Appendix

A Proofs of Local Convergence

We define a sequence of constants, {Cj}j=0.1,..., that satisfy
Co=1,C,=3,andC; = Cy_1 + (4J* + 2J)Cy_, for J > 2. (11)
By construction, we can upper bound C'z,

Cyp<Cy o+ 4> +27)Cr o+ (4(J —1)* +2J - 2)Cy_3
<Croog+ AJ*+20)Cr_o+ (4(J —1)2+2J —2)Cy_s
< 8J%Cy_s
< (3J)7.

12)

A.1 Some Lemmata

We first introduce some lemmata, whose proofs can be found in Sec. A.4.

Lemma 1 (Proposition 1.1 in [20]). If & ~ N(0, 1) and ¥ € R¥*? is a fixed positive semi-definite
matrix, then for allt > 0, w. p. 1 — et we have

2T Sx < tr(X) 4+ 24/tr(X2)t + 2||Z||t.

By taking t = Plog(d) + log(n) for some n > d and some constant P > 1, we have the following
corollary.

Corollary 2. Ifx ~ N (0, ;) and ¥ € R is a fixed positive semi-definite matrix, then for a fixed
positive constant P > 1, we have, w. p. 1 — %d_P,

T Yz < tr(2)42+/tr(22)(Plog(d) 4 log(n))+2||%|| (P log(d)+log(n)) < (4P+5) tr(X) log(n).

Setting ¥ = 337 in Corollary 2, we have the following corollary.

Corollary 3. If z ~ N(0, ;) and P > 1 is a constant, then given any fixed 3 € R?, w. p. 1— %d’P,
we have
(87)* < (4P + 5) B log .

Setting > = I in Corollary 2, we have the following corollary.
Corollary 4. Ifx ~ N(0,1,) and P > 1 is a constant, then w. p. 1 — d~F, we have

|z||* < (4P + 5)dlogn.
Lemma 2 (Stein-type Lemma). Let € ~ N(0,1,) and f(x) be a function of © whose second
derivative exists. Then
E [[f(m)a:a:T]] =E[f(x)][ I+ E [[sz(w)ﬂ
Lemma 3. Lerx ~ N(0,1;) and Ay, = Oforallk =1,2,--- | K, then
I tr(Ap)I R B[ (2" Ayz)za” | < CrIT ) tr(Ag)], (13)
where C'i is a constant depending only on K, which is defined in Eq. (11).

Lemma 4. Let x; ~ N(0,1,) iid., foralli € [n] and Ay, = 0 forall k = 1,2,--- K. Let
B :=E[If  (zT Apz)za™], B; =1}, (] Ayx;)xixl and B= 1" | B,

Ifn>0(5 logK(%)(PK)KdlogK+1 d) and 6 > 7”{;(rc:gﬂforsome 0<d<1land P > 1, then
w.p. 1 —O(Kd=T), we have
1B — BJ| < 4||B]|. (14)
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Lemma 5. Let x ~ N(0, I;). Then given 3,~ € R? and Ay, = 0forallk =1,2,--- , K, we have
BN, tr(Ay) < [[E[(B8T2) (v 2) I, (@ Ayz)zz” ||| < /3Cor ||V, tr(Ax)1.
(15)

Lemma 6. Let x; ~ N(0, 1) ii.d., foralli € [n], B,v € R and Ay, = 0forallk =1,2,--- | K.
Let B := E[[(ﬁT:B)('yT:c)Hle(:BTAkm)a:wT]], B; = (BTx;) (v x5 (x] Apx;)ziz] and

B =3 Bi

Ifn > O(35 log® T (1/8)(PK) X dlog®t2(d)), § > Y2542 SKCZK“’ forsome0 <6 <land P> 1,
thenw.p. 1 — O(Kd~T), we have

|B — B < 4||B]. (16)

Lemma 7. If n > clog"" (¢)K*®dlog®"?(d), where ¢ is a constant, then n >
cdlog dlog® ™t (n).

A.2 Proof of Theorem 1

Proof. Denote the Hessian of Eq. (1), H € R¥4*Xd Let H = ", H;, where

Hll H12 . HlK
H21 H22 . H2K
H; = ' (17)
K1 K2 ... KK
For diagonal blocks,
H}? = 2(Th (s — (wi + Swy,) "ai)*) i (18)
For off-diagonal blocks,
HI' o= 4(y; — (wj + 6w))Ta) (yi — (wy + dw)T2;) (Mo oot (i — (wi, + 6wp)T2)?) it
(19)

In the following we will show that when wy, is close to the optimal solution wj, and dwy, is small
enough for all k, then H will be positive definite w.h.p..

The main idea is to upper bound the off-diagonal blocks and lower bound the diagonal blocks because,

Omin(H) = min Z aTH”a] + Z QaTHﬂal
TitillasliP=15=7 gy

>  min Omin(H)|aj|1* = 1 H|[|a]l]la|
S llag2= 12 min ’ ; ’ 20

>mm{0mm(H”)} maX{HH]lH} —1)( ZII%H

> min{oin ()} = (K = 1) max{| ']}

First consider the diagonal blocks. The idea is to decompose the diagonal blocks into two parts. The
first one only contains w and doesn’t contain dw, so for this fixed w we apply Lemma 4 to bound
this term. The second one depends on dw. We find an upper bound for this term which only depends
on the magnitude of dw. Therefore, the bound will hold for any qualified dw. Let’s first define
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{k1 ko, k1) = [K\{j}.

HIJ Z H?J
i€S;
= Z (T (s — wi zi — ow] ) ziz]
€S,
=Y 2((ys — wih @) = 20y — wi @ [|0ws, ||[l]]) (TS (i — wi @ — dwf, @) @]
€S}
- Z 'wkl:cl) (Hﬁi}l(yi — wﬁazi — 5w£:ci)2):cia:?
€S
Py
— > Al Awy,, — Awy, [[|6wg, ||[J]* (125 (y; — wi @ — dw], @) mi]
iESj
Eq
(21)
F = Z 'w,ﬁ:cl) (yi — wéwi)Q(Hﬁgl(yi — wkTsmi — 6wkTSwi)2)wiacZT
€S
— > Ay — wi @) | Awy, — Awp, ||| 6w, |||z (TS (i — wi @ — dw]) @)% 2]
iGS]‘
=320y — wixi)* (v — wi, ) (WS (i — w) @ — swf) @)?) ]
’iES_j
s
= A Awiy, — Awg, || Aw]y, — Awg, ||| wg, [||2:l|* (T2 (v — wi @ — dw] @)?) @]
€S
Es
(22)
Similarly, we decompose F,, = F,,+1 — Epy1, forn =1,2,--- | K — 1. Then, recursively, we have
H?'~F—FErF-E—-FE > - =Fgx.1—-FEx 1—Egxo—-—E  (23)
So HJ7 is decomposed into F_,, which contains only w, and E1, Es, - - - , Ex_1, each of which
contains a separate term of ||dw]|.
By Lemma 3 and Lemma 4,
By =4 | Awy, — Awy, ||| 6wy, [|(TES! | Aws,, — iP5 V]
iESj
<dey(1+ e+ ) Mg | Aw |2 [l |5 Ve
iESj
=6¢r(1+ em + cp)* K P M | Aw iy |[|*p; NCg —1d* 1
(24)
and similarly, forallr =1,2,--- | K — 1,
Ep 2 6¢5(1+ em + ) P Mg | Aw?y | Pp; NCg —1d" 7 (25)
For F'i,_1, we have
FK—l = Z Q(Hk#(yi — ’w,{wl)Q):El:BzT
iESj
&1
=i Nz || Awsy, — Awy |21 (26)

