
Supplementary Material for “Variational Information Maximization for
Feature Selection”

A Detailed Algorithm for Variational Forward Feature Selection

We describe the detailed algorithm for our approach. We also provide open source code implement-
ing VMInaive and VMIpairwise [24].

Concretely, let us suppose class label y is discrete and has L different values {y1, y2, ..., yL}; then
we define the distribution q(xSt |y) vector Q(k)

t of size L for each sample
�

x

(k),y(k)
�

at step t:

Q(k)
t =

h

bq
⇣

x

(k)
St |y = y1

⌘

, ..., bq
⇣

x

(k)
St |y = yL

⌘iT
(20)

where x

(k)
St denotes the sample x

(k) projects onto the xSt feature space.

Also, We further denote Y of size L⇥ 1 as the distribution vector of y as follows:

Y = [bp (y = y1) , bp (y = y2) , ..., bp (y = yL)]
T (21)

Then we are able to rewrite q(xSt�1
) and q(xSt�1 |y) in terms of Q(k)

t�1, Y and substitute them into
bILB(xSt�1

: y).

To illustrate, at step t� 1 we have,

bILB (xSt�1
: y) =

1

N

X

x

(k),y(k)

log

⇣

p
⇣

x

(k)
St�1 |y = y

(k)
⌘⌘

� 1

N

X

k

log

⇣

Y TQ(k)
t�1

⌘

(22)

To select a feature i at step t, let us define the conditional distribution vector C(k)
i,t�1 for each feature

i /2 St�1 and each sample
�

x

(k),y(k)
�

, i.e.,

C(k)
i,t�1 =

h

q
⇣

x

(k)
i |x(k)

St�1 ,y = y1
⌘

, ..., q
⇣

x

(k)
i |x(k)

St�1 ,y = yL
⌘iT

(23)

At step t, we use C(k)
i,t�1 and Q(k)

t�1 previously stored and get,

bILB (xSt�1[i : y) =

1

N

X

x

(k),y(k)

log

⇣

p
⇣

x

(k)
St�1 |y = y

(k)
⌘

p
⇣

x

(k)
i |x(k)

St�1 ,y = y

(k)
⌘⌘

� 1

N

X

k

log

⇣

Y T diag
⇣

Q(k)
t�1

⌘

C(k)
i,t�1

⌘

(24)

We summarize our detailed implementation in Algorithm 1.

Updating Q(k)
t and C(k)

i,t in Algorithm 1 may vary according to different Q-distributions. But we can
verify that under Naive Bayes Q-distribution or pairwise Q-distribution, Q(k)

t and C(k)
i,t can be ob-

tained recursively from Q(k)
t�1 and C(k)

i,t�1 by noticing that q (xi|xSt ,y) = p (xi|y) for Naive Bayes

Q-distribution and q (xi|xSt ,y) =
⇣

p (xi|xft , y) q(xi|xSt�1 ,y)t�1
⌘t

for pairwise Q-distribution.

Let us denote N as number of samples, D as total number of features, T as number of selected
features and L as number of distinct values in class variable y. The computational complex-
ity of Algorithm 1 involves calculating the lower bound for each feature i at every step which is
O(NDL); updating C(k)

i,t would cost O(NDL) for pairwise Q-distribution and O(1) for Naive
Bayes Q-distribution; updating Q(k)

t would cost O(NDL). We need to select T features, therefore
the time complexity is O(NDT).2

2We ignore L here because the number of classes is usually much smaller.

10

Algorithm 1 Variational Forward Feature Selection (VMI)
Data:

�

x

(1),y(1)
�

,
�

x

(2),y(2)
�

, ...,
�

x

(N),y(N)
�

Input: T {number of features to select}
Output: F {final selected feature set}
F {?}; S0 {?}; t 1

Initialize Q(k)
0 and C(k)

i,0 for any feature i; calculate Y
while |F | < T do

bILB (xSt�1[i : y) {Eq. 24 for each i not in F}
ft argmax

i/2St�1

bILB (xi[St�1
: y)

if bILB

�

xSt�1[ft : y
�

 bILB (xSt�1
: y) then

Clear S; Set t 1

else
F F [ft
St St�1 [ft
Update Q(k)

t and C(k)
i,t

t t+ 1

end if
end while

B Optimality Under Tree Graphical Models

Theorem B.1 (Optimal Feature Selection). If data is generated according to tree graphical models,

where the class label y is the root node, denote the child nodes set in the first layer as L1 =

{x1,x2, ...,xL1}, as shown in Fig. B.1. Then there must exist a step T > 0 such that the following

three conditions hold by using VMInaive or VMIpairwise:

Condition I: The selected feature set ST ⇢ L1.

