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Abstract

Solving statistical learning problems often involves nonconvex optimization. De-
spite the empirical success of nonconvex statistical optimization methods, their
global dynamics, especially convergence to the desirable local minima, remain
less well understood in theory. In this paper, we propose a new analytic paradigm
based on diffusion processes to characterize the global dynamics of nonconvex
statistical optimization. As a concrete example, we study stochastic gradient de-
scent (SGD) for the tensor decomposition formulation of independent component
analysis. In particular, we cast different phases of SGD into diffusion processes,
i.e., solutions to stochastic differential equations. Initialized from an unstable equi-
librium, the global dynamics of SGD transit over three consecutive phases: (i) an
unstable Ornstein-Uhlenbeck process slowly departing from the initialization, (ii)
the solution to an ordinary differential equation, which quickly evolves towards the
desirable local minimum, and (iii) a stable Ornstein-Uhlenbeck process oscillating
around the desirable local minimum. Our proof techniques are based upon Stroock
and Varadhan’s weak convergence of Markov chains to diffusion processes, which
are of independent interest.

1 Introduction
For solving a broad range of large-scale statistical learning problems, e.g., deep learning, nonconvex
optimization methods often exhibit favorable computational and statistical efficiency empirically.
However, there is still a lack of theoretical understanding of the global dynamics of these nonconvex
optimization methods. In specific, it remains largely unexplored why simple optimization algorithms,
e.g., stochastic gradient descent (SGD), often exhibit fast convergence towards local minima with de-
sirable statistical accuracy. In this paper, we aim to develop a new analytic framework to theoretically
understand this phenomenon.
The dynamics of nonconvex statistical optimization are of central interest to a recent line of work.
Specifically, by exploring the local convexity within the basins of attraction, [1, 5–8, 10–13, 20–
22, 24–26, 31, 35, 36, 39, 46–58] establish local fast rates of convergence towards the desirable local
minima for a variety statistical problems. Most of these characterizations of local dynamics are based
on two decoupled ingredients from statistics and optimization: (i) the local (approximately) convex
geometry of the objective functions, which is induced by the underlying statistical models, and (ii)
adaptation of classical optimization analysis [19, 34] by incorporating the perturbations induced by
nonconvex geometry as well as random noise. To achieve global convergence guarantees, they rely
on various problem-specific approaches to obtain initializations that provably fall into the basins of
attraction. Meanwhile, for some learning problems, such as phase retrieval and tensor decomposition
for latent variable models, it is empirically observed that good initializations within the basins of
attraction are not essential to the desirable convergence. However, it remains highly challenging to
characterize the global dynamics, especially within the highly nonconvex regions outside the local
basins of attraction.
In this paper, we address this problem with a new analytic framework based on diffusion processes.
In particular, we focus on the concrete example of SGD applied on the tensor decomposition formula-
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tion of independent component analysis (ICA). Instead of adapting classical optimization analysis
accordingly to local nonconvex geometry, we cast SGD in different phases as diffusion processes,
i.e., solutions to stochastic differential equations (SDE), by analyzing the weak convergence from
discrete Markov chains to their continuous-time limits [17, 40]. The SDE automatically incorporates
the geometry and randomness induced by the statistical model, which allows us to establish the
exact dynamics of SGD. In contrast, classical optimization analysis only yields upper bounds on
the optimization error, which are unlikely to be tight in the presence of highly nonconvex geometry,
especially around the stationary points that have negative curvatures along certain directions. In
particular, we identify three consecutive phases of the global dynamics of SGD, which is illustrated
in Figure 1.

(i) We consider the most challenging initialization at a stationary point with negative curvatures,
which can be cast as an unstable equilibrium of the SDE. Within the first phase, the dynamics
of SGD are characterized by an unstable Ornstein-Uhlenbeck process [2, 37], which departs
from the initialization at a relatively slow rate and enters the second phase.

(ii) Within the second phase, the dynamics of SGD are characterized by the exact solution to an
ordinary differential equation. This solution evolves towards the desirable local minimum at
a relatively fast rate until it approaches a small basin around the local minimum.