=0 NIz ([ Awiy || — || Awy]|)*1
=piN (1 = ) KD s l| Aws, |21
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where &) is because of Lemma 3 and Lemma 4 by setting A, = (Aw?;, — Awy)(Aw};, — Awy,)"
and § = 1/(20}(_1).

Now combining Eq. (26), Eq. (23) and Eq. (25), we can lower bound the eigenvalues of H77,

HT = (1= )2 87D = 6 (K = 1)(1+ e+ e0)*K 0105 ) p; Nl | A |1

27
Next consider the off-diagonal blocks for j # [,
> H
i€S,
= Z — (wj + ow;) @) (yi — (wi + 6wy) ;) (Wi it (yi — (i + owp) ;)2 ]
1€Sy
2> Ay — w] @) (yi — (wi + Swy) ;) (e i (vi — (wie + dwi) @) i)
1€Sy
+ ) Al|w] @iy — (wi + 6wy) @i | (Mpjnt (v — (wi + Swi) @)?) 2]
i€S,
2> Ay — w] @) (yi — w @) (Mjnsa (i — (wi + Swp) ")) @]
i€S,
+ > Ay — w] @[ 6w] @l (Mhs g1 (93 — (wi + 0w) @) )i
=
+ > Alldw|[|w; — wi — dwp) | (Mhg gl — wy + Swy|?) s |*F V]
i€s,
=
=< Z 4(y; — w z;)(yi — W ;) (Mg o (v — wil )]
1€S,
+8(K = Dep(1+ cm +cp) K 3AZE2 N [l PF Ve
i€S,
T T N2\ T
= Z —w] @) (yi — w] @) ik (yi — wi x:)*) @]
1€Sy
+ 12(K - I)Cf(l “+cm + Cf)ZK 3A72mu quCKfldK_ll
(28)
For the first term above,
1)~ awy — w;) @i (w) — wi) @ (M pet (W — wi) ")) @i |
i€8,
3! * * *
SGpQNHE[[(wq — wj)T:ci(wq — wl)Twi (Hk;,gj,k#l((wq — wk)Twi)Q)wiwﬂ] I (29)
&2 * * *
<6py N /3Cax —s|lwy — wj|[wy — wil| (g pet [ wy — wi?)
<6pgN/3Caxk 3| Awy; — Aw;[||Awy; — Awy|| (T k| Awy, — Auwy||?),
where &; is because of Lemma 6 and &, is because of Lemma 5.
We consider three cases: {q # j,q # 1}, q=jand ¢ = . When ¢ # j and ¢ # [,
[Awy; — Aw; ||| Awg; — Awy|| (Mg ket | Awgy, — Awg]|?) 30)

<(L+4 )22 |Awqg”HAwaH(Hk7ﬁJ k]| Awg| )
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When g = 7,
[Aw;; — Aw; || Awyy; — Aw || (e g || Aw)y, — Awy||?)

<1+ P e | A [ A | (T | Ay ) oy
For ¢ = [, we have similar results. Therefore,
K
B <> 1Y B
g=1 €S,
<Z 14 )51, 6p, NA/3C 3 AZK 2
(32)

+212 -1 Cf 1—|—Cm—|-Cf)2K 3pq]VCK 1dK IAZE—2

<(1+ cm)QK’lcmGN«/BC’gK 3AZK 2
+12(K — D)ep (14 e + ) * K 3NCy 1 dX 7T AZE 2

max

Now we obtain the lower bound for the minimal eigenvalue of the Hessian. When ¢,, <
Prmin AZK 2 Drmin AZK -2

500K\/02Km;"Amf§,2 and ¢; < 1000(K —1)2Cc_1dk1A2K. 2> We have (1 — e)?72 > (1 -

7=)2EK72 > 1 (1 + ¢, 4 ¢5)*$ 72 < 3. Hence,
1

Hjl < —— mlnNAQK 2 33

11 < e —gypmin VA (33)
Combining Eq.(20), Eq.(27) and Eq.(33), we have
1

Omin(H) = 2Pmin NATE?, (34)

which is a positive constant.

In the following we upper bound the maximal eigenvalue of the Hessian.

Omaz(H ma. aTH”a + 2aTHJla
(H) = S5 lagle= 1Z i+ :
J J#l
< 1) lag* 4+ IH [l ladll
Sy 12 12 ’ ; ’ (35)
< maX{IIH”H} +max{||H”H} Z lla;ll)

< max{||HV[|} + (K 1) mgf{HHJ I}
J J

Consider the diagonal blocks and define {k1, ko, -+ ,kx—1} = [K]\{j}.

H-jj = 2(1'[?]1 (yi — wkTS:ci — 5w,{w2)2)wzw;‘r

<2((yi — wi, m:)* + 2ly: — wi ;||ow], @] + (Sw, 2:)%) (TS (yi — wil @i — dw] x;)?) ;2]
= 2(y; — wi, ) (L5 (4 — wi, @ — dwj @) )zsz]
I3
+2(2| Awy,, — Awy, || + [|5wg, )| 6wg, [[[l2:]]* (25 (yi — wi @ — dw] x:)?)zix]
Er
(36)
For E1, _
By =dcp (14 e +cp) 2K 3AZE 2|2, |25 2 2] (37
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T

%

Fy
< 2(yi — wil®:)* (v — wi,®:)? (5 (ys — w, @i — dw] @) )z
By
+ 2(y; — w,{lwi)Q\(QAw;b —2Awy, —5wk2)T:ciH5wz;wi| (Hfzgl (yi — wg:m — 5w£wi)2)wﬂ3
By
. (38)
We also have for Fy
Ey =4cp(1+ em +cp)* AT |2 |*F 2] (39)
Therefore, recursively, we have
HY 2205 (y; — wi @) 2 2]
Fr—1 (40)
+AKer(1+ e+ cp) 2K 3AZE 2 2, |25 2 2]