Condition II: ILB(xSt
: y) = I(xSt

: y) for 1  t  T .

Condition III: ILB(xST : y) = I(x : y).

Figure B.1: Demonstration of tree graphical model, label y is the root node.

Proof. We prove this theorem by induction. For tree graphical model when selecting the first
layer features, VMInaive and VMIpairwise are mathematically equal, therefore we only prove
VMInaive case and VMIpairwise follows the same proof.

11

1) At step t = 1, for each feature i, we have,

ILB (xi : y) =

⌧

ln

✓

q (xi|y)
q (xi)

◆�

p(x,y)

=

*

ln

0

B

@

p (xi|y)
P

y

0
p (y0

) p (xi|y0
)

1

C

A

+

p(x,y)

=

⌧

ln

✓

p (xi|y)
p (xi)

◆�

p(x,y)

= I (xi : y)

(25)

Thus, we are choosing a feature that has the maximum mutual information with y at the very first
step. Based on the data processing inequality, we have I(xi : y) � I(desc(xi) : y) for any
xi in layer 1 where desc(xi) represents any descendant of xi. Thus, we always select features
among the nodes of the first layer at step t = 1 without loss of generality. If node xj that is
not in the first layer is selected at step t = 1, denote ances(xj) as xj’s ancestor in layer 1, then
I(xj : y) = I(ances(xj) : y) which means that the information is not lost from ances(xj)! xj .
In this case, one can always switch ances(xj) with xj and let xj be in the first layer, which does
not conflict with the model assumption.

Therefore, condition I and II are satisfied in step t = 1.

2) Assuming condition I and II are satisfied in step t, then we have the following argument in step
t+ 1:

We discuss the candidate nodes in three classes, and argue that nodes in Remaining-Layer 1 Class

are always being selected.

Redundant Class For any descendant desc(St
) of selected feature set St, we have,

I
�

xSt[desc(St) : y
�

= I (xSt
: y) = ILB (xSt

: y) (26)

Eq. 26 comes from the fact that the desc(St
) carries no additional information about y other than

St. The second equality is by induction.

Based on Eq. 12 and 26, we have,

ILB

�

xSt[desc(St) : y
�

< I
�

xSt[desc(St) : y
�

= I (xSt
: y)

(27)

We assume here that the LHS is strictly less than RHS in Eq. 27 without loss of generality. This
is because if the equality holds, we have p (xSt |y) p (desc (St

) |y) = p (xt, desc (St
) |y) due to

Theorem 3.1. In this case, we can always rearrange desc(St
) to the first layer, which does not

conflict with the model assumption.

Note that by combining Eqs. 26 and 27, we can also get

ILB

�

xSt[desc(St) : y
�

< ILB (xSt
: y) (28)

Eq. 28 means that adding a feature in Redundant Class will actually decrease the value of lower
bound ILB .

Remaining-Layer1 Class For any other unselected node j of the first layer, i.e., j 2 L1\St, we have

I (xSt
: y)  I (xSt[j : y) = ILB (xSt[j : y) (29)

The inequality in Eq. 29 is obvious which comes from the data processing inequality [6]. And the
equality in Eq. 29 comes directly from Theorem 3.1.

Descendants-of-Remaining-Layer1 Class For any node desc(j) that is the descendant of j where
j 2 L1\St, we have,

ILB

�

xSt[desc(j) : y
�

 I
�

xSt[desc(j) : y
�

I
�

xSt[desc(j) : y
�

 I (xSt[j : y)
(30)

The second inequality of Ineq. 30 also comes from data processing inequality.

