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A Proof of Theorem 1

We first show that any RNN is invariant to Tα by induction on layers and time-steps. More specifically,
we prove that for any 0 ≤ t ≤ T and 1 ≤ i < d, hit (Tα(W)) [j] = αijh

i
t(W)[j]. The statement is

clearly true for t = 0; because for any i, j, hi0 (Tα(W)) [j] = αijh
i
0(W)[j] = 0.

Next, we show that for i = 1, if we assume that the statement is true for t = t′, then it is also true for
t = t′ + 1:
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We now need to prove the statement for 1 < i < d. Assuming that the statement is true for t ≤ t′ and
the layers before i, we have:
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∑
j′

Tin,α(Win)
i[j, j′]hi−1t′+1 (Tα(W)) [j′] + Trec,α(Wrec)

i[j, j′]hit′ (Tα(W)) [j′]


+

=

∑
j′

αij

αi−1j′
Wi

in[j, j
′]αi−1j′ hi−1t′+1(W))[j′] +

αij
αij′

Wi
rec[j, j

′]αij′h
i
t′(W))[j′]


+

= αijh
i
t(W)[j]

Finally, we can show that the output is invariant for any j at any time step t:

fT (W),t(xt)[j] =
∑
j′

Tout,α(Wout)[j, j
′]hd−1t (Tα(W)[j′] =

∑
j′

(1/αd−1j′ )Wout[j, j
′]αd−1j′ hd−1t (W)[j′]

=
∑
j′

Wout[j, j
′]hd−1t (W)[j′] = fW,t(xt)[j]
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We now show that any feasible node-wise rescaling can be presented as Tα. Recall that node-
wise rescaling invariances for a general feedforward network can be written as T̃β(w)u→v =
(βv/βu)wu→v for some β where βv > 0 for internal nodes and βv = 1 for any input/output nodes.
An RNN with T = 0 has no weight sharing and for each node v with index j in layer i, we have
βv = αij . For any T > 0 however, we there is no invariance that is not already counted. The reason
is that by fixing the values of βv for the nodes in time step 0, due to the feasibility, the values of β
for nodes in other time-steps should be tied to the corresponding value in time step 0. Therefore, all
invariances are included and can be presented in form of Tα.

�

B Proof of Lemma 1

We prove the statement simply by calculating the second derivative of the path-regularizer with
respect to each parameter:
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Taking the second derivative then gives us both terms after a few calculations:

κi(p) =
1

2

∑
ζ∈P

∂

∂pi

 ∂

∂pi

len(ζ)−1∏
j=0

p2π(ζj→ζj+1)

 =
∑
ζ∈P

∂

∂pi

pi ∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e 6=(ζj→ζj+1

p2π(ζj→ζj+1)


=
∑
ζ∈P

pi ∂
∂pi

∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e 6=(ζj→ζj+1

p2π(ζj→ζj+1)

+
∑
e∈Ei

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1

p2π(ζj→ζj+1)



= p2i
∑

e1,e2∈Ei
e1 6=e2

∑
ζ∈P

1e1,e2∈ζ

len(ζ)−1∏
j=0

e1 6=(ζj→ζj+1)

e2 6=(ζj→ζj+1)

p2π(ζj→ζj+1)

+
∑
e∈Ei

∑
ζ∈P

1e∈ζ

len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2π(ζj→ζj+1)



�

C Proof of Theorem 2

Node-wise rescaling invariances for a feedforward network can be written as Tβ(w)u→v =
(βv/βu)wu→v for some β where βv > 0 for internal nodes and βv = 1 for any input/output
nodes. Any feasible invariance for a network with shared weights can also be written in the same
form. The only difference is that some of βvs are now tied to each other in a way that shared
weights have the same value after transformation. First, note that since the network is invariant to
the transformation, the following statement holds by an induction similar to Theorem 1 but in the
backward direction:
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where (u′ → v′) ∈ Ei. In order to prove the theorem statement, it is enough to show that for any edge
(u→ v) ∈ Ei, κi(Tβ(p)) = (βu/βv)

2κi(p) because this property gives us the following update:
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Therefore, it is remained to show that for any edge (u→ v) ∈ Ei v, κi(Tβ(p)) = (βu/βv)
2κi(p).

We show that this is indeed true for both terms κ(1) and κ(2) separately.

We first prove the statement for κ(1). Consider each path ζ ∈ P . By an inductive argument along the
path, it is easy to see that multiplying squared weights along this path is invariant to the transformation:

len(ζ)−1∏
j=0

Tβ(p)2π(ζj→ζj+1)
=

len(ζ)−1∏
j=0

p2π(ζj→ζj+1)

Therefore, we have that for any edge e ∈ E and any ζ ∈ P ,
len(ζ)−1∏
j=0

e 6=(ζj→ζj+1)

Tβ(p)2π(ζj→ζj+1)
=

(
βu
βv

)2 len(ζ)−1∏
j=0

e6=(ζj→ζj+1)

p2π(ζj→ζj+1)

Taking sum over all paths ζ ∈ P and all edges e = (u → v) ∈ E completes the proof for κ(1).
Similarly for κ(2), considering any two edges e1 6= e2 and any path ζP , we have that:
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where (u→ v) ∈ Ei. Again, taking sum over all paths ζ and all edges e1 6= e2 proves the statement
for κ(2) and consequently for κ(1) + κ(2).
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D Proof of Theorem 3

First, note that based on the definitions in the theorem statement, for any node v, hv(p̃) = γ2v(p) and
therefore g(1) = γ2net(p). Using Lemma 1, main observation here is that for each edge e ∈ Ei and
each path ζ ∈ P , the corresponding term in κ(1) is nothing but product of the squared weights along
the path except the weights that correspond to the edge e:

1e∈ζ

len(ζ)−1∏
j=0
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p2π(ζj→ζj+1)

This path can therefore be decomposed into a path from input to edge e and a path from edge e to the
output. Therefore, for any edge e, we can factor out the number corresponding to the paths that go
through e and rewrite κ(1) as follows:
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where Pin→u is the set of paths from input nodes to node v and Pv→out is defined similarly for the
output nodes.

By induction on layers of N (G, π, p̃), we get the following:∑
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Therefore, κ(1) can be written as:
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Next, we show how to calculate the second term, i.e. κ(2). Each term in κ(2) corresponds to a path
that goes through two edges. We can decompose such paths and rewrite κ(2) similar to the first term:
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where Pu→v is the set of all directed paths from node u to node v.
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