Now applying Lemma 3 and Lemma 4,

=3 % FY

q €S,

=6cpK(1+ e+ cp)TINCr_1d"TTAZE 2T+ T 2Ty (Aw]y, — Awy) ;)% iz,

max
q i€S,

=6cpK(1+ e+ cp) TINCg_1d"TTAZE 2T 43 " pgNCre—1 (Tizq || Awly, — Awy||?)

mazx
q

=6c; K (1 + cpm +cp) K 3NCg_1d® 1 A2E 2T

max

—+ 3ijCK_1(1 + CnL)2K72 (Hk#J ‘|Aw;k||2)
+3 Z PeNCr—10, (14 ) ™ (e | Aw | 1?)

q:q7#]
<INCg 1 A2E-2T
(4D
Combining the off-diagonal blocks bound in Eq. (33), applying union bound on the probabilities of
the lemmata and Eq. (12) complete the proof. O

A.3 Proof of Theorem 2
We first introduce a corollary of Theorem 1, which shows the strong convexity on a line between a
current iterate and the optimum.

Corollary 5 (Positive Definiteness on the Line between w and w*). Let {x;,¥;}i=1,2,... N be
sampled from the MLR model (3). Let {wy, }x=12,... i be independent of the samples and lie in the
neighborhood of the optimal solution, defined in Eq. (4). Then, if N > O(K¥dlog"™%(d)), w.p.
1 — O(Kd2), forall X € [0,1],

1
—Prin NAZE 2T < V2 fAw™ + (1 — Nw) < 10N (3K)KA2E =21, (42)

8 min max

Proof. We set d®~1 anchor points equally along the line Aw* + (1 — \)w for A € [0, 1]. Then based
on these anchors, according to Theorem 1, by setting P = K + 1, we complete the proof. O

Now we show the proof of Theorem 2.
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Proof. Let o := pmin NAZE "2 and 8 := 10N (3K) X A2K -2,

lw* — w*[* =[lw - 9V f(w) - w|
=llw —w*|* = 2V f(w)" (w — w*) + 17|V (w)]|?

1
Vi) =( [ 92w 2w - w0y (- w)
0
= H(w — w")
According to Corollary 5,
al = H=XpBI.

IV f(w)|]* = (w - w*)"H* (w — w*) < Bw — w*)"H(w — w*)
Therefore,
[w" — w*||* <[lw — w*|* = (=178 + 2n)(w — w*)" H(w — w*)

<Jlw = w*||* = (=0*8 + 2n)allw — w*|?

« * |12
— = ||w —w
5|| |

where the third equality holds by setting n = %

A.4 Proof of the lemmata
A.4.1 Proof of Lemma 2
Proof. Let g(x) = (2734/2 e~ 1=1°/2 and we have zg(x)de = —dg(x).

/Vf x)x’ g(x dw—i—/f x)Idz

_/Vf(m)(dg(:c)) + B[f(x)]1
= E[Vf(@)] +E[f(=)]I

A.4.2 Proof of Lemma 3

Proof. Let G = E[IIf_ (x Apx)xza™]. First we show the lower bound.
Omin(GK) = thm B[ (2" Avz) (2" a)?]
a

> Hk:lE [[(CBTAIQCB)H Hglﬂlill E [[(agTa)Q]]

= I, tr(Ay)

(43)

(44)

(45)

(40)

(47)

(43)

(49)

Next, we show the upper bound. As we know, when K = 1, Gy = tr(A4;)I + 2A; and for any
K > 1, Gk should have an explicit closed-form. However, it is too complicated to derive and
formulate it for general K. Fortunately we only need the property of Eq. (13) in our proofs. We
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prove it by induction. First, it is obvious that Eq. (13) holds for K = 1 and C; = 3. We assume that,
for any J < K, there exists a constant C'; depending only on J, such that

Gy = CyIn_ tr(Ag)I (50)
Then by Stein-type lemma, Lemma 2,
Gk =E[II}_, (2" Ayz)zz" ]

K
=B, (" Ae)] T +2) B[, (2" Arz)) A;]

j=1
+4 Z AjE [[(Hk:k¢j7k¢l(acTAkm))scmTﬂ Al
Jil:g#l (51)
K
jCK,1H£(:1 tI‘(Ak)I + 2 Z CK,2<Hk7gj tr(Ak))Aj
j=1
+4 " Crol| A1 AU ek tr(Ax)T
Jil:g#l
=(Cx-1+ (2K + 4K?)Cr o)} tr(Ay)I
SoCx =Ck_1 +(4K2+2K)CK,2. Note that Cy = 1. O

A.4.3 Proof of Lemma 4

Proof. Proof Sketch: We use matrix Bernstein inequality to prove this lemma. However, the spectral
norm of the random matrix B; is not uniformly bounded, which is required by matrix Bernstein
inequality. So we define a new random matrix,

where &; is an event when || B;|| is bounded, which will hold with high probability and 1() is the
indicate function of value 1 and 0, i.e., 1(£) = 1 if £ holds and 1(€) = 0 otherwise. Then

1B = B|| < ||B = M|+ M- M|+ |M- B,
where M = E[M;] and M = 2 3" | M;. We show that

1. M=B w.h.p. by the union bound

2. || M — M]|| is bounded by matrix Bernstein inequality
3. ||M — B]| is bounded because IE[1(£)] is small.

Proof Details:
Step 1. First we show that || B;|| is bounded w.h.p.. First,
1B; ]| = Ty (2] Awae ) |||
Since & ~ N(0, 1), by Corollary 4, we have P[||x||? > (4P + 5)dlogn] < n~*d~". By Corol-
lary 2, P [x” Ay > (4P +5) tr(Ag) logn] < n~'d~F. Therefore w.p. 1 — (K + 1)n~'d~F,
I1Bill < (4P +5)F1 x (I, tr(Ax))dlog™ ' (n).

Define
m = (4P + 5)K VI tr(A4y))dlog™ T (n). (52)

and the event
E = {lIBill <m},

Let £¢ be the complementary set of &, thus P[£¢] < (K + 1)n~'d~F. By union bound, w.p.
1— (K +1)d~F,|B;|| <mforalli € [n] and M = B.