(iii) Within the third phase, the dynamics of SGD are captured by a stable Ornstein-Uhlenbeck
process [2, 37], which oscillates within a small basin around the local minimum.

(i) (ii) (iii)
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Figure 1: Left: an illustration of the objective function for the tensor decomposition formulation of
ICA. Note that here we use the spherical coordinate system and add a global offset of 2 to the objective
function for better illustration. Right: An illustration of the three phases of diffusion processes.

More related work. Our results are connected with a very recent line of work [3, 18, 27, 29, 38, 42–
45] on the global dynamics of nonconvex statistical optimization. In detail, they characterize the
global geometry of nonconvex objective functions, especially around their saddle points or local
maxima. Based on the geometry, they prove that specific optimization algorithms, e.g., SGD with
artificial noise injection, gradient descent with random initialization, and second-order methods, avoid
the saddle points or local maxima, and globally converge to the desirable local minima. Among
these results, our results are most related to [18], which considers SGD with noise injection on
ICA. Compared with this line of work, our analysis takes a completely different approach based on
diffusion processes, which is also related to another line of work [14, 15, 30, 32, 33, 41].
Without characterizing the global geometry, we establish the global exact dynamics of SGD, which
illustrate that, even starting from the most challenging stationary point, it may be unnecessary to use
additional techniques such as noise injection, random initialization, and second-order information to
ensure the desirable convergence. In other words, the unstable Ornstein-Uhlenbeck process within
the first phase itself is powerful enough to escape from stationary points with negative curvatures.
This phenomenon is not captured by the previous upper bound-based analysis, since previous upper
bounds are relatively coarse-grained compared with the exact dynamics, which naturally give a sharp
characterization simultaneously from upper and lower bounds. Furthermore, in Section 5 we will
show that our sharp diffusion process-based characterization provides understanding on different
phases of dynamics of our online/SGD algorithm for ICA.
A recent work [29] analyzes an online principal component analysis algorithm based on the intuition
gained from diffusion approximation. In this paper, we consider a different statistical problem with a
rigorous characterization of the diffusion approximations in three separate phases.
Our contribution. In summary, we propose a new analytic paradigm based on diffusion processes
for characterizing the global dynamics of nonconvex statistical optimization. For SGD on ICA, we
identify the aforementioned three phases for the first time. Our analysis is based on Stroock and
Varadhan’s weak convergence of Markov chains to diffusion processes, which are of independent
interest.

2



2 Background
In this section we formally introduce a special model of independent component analysis (ICA) and
the associated SGD algorithm. Let {X(i)}n

i=1 be the data sample identically distributed as X 2 Rd.
We make assumptions for the distribution of X as follows. Let k · k be the `2-norm of a vector.
Assumption 1. There is an orthonormal matrix A 2 Rd⇥d such that X = AY , where Y 2 Rd is a
random vector that has independent entries satisfying the following conditions:

(i) The distribution of each Y

i

is symmetric about 0;
(ii) There is a constant B such that kY k2  B;

(iii) The Y1, . . . , Yd

are independent with identical m moments for m  8, denoted by  
m

⌘ EY m

1 ;
(iv) The  1 = EY

i

= 0,  2 = EY 2
i

= 1,  ⌘  4 6= 3.
Assumption 1(iii) above is a generalization of i.i.d. tensor components. Let A = (a1, . . . ,ad) whose
columns form an orthonormal basis. Our goal is to estimate the orthonormal basis a

i

from online
data X1, . . . ,Xn

. We first establish a preliminary lemma.
Lemma 1. Let T = E(X⌦4

) be the 4th-order tensor whose (i, j, k, l)-entry is E (X

i

X

j

X

k

X

l

).
Under Assumption 1, we have

T(u,u,u,u) ⌘ E
�
u>X

�4
= 3 + ( � 3)

dX

i=1

(a>
i

u)

4
. (2.1)

Lemma 1 implies that finding a
i

’s can be cast into the solution to the following population optimiza-
tion problem

argmin � sign( � 3) · E �u>X
�4

= argmin

dX

i=1

�(a>
i

u)

4 subject to kuk = 1. (2.2)

