3.4 One-sided label smoothing

Label smoothing, a technique from the 1980s recently independently re-discovered by Szegedy et.
al [L8], replaces the 0 and 1 targets for a classifier with smoothed values, like .9 or .1, and was
recently shown to reduce the vulnerability of neural networks to adversarial examples [[19].

Replacing positive classification targets with « and negative targets with 3, the optimal discriminator

becomes D(x) = ai jz:ag;ig fﬂ' T;j?:ﬁ:)ﬂ) The presence of pyodel in the numerator is problematic

because, in areas where pqat, 1S approximately zero and ppodel is large, erroneous samples from

Pmodel have no incentive to move nearer to the data. We therefore smooth only the positive labels to
o, leaving negative labels set to 0.

3.5 Virtual batch normalization

Batch normalization greatly improves optimization of neural networks, and was shown to be highly
effective for DCGANSs [3]. However, it causes the output of a neural network for an input example
@ to be highly dependent on several other inputs ' in the same minibatch. To avoid this problem
we introduce virtual batch normalization (VBN), in which each example « is normalized based on
the statistics collected on a reference batch of examples that are chosen once and fixed at the start
of training, and on z itself. The reference batch is normalized using only its own statistics. VBN is
computationally expensive because it requires running forward propagation on two minibatches of
data, so we use it only in the generator network.

4 Assessment of image quality

Generative adversarial networks lack an objective function, which makes it difficult to
compare performance of different models. One intuitive metric of performance can be
obtained by having human annotators judge the visual quality of samples [2]. We
automate this process using Amazon Mechanical Turk (MTurk), using the web in-
terface in figure Fig. (live at http://infinite-chamber-35121.herokuapp.com/
cifar-minibatch/), which we use to ask annotators to distinguish between generated data
and real data. The resulting quality assessments of our models are described in Section [6]

(o am =i, | Ermem | A downside of using human annotators is that the metric
e g varies depending on the setup of the task and the moti-
2B E;w vation of the annotators. We also find that results change
s drastically when we give annotators feedback about their

mistakes: By learning from such feedback, annotators are
Figure 2: Web interface given to anno- better able to point out the flaws in generated images, giv-
tators. Annotators are asked to distin- 1ng a more pessimistic quality assessment. The left col-
guish computer generated images from umn of Fig. [2] presents a screen from the annotation pro-
real ones. cess, while the right column shows how we inform anno-
tators about their mistakes.

As an alternative to human annotators, we propose an automatic method to evaluate samples, which
we find to correlate well with human evaluation: We apply the Inception modeﬂ [20]] to every
generated image to get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal [p(y|z = G(z))dz should have high entropy.
Combining these two requirements, the metric that we propose is: exp(E,KL(p(y|x)||p(y))), where
we exponentiate results so the values are easier to compare. Our Inception score is closely related
to the objective used for training generative models in CatGAN [14]: Although we had less success
using such an objective for training, we find it is a good metric for evaluation that correlates very
well with human judgment. We find that it’s important to evaluate the metric on a large enough
number of samples (i.e. 50k) as part of this metric measures diversity.

5 Semi-supervised learning

Consider a standard classifier for classifying a data point « into one of K possible classes. Such

a model takes in « as input and outputs a K-dimensional vector of logits {l1,...,lx}, that can
be turned into class probabilities by applying the softmax: pmedel(y = jlx) = el

: . . . e .. =1 &xp(lr)’
supervised learning, such a model is then trained by minimizing the cross-entropy between the

observed labels and the model predictive distribution pmogel (y|).

'We use the pretrained Inception model from http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgzl Code to compute the Inception score with this model will be made
available by the time of publication.

http://infinite-chamber-35121.herokuapp.com/cifar-minibatch/
http://infinite-chamber-35121.herokuapp.com/cifar-minibatch/
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

We can do semi-supervised learning with any standard classifier by simply adding samples from
the GAN generator G to our data set, labeling them with a new “generated” class y = K + 1, and
correspondingly increasing the dimension of our classifier output from K to K + 1. We may then
Use Prmodel(y = K + 1 | @) to supply the probability that « is fake, corresponding to 1 — D(x) in
the original GAN framework. We can now also learn from unlabeled data, as long as we know that
it corresponds to one of the K classes of real data by maximizing log pmeder(y € {1,..., K}|x).
Assuming half of our data set consists of real data and half of it is generated (this is arbitrary), our
loss function for training the classifier then becomes

L= _Ew,ywpdm(m,y) Ungmodel(y|m)] -]Ew~G[10gpmodel(y =K+ 1|:B)]
= Lsupervised + Lunsupervisedy where
Lsupervised = _]Ew,ywpdm(w,y) 1ngmodel(ylw7 y < K+ 1)
Lunsupervised = _{EENMM(E) 10g[1 - pmodel(y =K+ 1|$)] +Egnc IOg[medel(y =K+ 1|£L‘)]},

where we have decomposed the total cross-entropy loss into our standard supervised loss function
Liupervisea (the negative log probability of the label, given that the data is real) and an unsupervised
1088 Lynsupervisea Which is in fact the standard GAN game-value as becomes evident when we substi-
tute D(2) = 1 — Pmodel (¥ = K + 1|z) into the expression:

Lunsupervised = _{]Ea:dia‘a(w) IOg D(.’B) + Ezwnoise log(l - D(G(z)))}

The optimal solution for minimizing both Lgpervised and — Lupsupervised 1S 10 have
exp[lj(x)] = c(x)p(y=j, x)Vj<K+1 and expllxt+1(x)] = c(x)pg(x) for some undeter-
mined scaling function ¢(x). The unsupervised loss is thus consistent with the supervised loss in
the sense of Sutskever et al. [13], and we can hope to better estimate this optimal solution from
the data by minimizing these two loss functions jointly. In practice, Lunsupervised Will only help if
it is not trivial to minimize for our classifier and we thus need to train G to approximate the data
distribution. One way to do this is by training G to minimize the GAN game-value, using the
discriminator D defined by our classifier. This approach introduces an interaction between G' and
our classifier that we do not fully understand yet, but empirically we find that optimizing G using
feature matching GAN works very well for semi-supervised learning, while training G using GAN
with minibatch discrimination does not work at all. Here we present our empirical results using this
approach; developing a full theoretical understanding of the interaction between D and G using this
approach is left for future work.

Finally, note that our classifier with K + 1 outputs is over-parameterized: subtracting a general
function f(a) from each output logit, i.e. setting [;(x) < [;(x) — f(x)Vj, does not change the
output of the softmax. This means we may equivalently fix [11 (x) = OVx, in which case Liupervised
becomes the standard supervised loss Zf}lnction of our original classifier with K classes, and our

discriminator D is given by D(x) = Z(T;”J)rl, where Z(x) = Z,[le expllx(x)].

5.1 Importance of labels for image quality

Besides achieving state-of-the-art results in semi-supervised learning, the approach described above
also has the surprising effect of improving the quality of generated images as judged by human
annotators. The reason appears to be that the human visual system is strongly attuned to image
statistics that can help infer what class of object an image represents, while it is presumably less
sensitive to local statistics that are less important for interpretation of the image. This is supported
by the high correlation we find between the quality reported by human annotators and the Inception
score we developed in Section 4 which is explicitly constructed to measure the “objectness” of a
generated image. By having the discriminator D classify the object shown in the image, we bias it to
develop an internal representation that puts emphasis on the same features humans emphasize. This
effect can be understood as a method for transfer learning, and could potentially be applied much
more broadly. We leave further exploration of this possibility for future work.

6 Experiments

We performed semi-supervised experiments on MNIST, CIFAR-10 and SVHN, and sample gener-
ation experiments on MNIST, CIFAR-10, SVHN and ImageNet. We provide code to reproduce the
majority of our experiments.

6.1 MNIST

The MNIST dataset contains 60,000 labeled
images of digits. We perform semi-supervised
training with a small randomly picked fraction
of these, considering setups with 20, 50, 100,
and 200 labeled examples. Results are averaged
over 10 random subsets of labeled data, each
chosen to have a balanced number of examples
from each class. The remaining training images
are provided without labels. Our networks have
5 hidden layers each. We use weight normaliza-

tion [21] and add GauSSlan noise to the Output Figure 3. (Leﬂ) Samples generated by model dur-
of egch layer of the discriminator. Table 1 sum- jng semi-supervised training. Samples can be
marizes our results. clearly distinguished from images coming from

Samples generated by the generator during MN.IST data'set.' (I.Qigh't) Samples generated with
semi-supervised learning using feature match- Minibatch discrimination. ~ Samples are com-
ing (Section 3.1) do not look visually appealing pletely indistinguishable from dataset images.
(left Fig. 3). By using minibatch discrimination

instead (Section 3.2) we can improve their visual quality. On MTurk, annotators were able to dis-
tinguish samples in 52.4% of cases (2000 votes total), where 50% would be obtained by random
guessing. Similarly, researchers in our institution were not able to find any artifacts that would al-
low them to distinguish samples. However, semi-supervised learning with minibatch discrimination
does not produce as good a classifier as does feature matching.

S RANMWIEIQoog
et EL e -
WRN ~0O0A0 0
SP N haw\ oD
S - hPa DR
N — N S~ LN Q
—_——RnSsLEegTO UM
ERr~JdP~PWuoMNw
NN~y ryeowmoms

S
-{.
&
/
4
F
r
7
{
2

Model Number of incorrectly predicted test examples
for a given number of labeled samples
20 50 100 200
DGN [22] 333 14
Virtual Adversarial [23] 212
CatGAN [14] 191 10
Skip Deep Generative Model [24] 132 7
Ladder network [25] 106 37
Auxiliary Deep Generative Model [24] 96 2
Our model 1677 452 221 136 93 6:5 90 4:2
Ensemble of 10 of our models 1134 445 142 96 86 5:6 81 4:3

Table 1: Number of incorrectly classified test examples for the semi-supervised setting on permuta-
tion invariant MNIST. Results are averaged over 10 seeds.

6.2 CIFAR-10

Model Test error rate for
a given number of labeled samples
1000 2000 4000 8000
Ladder network [25] 20:40 0:47
CatGAN [14] 19:58 0:46
Our model 21:83 2:01 19:61 2:09 18:63 2:32 17:72 1:82

Ensemble of 10 of our models 19:22 0:54 17:25 0:66 15:59 0:47 14:87 0:89
Table 2: Test error on semi-supervised CIFAR-10. Results are averaged over 10 splits of data.

CIFAR-10 is a small, well studied dataset of 32 x 32 natural images. We use this data set to study
semi-supervised learning, as well as to examine the visual quality of samples that can be achieved.
For the discriminator in our GAN we use a 9 layer deep convolutional network with dropout and
weight normalization. The generator is a 4 layer deep CNN with batch normalization. Table 2
summarizes our results on the semi-supervised learning task.