Step 2. Now we bound || M/ — M || by Matrix Bernstein’s inequality[26].
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Set Z; := M; — M. Thus E[Z;] = 0 and || Z;|| < 2m. And
IE[ZE]1 = IB[M7] — M| < [E[ME] ] + [[M7]

Since M is PSD, ||E[M?] || < m||M||. Now by matrix Bernstein’s inequality, for any 6 > 0,

L | M2/ $n) M2
P|— Zi|| = o||M|||| <2d — =2d _—
Iln”; 1= ”ﬂ P T+ 2mns T3~ 2P 2
(53)
Setting
42 o
> (P4 1) + | M logd, 54
we have w.p. at least 1 — 2d~ 7,
1
— M; — M| <6||M 55
an | < olM] (55)

Step 3. Now we bound ||M — B)||. For simplicity, we replace x; by « and &; by €.

1M = B
=[|E[B:1(EN]I
_‘gl‘?xlE[[ a CE) H ( TAkw)l(gc)ﬂ
a /2

<HHI\?X1E|I aTx) | (x TAka:)2ﬂ

E[L()]"
o (56)
= max (aa” ,E[(z" aa” z)II}_, (2" Ayz)’zx ]])1/2E[[1(5°)]]/

HaH 1
G2 .
< max (aa” Core TS, t(A40)*T) BL(E9)
< (K + 1)C2K+1
< 5
where (; is from Holder’s inequality, (s is because of Lemma 3 and (5 is because E[1(£¢)] = P[£¢].

Assume n > 4(K + 1)Cox11/d”, we have |M — B|| < %||B|| and %HBH > |M|| > %HBH So
combining this result with Eq. (52), Eq. (54), and Eq. (55), if

I, tr(Ayg)

%(41D +5)5+2d1og" " (n) log d}, (57)

n > max{4(K + 1)Car11/d", 1 5

we obtain ) ) )
II5ZM2'—MIIS*5IIMH < 50 BII (58)

According to Lemma 7, n > O(55 logK‘H( )(PK)*dlog® ™2 d) will imply Eq. (57). By further

. v/
setting § > %, we have ||[M — B|| < 36| B||, completing the proof.

A.4.4 Proof of Lemma 5

Proof.
IE[(87a)(v" &)L, (2 Ayz) ez |

> B[(87x)* (v @) I, (" Ax) ] /(18I 1v11) (59)
> (1B YT, tr(Ag).
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IE[(B" @) (v 2L, (2 Apz)zz "] |
= r{;%x]E[[(ﬁTw)('rTw)(aTw)(bTw)Hle(wTAkw)ﬂ /Clalllibl)

1/2 1/2 (60)
< E[(a”2)2(672)?] P E[(872)? (v @)L, (a7 Axa)?] 2/ (|lall b))
< VB |V tr(A)
O

A.4.5 Proof of Lemma 6

Proof. Note that the matrix B; is probably not PSD. Thus we can’t apply Lemma 4 directly. But the
proof is similar to that for Lemma 4.

Define
m = (4P + 5)% 2| 8| [y (T, tr(Ag))dlog™ ' (n), (61)

and the event, &; := {||B;|| < m}. Then by Corollary 3,
P[&] >1—-2Kn"td~F.

Define a new random matrix M; := 1(&;) B;, its expectation M := E[M;] and its empirical average
M = 5 i M

Step 1. By union bound, we have w.p. 1 — 2Kd—F, M; = B, forall i, ie., M = B.

Step 2. We now bound |

M — B||, For simplicity, we replace x; by « and &; by £.

M — Bl
=[[E[BL(E]I

~ Jlall=ibi=1 E[(a”2)(b"2)(8"2)(v" )L, (27 Axw)1(£9)]

St 1/2
£ max B[(@72)0 28 2P (0 o) 1 (o Are)?] ()]
T (62)
= |\a|\12ﬁﬁ|=1<aaT7 E [[(bTw>2(ﬁT$)2(,mi)2H£(:1(wTAkw)meTﬂ >1/2EH1(5C)]]1/2
¢z T 2 2K A)2/2 e\1/2
< max {aa”, Coucral P IPIS, tr(A0T) B[ (E)]
22RO gy ()
vnd®P
where (; is from Holder’s inequality, (> is because of Lemma 3 and (3 is because E[1(£°)] = P[£°].
According to Eq. (62) and Lemma 5, if 7”2@%;(” < /2, then
1 K« 1
1 = Bl = 501817y tr(Ax) < 6] Bl (63)

Since § < 1, we also have ||M — B| < $||BJ|, so by Lemma 5,
3 1 1 «
SIBlI 2 1Ml = SIIB] = SIBII7 =y tr(Ak) (64)
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Step 3. Now we bound || M — M]||. || M|| < m automatically holds. Since M is probably not PSD,
we don’t have ||E[M?2]|| < m| M]|. However, we can still show that E[MZ2] < O(m)||M]|.

IE[a2]]
< BB
— [E[(8"2)*(v"2)’ I, (2" A)?[l2|*za] | 65)

< Carcad x (Bl YIITIEZ, tr(Ax))?
_ 2Chk4s
= (4P 4 5)K+2

N

m|| M|

We can use matrix Bernstein inequality now. Let Z; := M; — M. ||Z;|| < 2m. |E[Z?]| <

((fpﬁf% + 1)m||M||. Define C := J;ﬁ% + 1, then

1, — 2n2||M |12 /2 2n|| M| /2
P21S zil 2 ol < 2dexp(- 0 IMITZ ) gy ORIV
no— Cxgmn||M|| 4+ 2mnd|| M]||/3 Cxm +2mé/3
(66)

Thus, whenn > (P + 1)(6;—‘;‘ + 2)m/||M||log d, we have w.p., 1 — cad™F,

- 1 1
N - M| < 361M| < S3]B.

By Eq. (61) and Eq. (64),

0 2
Ok ym/|| M| logd < cl% x (4P 4 5)%+3d1og" ™ (n) log(d)

(P+1)(55 + 5

C
< (20 45(P +1) + (4P +5)+)d10g" " (n) og(d)

Applying the fact, | B — B|| < ||[B — M| + ||M — M| + ||M — B||, and Lemma 7 completes the
proof. O
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A.5 Proof of Lemma 7

Proof. Assume we require n > cd log(d) log® ™ (n) and we have n > bedlog(d) log” (d), where
b, A depends only on K.

n > cdlogdlog® ™ (n)

)
7logK:L'1(n) > cdlogd
)
bedlog(d)log™(d) log d
log®* ! (bed log(d) log™ (d)) ~
)
blog™(d) > log® ™ (bedlog(d) log™ (d))
)

logb + Aloglog(d) > (K + 1)log(log(b) + log(c) + log(d) + (A + 1) log log(d))

1)

logb + Aloglog(d) > (K + 1) log(4 max{log(b),log(c),log(d), (A + 1) loglog(d)}) 67)
f

logb > (K + 1) log(4log(b))

logbh > (K + 1) log(4log(c))

logb + Aloglog(d) > (K + 1) log(4log(d))

logb + Aloglog(d) > (K + 1)log(4(A + 1) loglog(d))
1)
b 2 K4K

b > 4K+ 1ogR T (¢)
A>K+1

b> (4(A+1))K+

TT
b= K*F logh*t(¢)
A=K+1

B Proofs of Tensor Method for Initialization

B.1 Some Lemmata

We will use the following lemma to guarantee the robust tensor power method. The proofs of these
lemmata will be found in Sec. B.4.