It is straightforward to conclude that all stable equilibria of (2.2) are ±a
i

whose number linearly
grows with d. Meanwhile, by analyzing the Hessian matrices the set of unstable equilibria of (2.2)
includes (but not limited to) all v⇤

= d

�1/2
(±1, · · · ,±1), whose number grows exponentially as d

increases [18, 44].
Now we introduce the SGD algorithm for solving (2.2) with finite samples. Let Sd�1

= {u : kuk =

1} be the unit sphere in Rd, and denote ⇧u = u/kuk for u 6= 0 the projection operator onto Sd�1.
With appropriate initialization, the SGD for tensor method iteratively updates the estimator via the
following Eq. (2.3):

u(n)
= ⇧

⇢
u(n�1)

+ sign( � 3) · �
⇣
u(n�1) >X(n)

⌘3
X(n)

�
. (2.3)

The SGD algorithms that performs stochastic approximation using single online data sample in
each update has the advantage of less temporal and spatial complexity, especially when d is high
[18, 29]. An essential issue of this nonconvex optimization problem is how the algorithm escape from
unstable equilibria. [18] provides a method of adding artificial noises to the samples, where the noise
variables are uniformly sampled from Sd�1. In our work, we demonstrate that under some reasonable
distributional assumptions, the online data provide sufficient noise for the algorithm to escape from
the unstable equilibria.
By symmetry, our algorithm in Eq. (2.3) converges to a uniformly random tensor component from d

components. In order to solve the problem completely, one can repeatedly run the algorithm using
different set of online samples until all tensor components are found. In the case where d is high, the
well-known coupon collector problem [16] implies that it takes ⇡ d log d runs of SGD algorithm to
obtain all d tensor components.
Remark. From Eq. (2.2) we see the tensor structure in Eq. (2.1) is unidentifiable in the case of
 = 3, see more discussion in [4, 18]. Therefore in Assumption 1 we rule out the value  = 3

and call the value | � 3| the tensor gap. The reader will see later that, analogous to eigengap in
SGD algorithm for principal component analysis (PCA) [29], tensor gap plays a vital role in the time
complexity in the algorithm analysis.

3 Markov Processes and Differential Equation Approximation
To work on the approximation we first conclude the following proposition.

3



Proposition 1. The iteration u(n)
, n = 0, 1, . . . generated by Eq. (2.3) forms a discrete-time, time-

homogeneous Markov process that takes values on Sd�1. Furthermore, u(n) holds strong Markov
property.
For convenience of analysis we use the transformed iteration v(n) ⌘ A>u(n) in the rest of this paper.
The update equation in Eq. (2.3) is equivalently written as

v(n)
= A>u(n)

= ⇧

⇢
A>u(n�1) ± �

⇣
u(n�1) >AA>X(n)

⌘3
A>X(n)

�

= ⇧

⇢
v(n�1) ± �

⇣
v(n�1) >Y (n)

⌘3
Y (n)

�
.

(3.1)

Here ±� has the same sign with  �3. It is obvious from Proposition 1 that the (strong) Markov prop-
erty applies to v(n), and one can analyze the iterates v(n) generated by Eq. (3.1) from a perspective
of Markov processes.
Our next step is to conclude that as the stepsize � ! 0

+, the iterates generated by Eq. (2.3), under
the time scaling that speeds up the algorithm by a factor ��1, can be globally approximated by the
solution to the following ODE system. To characterize such approximation we use theory of weak
convergence to diffusions [17, 40] via computing the infinitesimal mean and variance for SGD for the
tensor method. We remind the readers of the definition of weak convergence Z

� ) Z in stochastic
processes: for any 0  t1 < t2 < · · · < t

n

the following convergence in distribution occurs as
� ! 0

+

�
Z

�

(t1), Z
�

(t2), . . . , Z
�

(t

n

)

�
d�! (Z(t1), Z(t2), . . . , Z(t

n

)) .

To highlight the dependence on � we add it in the superscipts of iterates v�,(n) = v(n). Recall that
bt��1c is the integer part of the real number t��1.

