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Content of this supplementary material.

• Visualization of the confidence values of network prediction.

• Details of ground-truth planar surface extraction.

• Network architectures for plane and edge prediction.

• Learning and inference time.

• Additional qualitative results on the NYU v2 dataset.
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Figure 1: Examples of the visualization of the prediction variation, which can be used to represent
the prediction confidence by using the Monte Carlo dropout (last column). We highlighted the regions
with large errors in terms of depth and normal prediction, and accordingly low confidence values.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



1 Visualization of prediction confidence

In Fig. 1, we illustrate two examples of the confidence values used in our prediction
for both depth and normal. We highlight the areas with large prediction errors, which
are indicated by the low confidence values. We found that the normal confidence
values are usually more accurate, while the depth confidence map is relatively more
uniformly distributed with less variations. This is consistent with our experiments,
which shows that incorporating normal confidence provides more performance gains,
as shown in Tab.1 and Tab.2 respectively in the experiments in the main paper.

2 Details of extracting ground-truth planar surfaces

To extract the plane regions from the ground-truth depth data, we first obtain the
planar surface candidates by processing the ground-truth depth maps using the plane
extraction functions in the NYU toolbox [5], which is defined as minimum number
(2500) of contiguous pixels that can be fit into a single 3D plane after projecting their
depth values into the 3D world. We also obtain the regions of semantic instances
from the semantic annotations provided in the dataset. For each semantic instance
region Ri, if we intersect it with the plane candidate regions, we can find a set of
plane regions that are inside Ri, which we denote as SRi

= {Pj|Pj ⊆ Ri}. If one
of the regions in SRi

covers 90% of the region of Ri, it indicates that Ri should be
mostly a planar region itself. In that case, we set SRi

= {Ri} instead. We collect all
such regions SRi

as the ground-truth planar surfaces in the image, i.e. P = ∪iSRi
.

3 Network architectures for plane and edge prediction.

We present the details of the neural network architectures for edge and plane pre-
diction respectively. Fig. 2 illustrates the architecture of the edge network . It has
two streams. The bottom stream takes the RGB image as input, and has the same
architecture as in HED [6], while the top stream is a very shallow one, which takes
the predicted depth and normal maps as input to augment the prediction from images.
In particular, it has a 64-channel convolutional layer with kernel size 9, followed by
a fully-connected layer to generate the predictions. The predictions are then fuse
into all the five side output in the HED stream.

Fig. 3 illustrates the architecture of planar surface network. It follows the multi-
scale structure with side output from "conv3", "conv4" and "conv5" as in the fully
convolutional network [4], but with a light-weighted network structure that is the
same to the Deeplab-LargeFOV [2].

4 Learning and inference time

The inference includes performing 4-stream network forward propagation: 1.4s
for depth and normal (320 × 240 input), 1.5s for edge (640 × 480) and plane
(320 × 240) with a single Titian X GPU, 10s for normalized cut with our Matlab
implementation (320 × 240 input), which could be substantially faster (0.2s) using
GPU implementation from [1]. The final DCRF takes 1s for inference with a single
CPU (3.2GHz). In total, it takes around 14s for each image (640×480) in our current
implementation. For training the networks, it takes around 10 hours each to train the
edge and plane network, and takes around 2 days for fine-tuning over the depth and
normal networks due to the CPU implementation of the DCRF layer.
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Figure 2: Architecture of edge network with two input. At the corner of each layer we show the
number of channels x the number of sub-layers.
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Figure 3: Architecture of plane network that takes RGB image as input and generates a binary plane
map.

5 Additional qualitative comparison from NYU v2 data.

In Fig. 4, Fig. 5, Fig. 6, we show more examples to visually demonstrate the
improvement on the planar surface regions. For each example, we show an overhead
3D view at the first row, and corresponding normal and depth maps at the second
row. The results from left to right are: Eigen et.al [3], ours and ground truth.
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Figure 4: Additional visual comparison between network output from Eigen et.al [3] and our results
(Best view in color) from NYU v2 dataset.
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Figure 5: Additional visual comparison between network output from Eigen et.al [3] and our results
(Best view in color) from NYU v2 dataset. 5
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Figure 6: Additional visual comparison between network output from Eigen et.al [3] and our results
(Best view in color) from NYU v2 dataset.
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