12

Combining Eqs. 27 and 29, we get,

ILB

�

xSt[desc(St) : y
�

< ILB (xSt[j : y) (31)

Combining Eqs. 29 and 30, we get,

ILB

�

xSt[desc(j) : y
�

 ILB (xSt[j : y) (32)

Ineq. 31 essentially tells us the forward feature selection will always choose Remaining-Layer1

Class other than Redundant Class.

Ineq. 32 is saying we are choosing Remaining-Layer1 Class other than Descendants-of-Remaining-

Layer1 Class without loss of generality (for the equality concern, we can have the same argument
in step t = 1).

Considering Ineqs. 31 and 32, in step t + 1, the algorithm chooses node j in Remaining-Layer1

Class, i.e., j 2 L1\St.

Therefore, condition I and II hold at step t+ 1.

At step t + 1, if ILB (xSt[j : y) = ILB (xSt
: y) for any j 2 L1\St, that means I (xSt[j : y) =

I (xSt
: y). Then we have,

I (xSt
: y) = I (xL1 : y) = I (x : y) (33)

The first equality in Eq. 33 holds because adding any j in L1\St will not increase the mutual
information. The second equality is due to the data processing inequality under tree graphical model
assumption.

Therefore, if ILB (xSt[j : y) = ILB (xSt
: y) for any j 2 L1\St, we set T = t. Thus by combin-

ing condition II and Eq. 33, we have,

ILB (xST : y) = I (xST : y) = I (x : y) (34)

Then condition III holds.

C Datasets and Results

Table 4 summarizes the datasets used in the experiment. Table 5 shows the complete results.

Table 4: Dataset summary. N : # samples, d: # features, L: # classes.

Data N d L Source
Lung 73 325 20 [25]
Colon 62 2000 2 [25]

Leukemia 72 7070 2 [25]
Lymphoma 96 4026 9 [25]

Splice 3175 60 3 [26]
Landsat 6435 36 6 [26]

Waveform 5000 40 3 [26]
KrVsKp 3196 36 2 [26]

Ionosphere 351 34 2 [26]
Semeion 1593 256 10 [26]
Multifeat. 2000 649 10 [26]
Optdigits 3823 64 10 [26]
Musk2 6598 166 2 [26]

Spambase 4601 57 2 [26]
Promoter 106 57 2 [26]
Gisette 6000 5000 2 [4]

Madelon 2000 500 2 [4]

13

D
ataset

m
R

M
R

JM
I

M
IM

C
M

IM
C

IFE
SP

EC
CM

I
V
M

I
n
a
iv
e

V
M

I
p
a
irw

ise

Lung
10.9±

(4.7) ⇤⇤
11.6±

(4.7)
18.3±

(5.4)
11.4±

(3.0)
23.3±

(5.4)
11.6±

(5.6)
7.4±

(3.6) ⇤
14.5±

(6.0)
C

olon
19.7±

(2.6)
17.3±

(3.0)
22.0±

(4.3)
18.4±

(2.6)
23.5±

(4.3)
16.1±

(2.0)
11.2±

(2.7) ⇤
11.9±

(1.7) ⇤⇤
Leukem

ia
0.4±

(0.7)
1.4±

(1.2)
2.5±

(1.1)
1.1±

(2.0)
4.9±

(1.9)
1.8±

(1.3)
0.0±

(0.1) ⇤
0.2±

(0.5) ⇤⇤
Lym

phom
a

5.6±
(2.8)

6.6±
(2.2)

13.0±
(6.4)

8.6±
(3.3)

35.6±
(4.3)

12.0±
(6.6)

3.7±
(1.9) ⇤

5.2±
(3.1) ⇤⇤

Splice
13.6±

(0.4) ⇤
13.7±

(0.5)
13.6±

(0.5) ⇤⇤
13.7±

(0.5)
14.7±

(0.3)
13.7±

(0.5)
13.7±

(0.5)
13.7±

(0.5)
Landsat

19.5±
(1.2)

18.9±
(1.0)

22.0±
(3.8)

19.1±
(1.1)

19.7±
(1.7)

21.0±
(3.5)

18.8±
(0.8) ⇤

18.8±
(1.0) ⇤⇤

W
aveform

15.9±
(0.5) ⇤

15.9±
(0.5) ⇤

16.1±
(0.8)

16.0±
(0.7)

22.8±
(2.2)