Theorem 1. If for each k = 1, . . . , d, as � ! 0

+
v

�,(0)
k

converges weakly to some constant scalar
V

o

k

then the Markov process v�,(bt�
�1c)

k

converges weakly to the solution of the ODE system

dV

k

dt

= | � 3|V
k

 
V

2
k

�
dX

i=1

V

4
i

!
, k = 1, . . . , d, (3.2)

with initial values V
k

(0) = V

o

k

.

To understand the complex ODE system in Eq. (3.2) we first investigate into the case of d = 2.
Consider a change of variable V

2
1 (t) we have by chain rule in calculus and V

2
2 = 1 � V

2
1 the

following derivation:
dV

2
1

dt

= 2V1 · dV1

dt

= 2V1 · | � 3|V1

�
V

2
1 � V

4
1 � V

4
2

�

= 2 | � 3|V 2
1

�
V

2
1 � V

4
1 � (1 � V

2
1 )

2
�

= �2 | � 3|V 2
1

✓
V

2
1 � 1

2

◆
(V

2
1 � 1). (3.3)

Eq. (3.3) is an autonomous, first-order ODE for V 2
1 . Although this equation is complex, a closed-form

solution is available:
V

2
1 (t) = 0.5 ± 0.5(1 + C exp (�| � 3|t))�0.5

,

and V

2
2 (t) = 1 � V

2
1 (t), where the choices of ± and C depend on the initial value. The above

solution allows us to conclude that if the initial vector (V

o

1 )

2
< (V

o

2 )

2 (resp. (V

o

1 )

2
> (V

o

2 )

2),
then it approaches to 1 (resp. 0) as t ! 1. This intuition can be generalized to the case of higher
d that the ODE system in Eq. (3.2) converges to the coordinate direction ±e

k

if (V

o

k

)

2 is strictly
maximal among (V

o

1 )

2
, . . . , (V

o

d

)

2 in the initial vector. To estimate the time of traverse we establish
the following Proposition 2.
Proposition 2. Fix � 2 (0, 1/2) and the initial value V

k

(0) = V

o

k

that satisfies (V

o

k0
)

2 � 2(V

o

k

)

2 for
all 1  k  d, k 6= k0, then there is a constant (called traverse time) T that depends only on d, �

such that V 2
k0

(T ) � 1 � �. Furthermore T has the following upper bound: let y(t) solution to the
following auxillary ODE

dy

dt

= y

2
(1 � y) , (3.4)

with y(0) = 2/(d + 1). Let T0 be the time that y(T0) = 1 � �. Then
T  | � 3|�1

T0  | � 3|�1
�
d� 3 + 4 log(2�)

�1
�
. (3.5)
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Proposition 2 concludes that, by admitting a gap of 2 between the largest (V

o

k0
)

2 and second largest
(V

o

k

)

2, k 6= k0 the estimate on traverse time can be given, which is tight enough for our purposes in
Section 5.
Remark. In an earlier paper [29] which focuses on the SGD algorithm for PCA, when the stepsize is
small, the algorithm iteration is approximated by the solution to ODE system after appropriate time
rescaling. The approximate ODE system for SGD for PCA is

dV

k

dt

= �2V

k

dX

i=1

(�

k

� �

i

)V

2
i

, k = 1, . . . , d. (3.6)

The analysis there also involves computation of infinitesimal mean and variance for each coordinate
as the stepsize � ! 0

+ and theory of convergence to diffusions [17, 40]. A closed-form solution to
Eq. (3.6) is obtained in [29], called the generalized logistic curves. In contrast, to our best knowledge
a closed-form solution to Eq. (3.2) is generally not available.

4 Local Approximation via Stochastic Differential Equation
The ODE approximation in Section 3 is very informative: it characterizes globally the trajectory of
our algorithm for ICA or tensor method in Eq. (2.3) with O(1) approximation errors. However it
fails to characterize the behavior near equilibria where the gradients in our ODE system are close to
zero. For instance, if the SGD algorithm starts from v⇤, on a microscopic magnitude of O(�

1/2
) the

noises generated by online samples help escaping from a neighborhood of v⇤.
Our main goal in this section is to demonstrate that under appropriate spatial and temporal scalings,
the algorithm iteration converges locally to the solution to certain stochastic differential equations
(SDE). We provide the SDE approximations in two scenarios, separately near an arbitrary tensor
component (Subsection 4.1) which indicates that our SGD for tensor method converges to a local
minimum at a desirable rate, and a special local maximum (Subsection 4.2) which implies that the
stochastic nature of our SGD algorithm for tensor method helps escaping from unstable equilibria.
Note that in the algorithm iterates, the escaping from stationary points occurs first, followed by the
ODE and then by the phase of convergence to local minimum. We discuss this further in Section 5.