Lemma 8 ( Some properties of thrid-order tensor). If T € R***9 is a supersymmetric tensor;
i.e., T; i, is equivalent for any permutation of the index, then the operator norm defined as

1T lop := sup [T(a,a,a)|

al||=1
Property 1. ||T[|op = supjq)=|p|=|c|=1 |T(a, b, c)|
Property 2. |Tlop < [To || < VE|T|op
Property 3. If T is a rank-one tensor, then | T(1y|| = [|Top
Property 4. For any matrix W € R || T(W, W, W)|lop < | T opl|W||?
Lemma 9 (Approximation error for the second moment). Let {x;,y; }ic[n) be generated from the

mixed linear regression model (3). Define My := Zk:[K] 2prw; @y, and My = % Zie[n] Y (x;®
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x; — I). Then withn > ¢, p%dlogz(d), we have wp. 1 — co Kd 2,

P
min03

My — Ma|| < 62> pllwi||? (68)
k

where cq, co are universal constants.

And for any fixed orthogonal matrix Y € R4*K | with the same condition, we have

YT (Mz — My)Y || < 62> piel|wi]? (69)
k
Lemma 10 (Subspace Estimation). Let My, M3 be
My = Z 2ppw;, @ wy, and Ms = Z bprw; ® w; ® wy, (70)
k=|K] k=|K]

and N, be an estimate of Ms. Assume ||M2 — Ms|| < dok (M) and 6 < %. LetY be the returned
matrix of the power method after O(log(1/9)) steps. Define Ry = YT MY and Rz = M3(Y,Y,Y).
Then |Ra|| < || M| and || R3||op < || M3||op. We also have
VY Twj; — wi| < 36w, Vk (71)
and
o1c(R2) > Soic(M)

Lemma 11 (Approximation error for the third moment). Let {x;, y; }ic|n) be drawn from the mixed
linear regression model (3). Let Y € R X be any fixed orthogonal matrix that satisfies, YYT'wZ —

wi| < lwill. Vk, and r; = YT, for alli € [n]. Let

N 1 3
Rg EZyi(ri@)m@rif Z}ej@)ri@ej Z 6j®€j®’l”i7 Z ri®ej®ej)

i€[n] JEK JE[K] JE[K]

and
Ry = > 6pu(Y wp) @ (V7 w}) @ (Y wy)
=[K]

Then ifn > c3——< K3 log4(d) and 3+/Csn~1/2d=1 < %3 , we have wp. 1 — ¢, Kd =2

Pmin03
IRs — Rsllop < 05 Y prllwill®,
ke[K]

where c3 and c4 are universal constant.

Lemma 12 (Robust Tensor Power Method. Similar to Lemma 4 in [7]). Let Ry = Z,[f:l Prur QU
and R3 = Zle prug @ ug, @ uy, where ug, € RX can be any fixed vector. Define oy = o (R3).
Assume the estimations of Rs and Rs, R and R respectively, satisfy |R2 — RQ“Op < € and
HR3 — ]:23”01, < €3 with

e2 < 0k /3, 8| Rsllopos” "€z +2v20 5 €5 < er (72)

1
K V pmaa: ’
for some constant cp. Let the whitening matrix W = UQ[\;l/ZUg, where I:Zg = UQAQUQT is the
eigendecomposition of Ry. Then w.p. 1 — 1), the eigenvalues {ar}E_| and the eigenvectors {vy }5_,
computed from the whitened tensor R3(W , W, W) € REXEXK by ysing the robust tensor power
method [2] will satisfy
[(WT) T (artr) — wrl < o€z + Kes

where kg = 3|| Rz /203" + 200||R2||1/2||R3||0p0;<5/2, K3 = 75HR2H1/20;{3/2 and 1 is related to

the computational time by O(log(1/n)).

Remark: This lemma differs from Lemma 4 of [7] in the requirement on €3, €3. Lemma 4 in [7]
treats ez, €3 in the same order (that are bounded by the same value), however, they should have
different order because one is for second-order moments and the other is for third-order moments.

22



B.2 Proof of Theorem 3

Proof Details. We state the proof outline here,

1. || My — Ms]|| < ez, by Matrix Bernstein’s inequality.

2. [YYTw; — wj| < ey||lw;| forall k € [K] by Davis-Kahan’s theorem [10].

3. ||Ry — Ra|| < es by Matrix Bernstein’s inequality.

4. ||R3 — R3]|op < €3 by Matrix Bernstein’s inequality after matricizing tensor.

5. Let iy = (WT)t(axoy). Then ||i, — YTw|| < e, by the robust tensor power method.
6. Finally, w,ﬁo) — wj|| < c6Amnmin by combining the results of Step 2 and Step 5.

The lemmata in Appendix B.1 provide the bound for the above steps: Lemma 9 for Step 1, Lemma 10
for Step 2 and Step 3, Lemma 11 for Step 4, and Lemma 12 for Step 5. Now we show the details.
Define

R 1= 4| Mo |20 (M) + 412] Mo | /2| Ms | op0r >/ (M)

and
R := 116]|Ma||"/ %0 > (My).

By Lemma 10, we have k3 > x3 and ko > ko for any orthogonal matrix Y.
(0) o & ~ T, T % *
wy,” —will < [[Yar —YY  will + YY" wy — wi|

IS ~ B A 2 el N
< Rao||[Ra — Rol| + ks Rs — Rslop + §5M2||wk||0K1(M2) > prlwil?
k
£3 — * — * 2 — * *
< Fady » prllwi]|* + Rads Y prllwil® + §5M20K1(M2)(mgx [wiill) > prllwi]®
k

k k

(73)

where &7 is due to triangle inequality, &> is due to Lemma 12, Lemma 10 and Lemma 9, and 3 is due
to Lemma 9 and Lemma 11. Therefore, we can set