15.9±
(0.6) ⇤⇤

15.9±
(0.6) ⇤⇤

15.9±
(0.5) ⇤

K
rV

sK
p

5.1±
(0.7)

5.2±
(0.6)

5.3±
(0.6)

5.3±
(0.5)

5.0±
(0.7) ⇤

5.1±
(0.6) ⇤⇤

5.3±
(0.5)

5.1±
(0.7)

Ionosphere
12.8±

(0.9)
16.6±

(1.6)
13.3±

(0.9)
13.1±

(0.8)
16.1±

(1.6)
16.8±

(1.6)
12.7±

(1.9) ⇤⇤
12.0±

(1.0) ⇤
Sem

eion
23.4±

(6.5)
24.8±

(7.6)
26.7±

(9.7)
16.3±

(4.4)
28.6±

(5.8)
26.0±

(9.3)
14.0±

(4.0) ⇤
14.5±

(3.9) ⇤⇤
M

ultifeat.
4.0±

(1.6)
4.0±

(1.6)
4.9±

(2.3)
3.6±

(1.2)
7.2±

(3.0)
4.8±

(3.0)
3.0±

(1.1) ⇤
3.5±

(1.1) ⇤⇤
O

ptdigits
7.6±

(3.3)
7.6±

(3.2)
7.9±

(3.9)
7.5±

(3.4) ⇤⇤
8.1±

(4.2)
9.2±

(6.0)
7.2±

(2.5) ⇤
7.6±

(3.6)
M

usk2
12.4±

(0.7) ⇤
12.8±

(0.7)
14.0±

(1.2)
13.0±

(1.0)
13.2±

(0.6)
15.1±

(1.8)
12.8±

(0.6)
12.6±

(0.5) ⇤⇤
Spam

base
6.9±

(0.7)
7.0±

(0.8)
7.3±

(0.9)
6.8±

(0.7) ⇤⇤
10.3±

(1.8)
9.0±

(2.3)
6.6±

(0.3) ⇤
6.6±

(0.3) ⇤
Prom

oter
21.5±

(2.8)
22.4±

(4.0)
21.7±

(3.1)
22.1±

(2.9)
27.4±

(3.2)
24.0±

(3.7)
21.2±

(3.9) ⇤⇤
20.4±

(3.1) ⇤
G

isette
5.5±

(0.9)
5.9±

(0.7)
7.2±

(1.2)
5.1±

(1.3)
6.5±

(0.8)
7.1±

(1.3)
4.8±

(0.9) ⇤⇤
4.2±

(0.8) ⇤
M

adelon
30.8±

(3.8)
15.3±

(2.6) ⇤⇤
16.8±

(2.7)
17.4±

(2.6)
15.1±

(2.7) ⇤
15.9±

(2.5)
16.7±

(2.7)
16.6±

(2.9)
#W

1 /T
1 /L

1 :
11/4/2

10/6/1
11/6/0

10/7/0
15/0/2

13/2/2
#W

2 /T
2 /L

2 :
9/6/2

9/6/2
15/2/0

13/3/1
15/1/1

12/3/2

Table
5:Average

cross
validation

error
rate

com
parison

ofV
M

I
againstother

m
ethods.T

he
lasttw

o
lines

indicate
w

in(W
)/tie(T

)/loss(L
)for

V
M

I
n
a
iv

e

and
V
M

I
p
a
ir
w
is
e

respectively.

14

D Generating Synthetic Data

Here is a detailed generating process for synthetic tree graphical model data in the experiment.

Draw y ⇠ Bernoulli(0.5)

Draw x1 ⇠ Gaussian(� = 1.0, µ = y)

Draw x2 ⇠ Gaussian(� = 1.0, µ = y/1.5)

Draw x3 ⇠ Gaussian(� = 1.0, µ = y/2.25)

Draw x4 ⇠ Gaussian(� = 1.0, µ = x1)

Draw x5 ⇠ Gaussian(� = 1.0, µ = x1)

Draw x6 ⇠ Gaussian(� = 1.0, µ = x2)

Draw x7 ⇠ Gaussian(� = 1.0, µ = x2)

Draw x8 ⇠ Gaussian(� = 1.0, µ = x3)

Draw x9 ⇠ Gaussian(� = 1.0, µ = x3)

15