4.1 Neighborhood of Local Minimizers
To analyze the behavior of SGD for tensor method we first consider the case where the iterates enter
a neighborhood of one local minimizer, i.e. the tensor component. Since the tensor decomposition
in Eq. (2.2) is full-rank and symmetric, we consider without loss of generality the neighborhood
near e1 the first tensor component. The following Theorem 2 indicates that under appropriate spatial
and temporal scalings, the process admits an approximation by Ornstein-Uhlenbeck process. Such
approximation is characterized rigorously using weak convergence theory of Markov processes
[17, 40]. The readers are referred to [37] for fundamental topics on SDE.

Theorem 2. If for each k = 2, . . . , d, ��1/2
v

�,(0)
k

converges weakly to U

o

k

2 (0,1) as � ! 0

+

then the stochastic process ��1/2
v

�,(bt��1c)
k

converges weakly to the solution of the stochastic
differential equation

dU

k

(t) = � | � 3|U
k

(t)dt +  

1/2
6 dB

k

(t), (4.1)
with initial values U

k

(0) = U

o

k

. Here B

k

(t) is a standard one-dimensional Brownian motion.
We identify the solution to Eq. (4.1) as an Ornstein-Uhlenbeck process which can be expressed in
terms of a Itô integral, with

U

k

(t) = U

o

k

exp (�| � 3|t) +  

1/2
6

Z
t

0
exp (�| � 3|(t� s)) dB

k

(s). (4.2)

Itô isometry along with mean-zero property of Itô integral gives

E(U

k

(t))

2
= (U

o

k

)

2
exp (�2| � 3|t) +  6

Z
t

0
exp (�2| � 3|(t� s)) ds

=

 6

2| � 3| +

✓
(U

o

k

)

2 �  6

2| � 3|
◆

exp (�2| � 3|t) ,
which, by taking the limit t ! 1, approaches  6/(2| � 3|). From the above analysis we con-
clude that the Ornstein-Uhlenbeck process has the mean-reverting property that its mean decays
exponentially towards 0 with persistent fluctuations at equilibrium.
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4.2 Escape from Unstable Equilibria
In this subsection we consider SGD for tensor method that starts from a sufficiently small neighbor-
hood of a special unstable equilibrium. We show that after appropriate rescalings of both time and
space, the SGD for tensor iteration can be approximated by the solution to a second SDE. Analyzing
the approximate SDE suggests that our SGD algorithm iterations can get rid of the unstable equilibria
(including local maxima and stationary points with negative curvatures) whereas the traditional
gradient descent (GD) method gets stuck. In other words, under weak distributional assumptions the
stochastic gradient plays a vital role that helps the escape. As a illustrative example, we consider the
special stationary points v⇤

= d

�1/2
(±1, . . . ,±1). Consider a submanifold S

F

✓ Sd�1 where
S
F

=

�
v 2 Sd�1

: there exists 1  k < k

0  d such that v2
k

= v

2
k

0 = max1id

v

2
i

 
.

In words, S
F

consists of all v 2 Sd�1 where the maximum of v2
k

is not unique. In the case of d = 3,
it is illustrated by Figure 1 that S

F

is the frame of a 3-dimenisional box, and hence we call S
F

the
frame. Let

W

�

kk

0(t) = �

�1/2
log

�
v

�,(bt��1c)
k

�2 � �

�1/2
log

�
v

�,(bt��1c)
k

0

�2
, (4.3)

The reason we study W

�

kk

0(t) is that these d(d� 1) functions of v 2 Sd�1 form a local coordinate
map around v⇤ and further characterize the distance between v and S

F

on a spatial scale of �1/2. We
define the positive constant ⇤

d, 

as
⇤

2
d, 

= 8d

�2
�
 8 + (16d� 28) 6 + 15d 

2
4

�5(72d

2 � 228d + 175) 4 + 15(2d� 7)(d� 2)(d� 3)

�
.