52 CGAm'Ln
= 3R2 2oy pellwil?
53 CGAmin
~ 3R Zke[K prllwi?

and
CGAmin

207 (Mz)(maxy, wi ) 3y pellwi |2

O, <

such that ||w,(co) —wj|| < ¢6Anin. Note that Lemma 12 also requires Eq. (72), which can be satisfied
if
. 5/2
| — Rol) < ming ZEN) _cxoM) 7,
4 34||M3||opK\/pmaa:

and
~ cro e (M- 3/2
IRy — Ryl < 2o (M2)""
6K \/Pmazx
Therefore, we require
L M. M: 5/2 Amzn
0y <65 = — min{UK( 2)’ crok (M) ’CG \
2 pillwil 4 34MyllopK \/Pras 3
1 Amin M- 3/2
03 < 93 = : in{cﬁ _ 7CTUK( 2)
2 keix] Prllwil] 3f3  6K\/Pmas
by C Amin
o, < 6M2 = 6

207" (Mz)(max, wi|)) 3y pel|lwi 2

23



Now we analyze the sample complexity. 03, , 93, 03 correspond to the sample sets, (2pr,, {22 and 23
respectively. By Lemma 9, Lemma 11, we require

1, | > enr,

1
9] > ¢ dlog?(d)

PminOg

1
Q3] > ¢3 552 K31og™/2(d),

min?3

and 3y/C5n~1/2d~1 < . For the probability, we can set 7 = d~2 in Lemma 12 by scarifying a
little more computational time, which is in the order of O(log(d)). Therefore, the final probability is
atleast 1 — O(Kd~?).

B.3 Proof of Theorem 4

According to Theorem 2, after Ty = O(log d) iterations, we arrive the local convexity region in
Corollary 1. Then we just need one more set of samples, but still need O(log(1/€)) iterations to
achieve 1/e precision. By Theorem 1, Corollary 1, Theorem 2 and Theorem 3, we can partition

the dataset into |Q®)| = O(d(K log(d))?5+2) forallt = 0,1,2,--- , Ty + 1 to satisfy their sample
complexity requirement. This complete the proof.

B.4 Proofs of Some Lemmata

B.4.1 Proof of Lemma 8

Proof. Property 1. See the proof in Lemma 21 of [19].
Property 2.

1Tl = max 17(a, 1, Dllr < max VE|T(a, 1D} = =max  VE[T(a,bb)l = [Tl

Obviously, max|q=1 |T(a, I, 1)||r > || T|op-
Property 3. Let T = v Qv @ v.

1Tl = A, IT(a, I, 1) = A, [v]*(v"a)* = [|v]|* = fmax (0" a)’| = [ T|op-

Property 4. There exists a u € R% with || = 1 such that
[T(W, W, W)llop = [T(Wu, Wu, Wu)| < ||T||OPHWUH3 < ||T||0p||W||3

B.4.2 Proof of Lemma 9
Proof. Define MQ( )= 2wiw;T and Mz(k) \Sk\ Yies, Yi(®i @ x; — I), where Sy C [n] is the

index set for samples from the k-th model. Since we assume |Si| = pgn, M2 Zke[K kMz(

first bound ||M2(k) - Mz(k)H By Lemma 4 with K = 1, A; = wjw;”, thenif | S| > c155 dlog® (d),
we have w.p., 1 — ng_2,

Z ysz fE ||wk||2I 2wpwi| < 5||wk||2
ZESk

By Lemma 4 with K = 0, we have w.p. at least 1 — d 2,

Zwl —I| <6

’LESk
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Then

1
IIW > (@ wp)? = wil?) < o~ |S | 3wl — Il||wil* < 8llwi|*.
1€Sk 1E€Sk
Thus
e |S | > vi(mia] — 2wiwy || < 26]|wi||*.

1E€Sk
Andw.p. 1 — O(Kd™?),
My — Mol <26 piflwi|*.
%

O
B.4.3 Proof of Lemma 10
Proof. ||Ra|| < |[Y||?||Mz]| = || Mz]|. By Property 4 in Lemma 8, ||Rslop < [[Y[*(|Ms]lop =
|M3]|op. Let U be the top-K eigenvectors of My. Then U = span(w], w;, -+ ,w}). LetY €

R X be the top-K eigenvectors of Mg. By Lemma 9 in [19] (Davis-Kahan’s theorem [10] can also
prove it),

= = 3
|1 = Y¥TUUT) < S
According to Theorem 7.2 in [3], after ¢ steps of the power method, we have
ITYT —vyOY®T|| < (M
ok (Ma)

When § < 1/3, by Weyl’s inequality, we have o1 (M) < UK(MQ) and o (Ms) > JK(MQ).
Therefore, after t = log(2/(30)) steps of the power method, we have

VY YT —y Oy O

[Yy?T —y®Oy®T) < 25

LetY = Y®). We have
VYT —vu?| < |vY?T —yYT |+ |uUu” —YY7T| <36

and
1YY Twy —wi| < YY" —UU"|||wi]| < 36wy

Now we consider o (Rg). The proof is similar to that for Property 3 in Lemma 9 in [19].

K (R2) > o (Ma)og (YTU)

Note that |[YZU|| = |[YYT —UU7||, where Y, is the subspace orthogonal to Y. For any normalized
vector v,
3
YT Uw|? = [Uo]* = [YLUv[* > 1 = (30)* > 5
Therefore, we have o (Rs) > %O’K (My). O

B.4.4 Proof of Lemma 11

Proof. We prove it by matricizing the tensor. Define

Gi:y?('ri®7’i®ri_ Z e;Qr; ¥e; — Z e;Re; Qr; — Z riQe;®ej).
JEIK] JEIK] JEIK]

Like in Lemma 9, we first bound ||R§k) - Rék)Hop, where ng) = ﬁ > ies, Gi, and Rék) =
6(YTwy) ® (YTwyp) @ (YTwy).

k * [ 3
RS [lop = 6]|Y Tuwjs 2.
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By Lemma 10, 1 ||w; || < YT wj| < 2|lwj]. Thus

3. . 81,

il < 1B lop < - il (74)
Then

1Gillop < 427 wiiPllr 1%, (75)
By Corollary 4, we have w.p., 1 —n~1d=2, ||r;||> < 4K logn. Thus, w.p. 1 — 4n~1d =2,
1Gillop < 4 x 12°72||wi||* log® (n) (4K )*/2
Define m := cg||wj||> K3/?log®(n) for constant ¢g = 4 x (48)%/2, and the event
& = {lIGillop < m}

Then P[Ef] < 4n~1d~2. Define a new tensor B; = 1(&;)G;, its expectation B = E[[Bﬂ (the expec-

tation is over all samples from the k-th components) and its empirical average B = Al LS i€[S] B;.
Step 1. So we have B; = G; foralli € S w.p. 1 —4d 2, i.e

R =B (76)

Step 2. We bound || B — R

oy
1B = R llop = IE[L(E7)Gilllop

= Hmﬁix |E[1(&9)Gq(a, a,a)]|

< E[1(£9)]"? max [B[Gi(a,a,a)?] /2

<on~V2g! Hanaux E[(y3((r]'a)® - 3r]a))?]|"? (77)

<on 127! faliot E[(wi"2:)((x] Y a)® +9(a] Ya)*)] /2

< 20~ YV2471 /205 |wi||?
13
<3y/Csn ™24 Y| R |op,

where £ is due to Eq. (74). Therefore, if 3v/Con~ 1241 < %3, we have

303

k 3 k
1B = B llop < i ° < FNRE o (78)

And further if §3 < 1, combining Eq. (74),

3 % 1 k 3 k *
wil? < SIS lop < 1Bllop < IR < 32uw|?