(4.4)

We have our second SDE approximation result as follows.
Theorem 3. Let W �

kk

0(t) be defined as in Eq. (4.3), and let ⇤

d, 

be as in Eq. (4.4). If for each distinct
k, k

0
= 1, . . . , d, W �

kk

0(0) converges weakly to W

o

kk

0 2 (0,1) as � ! 0

+ then the stochastic
process W �

kk

0(t) converges weakly to the solution of the stochastic differential equation

dW

kk

0
(t) =

2 | � 3|
d

W

kk

0
(t)dt + ⇤

d, 

dB

kk

0
(t) (4.5)

with initial values W
kk

0
(0) = W

o

kk

0 . Here B

kk

0
(t) is a standard one-dimensional Brownian motion.

We can solve Eq. (4.5) and obtain an unstable Ornstein-Uhlenbeck process as

W

kk

0
(t) =

✓
W

o

kk

0 + ⇤

d, 

Z
t

0
exp

✓
�2 | � 3|

d

s

◆
dB

kk

0
(s)

◆
exp

✓
2 | � 3|

d

t

◆
. (4.6)

Let C
kk

0 be defined as

C

kk

0 ⌘ W

o

kk

0 + ⇤

d, 

Z 1

0
exp

✓
�4 | � 3|

d

s

◆
dB

kk

0
(s). (4.7)

We conclude that the following holds.
(i) C

kk

0 is a normal variable with mean W

o

kk

0 and variance d⇤

2
d, 

/ (4 | � 3|);
(ii) When t is large W

kk

0
(t) has the following approximation

W

kk

0
(t) ⇡ C

kk

0
exp

✓
2 | � 3|

d

t

◆
. (4.8)

To verify (i) above we have the Itô integral in Eq. (4.6)

E
✓

⇤

d, 

Z 1

0
exp

✓
�2 | � 3|

d

s

◆
dB

kk

0
(s)

◆
= 0,

and by using Itô isometry

E
✓

⇤

d, 

Z 1

0
exp

✓
�2 | � 3|

d

s

◆
dB

kk

0
(s)

◆2

= ⇤

2
d, 

Z
t

0
exp

✓
�4 | � 3|

d

s

◆
ds

⇡ ⇤

2
d, 

Z 1

0
exp

✓
�4 | � 3|

d

s

◆
ds =

d⇤

2
d, 

4 | � 3| .
The analysis above on the unstable Ornstein-Uhlenbeck process indicates that the process has the
momentum nature that when t is large, it can be regarded as at a normally distributed location
centered at 0 and grows exponentially. In Section 5 we will see how the result in Theorem 3 provides
explanation on the escape from unstable equilibria.
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5 Phase Analysis
In this section, we utilize the weak convergence results in Sections 3 and 4 to understand the dynamics
of online ICA in different phases. For purposes of illustration and brevity, we restrict ourselves to the
case of starting point v⇤, a local maxima that has negative curvatures in every direction. In below we
denote by Z

� ⇣ W

� as � ! 0

+ when the limit of ratio Z

�

/W

� ! 1.
Phase I (Escape from unstable equilibria). Assume we start from v⇤, then W

o

kk

0 = 0 for all
k 6= k

0. We have from Eqs. (4.6) and (4.7) that

log

 
v

(n)
k

v

(n)
k

0

!2

= �

1/2
W

�

kk

0(n�) ⇡
 
�

d⇤

2
d, 

4 | � 3|

!1/2

�

kk

0
exp

✓
2 | � 3|

d

· �n
◆
. (5.1)

Suppose k1 is the index that maximizes
⇣
v

(N�
1 )

k

⌘2

and k2 maximizes
⇣
v

(N�
1 )

k

⌘2

, k 6= k1. Then by
Eq. (5.1) we know �

k1k2 is positive. By setting

log

⇣
v

(N�
1 )

k1

⌘2

� log

⇣
v

(N�
1 )

k2

⌘2

= log 2,

we have from the construction in the proof of Theorem 3 that as � ! 0

+

N

�

1 =

1

2

| � 3|�1
d�

�1
log

0

@
 
�

d⇤

2
d, 

4 | � 3|

!�1/2

�

�1
k1k2

log 2

1

A ⇣ 1

4

| � 3|�1
d�

�1
log

�
�

�1
�
.