Step 3. We bound || B — B||,,. Let Z; = (B; — B) -

Bl < max, I1Bwall
= HmaX |B(a,1,1)|r
max KHB(a I 1)

< max max VK|B(a,b,b)|
llal=1bll=1

£ VE|Bllop
< 32VK |wi|®
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where £ is due to Lemma 8.

1Zil| < 1Big | + 1By Il < VE (I Billop + 1Bllop) < 2VEm
Now consider [|E[Z; Z]] || and |E[Z] Z;] |-

E[2:2]] = B[(Big) - B) (B — Bw)"] = B By By | - B BY,

1B Biy Bl [ Il < B[ Giy 6T ]I
< |B[(wi™2) (|7 rr™ + 2[|7|1 + (K + 6)rr™ — 6[r[*rrT)]|
<|NE[(w; ) (Y 2| 'Y T2x”Y + 2| Y 2|*I + (K + 6)Y TzzY)] ||
< 205 K% |Jwi |,

(80)
where the last inequality is due to Lemma 3. Thus

IE[Z:ZF]|| < 3C5K?||wj|°

Similarly B[ 27 Z;] = B[ BE,) Biw| — B Bay and [|BE B || < 1B 1>

||E[[B£1)Bi(1)]] |
< |B|¢T,) G|

T 2
max i Arr — (2Ar 4 tr r
= Al sym [[y || ( ( ) )H ﬂ

IE

< max B[ @) (T A |+ arT A% e ()]l + (AT A4+ 2r]?)]

< e B[ (e A + Al (4) 4 6 () I 4 (44 2 ] (A Al)]
< B[ (i) (lrl° + dllr| + Klirll® + VE @+ 2r)llr]®)]

= B[ (wi"2)°([Y Tal|® + 2VE Y a| + 4(VE + 1)V | + K|y 2|?)]

< 205 K° ||wi]|®
(81)
Therefore,
IB[Z] Z:] || < 3C5K3(|lwj]°,

and
max{|[E[Z Z] ||, |E[Z:Z[ ]I} <3C:K?*|wi|® < cmaK* *m|wj|®

Now we are ready to apply matrix Bernstein’s inequality.

1Su[t2/2
Zil| > t|| <2KZex | 82
ﬂw 12,71 H A e e ER ey U

Setting t = 03 3, we have when

15kl = ¢ 55 1 K% o’ (n) log(d) (83)
wp.1—d2,
1B = Bllop < Hl > Zill < Gslwill, (84)
k: 1€Sk
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for some universal constant é;. And there exists some constant cs, such that |Sy| > ¢35 K* log*(d)
3

will imply (83). Step 4. Combing all the K components. With above three steps for k-th component,
i.e., Eq. (76), Eq. (78) and Eq. (84), w.h.p., we have

A (k k *
1R = B llop < Gallwi |
Now we can complete the proof by combing all the K components, w.p. 1 — O(Kd~2)

1Rs — Rsllop < > prll RS = RS lop <05 3" profluwp® (85)
ke[K] ke[K]

B.4.5 Proof of Lemma 12

Proof. Most part of the proof follows the proof of Lemma 4 in [7]. Let WTRyW = UAUT. Define
W = WUAY2UT, then W is the whitening matrix of Rs, i.e., WTR,W = I. Define the
whitened tensor T' = R3(W, W, W), i.e.,

K
T := ZpkWTUk QWhu, @ Whuy,
k=1

K
= 0P W ) @ (0, W) @ (0 *Wuy,) (86)
k=1

K
= Zp;zlmvk ® v @ v,
k=1

where {v;, := p,lg/QWTuk}szl are orthogonal basis because Zszl vkv,{ =WTR,W = Ix. In
practice, we have 7' := Mz (W, W, W), an estimation of 7. Define 7 := ||T' — T'||,. Similar to
the proof of Lemma 4 in [7], we have

er =|Rs(W, W, W) — Rs(W, W, W)|lop
<||Rs(W, W, W) — Rg(W, W, W)||op + || R (W, W, W) = Rg(W, W, W)|lop
+ || Rs (W, W, W) = Rg(W, W, W)|lop + | Rs(W, W, W) = Rg(W, W, W)]op
=|Rs(W, W, W = W)|lop + | Rs(W, W = W, W)l
+[Rs(W = W, W, W)|lop + | Rs(W, W, W) = Rg(W, W, W)]lop
<|[Rsllop (V1 + IW W] + W 1*)ew + W] ®es

(87)

where ey = ||V — W|.
If e < 0k/3, we have |O’K(1‘A—L)2) —ok| < €3 < 0k /3. Then %O’K < UK(RQ) < %0;( and
W < V3o
ew = |W =W = |[W(I - UA2UT)| < W1 - A2 (88)
Since we have |1 — A = [|[WTRyW — WT Ry W || < |[W %€z = 20 €. Thus
11— A2 < max{[1 — (14 262/0%) /2|, |1 = (1 = 265 /o) "/2[} < e2/0k

Therefore,
ew < V20 (89)
Now we have
er §8||R3||Op0';(5/262 + 2\/50}3/263 (90)

Thus we can apply Theorem 5.1 [2] to show the guarantees of the robust tensor power method to
recover {vy }5_, and {p;}5_,. It can be stated as below, for some universal constant ¢z and a small
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value 7 (the computational complexity is related to n by O(log(1/n))), if ex < CTK\/ﬁ, w.p.

1 — 7 the returned eigenvectors {94 } 2 | and eigenvalues {ay } &, satisfy

. . 1
|0k — vil| < 8erv/Pr < 8€rv/Pmaa, |Gk — ﬁ' < Ber o1
Leta, = \/%. Now we show
IW ) (andn) — wnll = (W) (ardr) — Wiagog|
< W) (andr) — (W) (aror)l| + (W) (akvr) — (W) apop|
<)M (landr — awnvkll + llarvr — arvrl)) + (W5 = (W) ||agv|
< (W) |[(ar8er /ar + Ser) + (W) — (WT)T|lax
(92)
Ifep < W we have ay/ar, < 3/2. If e < 0k /3,
W) = [[A2]|'/? < V2||Re||'/? (93)
and

(WD — (WD = (W1 - UAY2UT)|
= [|(WD)T|[|IT — A2 (94)
S 2\[2HR2H1/262/O'K

IOV )T (@dr) — will < || Rell'/?(25er + 3e2/ox )

< (3] Ra|[ V205" + 200]| Ba | /2| Bl opor ™ ez + (75| Ral| /205> % e
95)

O

C Proofs of Subspace Clustering

C.1 Some Properties of the Distance between Subspaces
According to [16], D(U,V) = /r—|UTV|Z = (I, -UTVVTU) = |UTV|Fr =
|VEU| r. We briefly give the proof.

|lov” —vvT|i = (I -vvhHout —vvia—-uvu?h)|%

Since (I — VVT)UUT(VVT(I— UUT))T = 0and (VVT(I— UUT))T(I— VVT)UUT =0, we
have

I -vvhout —vvTa-uvu?)|%
=[|(I - vV UUT|: + |VVTI -UU")| %
=2tr(VVT —vTuutv)
=2(r — |[VTU|%)

(96)

By the property of Frobineous norm we see D(-, -) is a metric, so we can use triangular inequality.
We will also use the following inequality, which is due to the dual property of matrices, ref. Lemma
3.2in [5]. Let A, B be two matrices.

IAB|
= (AB, AB)"/?
= (BBT, AT 4)"* O7)
<[ BBT|'/2|AT 4]
= BIlllAll 7
Similarly, we also have || AB||r < || A]||| B] F-
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C.2 Proof of Theorem 5

Proof. For simplicity, we use U to denote U for j € [K]. Consider fixing {Uy }x-; and updating
U;.

N
Uy =3 (Weps (1o = UUF 222 ) 2:2 U,

@
Il
—

I
]~

N Wiy (Lo~ UUE . Uy sisTUZ T U sisTULTU; (98)
Liea®

q

I
M=

Up > (Wepi(L = U UUL U 808 ))sisT U U,

q

=l jeql)
where Q((f) is the set of data points belongs to ¢-th subspace in ¢-th iteration.
Define
Bjq = B[y (s" (I, — U ULULUY)s)ss™ (99)
A 1
Bj, = m > Miy(s] (I = U UUL UL ) si)sis] (100)
q i:Q((Zt)

According to Lemma 3, we have
Myzj tr (I — USTURUF U = Bjg X Cre—iTliy te (I, = UZTURULUNT (101)
Note that tr(1, — U;TUULUY) = D(Uy, Uy)?. We have
y; D(U;, Up)*I = Bjq 2 Cx 11y, D(U;, Up)*1 (102)

1
2Ck -1’

If the conditions about n and r in Theorem 5 are satisfied, because of Lemma 4 with § = we

have, w.p. 1 — O(Kr~2),

~ " 1
Hqu - qu” < ||qu|| < Hk#] tr( -U TUkUk U ) < Umm(qu)

b
2Ck_ 2

Therefore,

1 ,
5 ks tr (1, — U;TURULUN < Bjg = (Cr—1 4 Dy tr (I, — UZTURULUDT - (103)

Given the condition, D(Uy, Ug) < ¢; ming;{ D(Uy, Ur)}, we have for ¢ # k

D(Uy,Ur)* < (D(Uy, Uy) + DUy, Ur))* < (1 + ¢)*D(Uy, Up)?
Similarly,

D(U;,Uy)* > (1 —¢)*D(U;, Uy)?

Therefore, for j # ¢

I1Bjqll < (Cre—1 + 1) (Waehg i (1 + ¢5)*D(Uy, Ui )?) D(Uy , Uy)? (104)
Forj =g¢q

> 1 * *
Omin(Bjj) > 5Hk;k?,éju —¢)’D(US, Up)? (105)
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Shown in Eq. (98), U; = Z L\ UrpgBjUiTU;. Let U, Ry] == QR(U;)
D(US,U;)

= |U; L0 R | r

<UL G5l 1R

K
= ||U} ZU*pq JqU*TU HFHR Yl

qull TUS NP BigIUgTUIDIR

q#j
< 3 p IO w1 Big ) IR
q#j
< (Cr-1 + 1) P DU (14 025D s DU UR)? ) DU, U)) IR

q#j

< (Cx1+ V(14 2" py DUF, Up) (Miekty kg DU Ui )) DU, Ug)? | IR
q#j

< (Cxo1+ 1)1+ ) * KD pge (K — 1)D2E DU, Ug)? (IR |

(106)
Now we show, ~ ~ .
”R 1” < Umzn(RJ) = Umin(UJ) (PjTmin(Bj; ))—1
1
< ((ps/2DManry (1 = )*D(US, UR)?) (107)
2
N pmin(l —cC )2K 2D3nl7(n 2

Combing Eq.(106), Eq. (107) and the condition on cg,

mawD K
DU} U) < 2(Co1 + DK = 1)1+ 2621 = o) 72000 PreeDs iy g7 72

1
<——A?
- 209szn K
(108)
Using the initialization condition, we can easily obtain o %f < % by induction. Also, the
condition, D(U j+ U j*) < ¢sDpin, still holds after each update. So we have super-linear convergence
rate. O]

D More Experimental Results

In Fig. 2, we show that, to achieve an initial error ¢ = ¢ for some constant ¢ < 1, our tensor
method only requires N to be proportional to d. Note that the naive initialization methods, random
initialization (using normal distribution) or all-zero initialization, will lead to ¢(®) ~ 1.4 and ¢(®) =1
respectively.

In Fig. 3 we compare our methods with EM in terms of iterations. In Fig. 4 we compare EM and our
methods for larger K, K = 6. Note that the per-iteration cost of MLR will be K times more than the
per-iteration cost of EM. So when K is larger, MLR will be slower than EM.

In Fig. 5, we show the sample complexities for different methods. Our methods (MLR) have a
better sample complexity than EM. And the tensor initialization outperforms random initialization
significantly.

Fig. 6 shows whatever the ambient dimension d is, the clusters will be exactly recovered when N is
proportional to r by a constant factor.
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Figure 2: Initialization error for tensor method.
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Figure 3: Comparison with EM in terms of iterations.

Table 2: Corresponding CE’s for the results in Table 1

N/K SSC SSC-OMP LRR TSC  NSN+spectral NSN+GSR PSC

200 0 0.0190 0.0010  0.0650 0 0 0
400 0 0.0090 0.0015 0.0190 0 0 0
600 0 0.0027 0 0.0120 0 0 0
800 0 0.0027 0 0.0030 0 0 0
1000 0 0.0014 0 0.0022 0 0 0
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Figure 5: Sample complexities for different methods
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Figure 6: Subspace Clustering error for different N, d and 7.
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