Phase II (Deterministic traverse). By (strong) Markov property we can restart the counter of
iteration, we have the max and second max

⇣
v

(0)
k1

⌘2
= 2

⇣
v

(0)
k2

⌘2
,

Proposition 2 implies that it takes time
T  | � 3|�1

�
d� 3 + 4 log(2�)

�1
�
,

for the ODE to traverse from V

2
1 = 2/(d + 1) = 2V

2
k

for k > 1. Converting to the timescale of the
SGD, the second phase has the following relations as � ! 0

+

N

�

2 ⇣ T�

�1  | � 3|�1
�
d� 3 + 4 log(2�)

�1
�
�

�1
.

Phase III (Convergence to stable equilibria). Again restart our counter. We have from the ap-
proximation in Theorem 3 and Eq. (4.2) that

E(v

(n)
k

)

2
= (v

(0)
k

)

2
exp (�2| � 3|�n) + � 6

Z
�n

0
exp (�2| � 3|(t� s)) ds

=

� 6

2| � 3| +

✓
(v

(0)
k

)

2 � � 6

2| � 3|
◆

exp (�2�| � 3|n) .

In terms of the iterations v(n), note the relationship E sin

2 \(v, e1) =

P
d

k=2 v
2
k

= 1 � v

2
1 . The end

of ODE phase implies that E sin

2 \(v(0)
, e1) = �, and hence

E sin

2 \(v(n)
, e1) =

�(d� 1) 6

2| � 3| +

✓
� � �(d� 1) 6

2| � 3|
◆

exp (�2�| � 3|n) .

By setting

E sin

2 \(v(N�
3 )
, e1) = (C0 + 1) · �(d� 1) 6

2| � 3| ,

we conclude that as � ! 0

+

N

�

3 =

1

2�| � 3| log

✓
�

�1 · 2| � 3|� � �(d� 1) 6

C0(d� 1) 6

◆
⇣ 1

2

| � 3|�1
�

�1
log

�
�

�1
�
.

6 Summary and discussions
In this paper, we take online ICA as a first step towards understanding the global dynamics of stochastic
gradient descent. For general nonconvex optimization problems such as training deep networks, phase-
retrieval, dictionary learning and PCA, we expect similar multiple-phase phenomenon. It is believed
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that the flavor of asymptotic analysis above can help identify a class of stochastic algorithms for
nonconvex optimization with statistical structure.
Our continuous-time analysis also reflects the dynamics of the algorithm in discrete time. This is
substantiated by Theorems 1, 2 and 3 which rigorously characterize the convergence of iterates to
ODE or SDE by shifting to different temporal and spatial scales. In detail, our results imply when
� ! 0

+:
Phase I takes iteration number N�

1 ⇣ (1/4)| � 3|�1
d · ��1

log(�

�1
);

Phase II takes iteration number N�

2 ⇣ | � 3|�1
d · ��1;

Phase III takes iteration number N�

3 ⇣ (1/2)| � 3|�1 · ��1
log(�

�1
).

After the three phases, the iteration reaches a point that is C · � 6| � 3|�1 · d��1/2 distant on
average to one local minimizer. As � ! 0

+ we have N

�

2 /N
�

1 ! 0. This implies that the algorithm
demonstrates the cutoff phenomenon which frequently occur in discrete-time Markov processes [28,
Chap. 18]. In words, the Phase II where the objective value in Eq. (2.2) drops from 1 � " to " is a
short-time phase compared to Phases I and III, so the convergence curve illustrated in the right figure
in Figure 1 instead of an exponentially decaying curve. As � ! 0

+ we have N

�

1 /N
�

3 ⇣ d/2, which
suggests that Phase I of escaping from unstable equlibria dominates Phase III by a factor of d/2.
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