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1 Perturbation analysis

After applying the perturbation, We anticipate that an eigenvalue of LX changes from λi to λi + λ̂i,
and an eigenvector changes from ui to ui + ûi. If we assume that matrix LX is not ill-conditioned,
and the first few eigenvectors that we care about are distinct, then we have

(LX + L̂)(ui + ûi) = (λi + λ̂i)(ui + ûi).

By making use of
LXui = λiui,

and keeping only first order terms, we have

L̂ui + LX ûi = λiûi + λ̂iui. (1)
Since LX is a real symmetric matrix, we can represent ûi as a weighted sum of eigenvectors of LX ,
as

ûi =

n∑
j=1

ωjuj , (2)

where ωj is the coefficient and uj is j’th eigenvector of LX . Insert last equation into Eq. (1), we
have

L̂ui + LX

n∑
j=1

ωjuj = λi

n∑
j=1

ωjuj + λ̂iui, (3)

which evaluates to

L̂ui +

n∑
j=1

ωjλjuj = λi

n∑
j=1

ωjuj + λ̂iui. (4)

Multiplying uTi to both sides of last equation results to

uTi L̂ui +

n∑
j=1

ωjλju
T
i uj = λi

n∑
j=1

uTi ωjuj + λ̂iu
T
i ui. (5)

Notice that in the last equation uTi ui = 1 and the second term in the left hand side and the first term
in the right hand side cancel each other, thus we have

λ̂i = uTi L̂ui. (6)

In our algorithm, L̂ is a diagonal matrix with entries L̂ii = −ηv2i where vi denotes the i’th element
of the selected eigenvector v who has the largest inverse participation ratio. Thus the shift of an
eigenvalue λj associated with eigenvector uj (which is different from v) is then

λ̂j = −η
n∑

i=1

v2i u
2
ji. (7)
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For the selected vector v, the change of its eigenvalue is

λ̂v = −η
n∑

i=1

v4i = −ηI(v). (8)

That is, the amount of decreasing of eigenvalue associated with the selected vector is proportional
to its inverse participation ratio.

In addition to the shift of eigenvalues, we can also derive the change of eigenvectors after perturba-
tion. Multiplying transpose of an eigenvector uj to both sides of Eq.(4) results to

uTj L̂ui +

n∑
k=1

ωkλku
T
j uk = λi

n∑
k=1

uTj ωkuk, (9)

which evaluates to
uTj L̂ui + ωjλj = λiωj , (10)

where we can find that

ωj =
uTj L̂ui

λi − λj
. (11)

Given that the perturbation is L̂ii = −ηv2i , we have an expression for the change of an eigenvector

ûi =
∑
j 6=i

uTj L̂ui

λi − λj
uj

= −η
∑
j 6=i

∑
k ujkv

2
kuik

λi − λj
uj . (12)

Notice that the inverse participate ratio of the new vector ui + ûi is

I(ui + ûi) =

n∑
l=1

(uil + ûil)
4,

(13)

Expand above equation to the first order of ûil, we have

I(ui + ûi) ≈ I(ui) + 4

n∑
l=1

u3ilûil

= I(ui)− 4η

n∑
l=1

u3il
∑
j 6=i

∑
k ujkv

2
kuik

λi − λj
ujl

= I(ui)− 4η

n∑
l=1

∑
j 6=i

u2jlv
2
l u

4
il

λi − λj
− 4η

n∑
l=1

∑
j 6=i

∑
k 6=l

u3ilv
2
kujkuikujl
λi − λj

(14)

2 Detailed process of learning a regularization

In Fig. 2 we plot the evolution of eigenvalues, overlap and the Inverse Participation Ratio (IPR) for
the second, third and forth eigenvectors during learning of the X-Laplacian for a network generated
by the stochastic block model. The network has a community structure with 3 groups, however the
first three eigenvectors of the adjacency matrix are localized (see left panel at t = 0) and do not
reveal the underlying community structure (see the right panel at t small. We can also see from the
left panel that the IPR of them are decreasing as t increases during learning. From the middle panel
of the figure, we see that all the 3 eigenvalues are decreasing, while the spectral gap D3 − D4 is
increasing during learning. It is interesting to see that at t = 4, there is a exchange of positions of
the third eigenvector and the forth eigenvector. This gives a bump of the IPR, as well as an increase
of accuracy of detection (characterized by overlap) at t = 4.
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Figure 1: Inverse Participation Ratio of first three eigenvectors (I1, I2, I3, overlap (the fraction of
correctly reconstructed labels) and first three eigenvalues (D1, D2, D3) as a function of learning
steps t for a network generated by the stochastic block model with n = 42000, q = 3 groups,
average degree c = 3, ε = 0.08 and learning rate η = 1. The overlap is the fraction of successfully
reconstructed labels, maximized over group permutations.

3 Additional numerical evaluations on community detections

Here we compare the performance of the X-Laplacian with other state-of-art spectral algorithms on
variants of the stochastic block model, namely the degree-corrected stochastic block model [2] and
the triangular stochastic block model [4] which is the stochastic block model with triangles. It is
known that in the stochastic block model, there is a detectability transition at

ε∗ = (
√
ĉ− 1)/(

√
ĉ− 1 + q),

where ĉ is the excess average degree

ĉ =

〈
k2
〉

〈k〉
− 1,

and the spectral clustering algorithm based on the non-backtracking matrix achieves this threshold.
In the left panel of Fig.2 we compare the performance (evaluated using the overlap, fraction of cor-
rectly reconstructed labels) of spectral algorithms using the adjacency matrix, the non-backtracking
matrix and the X-Laplacian on networks generated by the degree corrected stochastic block model
with a power-law degree distribution with exponent −2.5. As the figure shows, our approach works
even better than the algorithm using the non-backtracking matrix, this is because when the networks
size (104) is not large enough, the long tails of degree distribution creates short loops in the network,
downgrading the performance of the algorithm using the non-backtracking matrix which is supposed
to work optimally in the locally-tree like networks.

For the triangular stochastic block model, due to the presence of triangles, the non-backtracking ma-
trix suffers from short loops and does not work well. In this case the generalized non-backtracking
matrix, which runs on a factor graph with both edges and triangles treated as function nodes, works
down to the transition [4]. In the right panel of Fig. 2 we compare the performance of the spectral
algorithm using the adjacency matrix, generalized non-backtracking matrix and the X-Laplacian ,
and we can see that X-Laplacian works as well as the generalized non-backtracking matrix and down
to the transition.

It has been reported in [1] that on the perturbed stochastic block model, spectral algorithms includ-
ing the one using Bethe Hessian do fail in detecting the community structures, while other method,
e.g. semi-definite programming, works well. In the perturbed stochastic block model, after a net-
work is generated by the stochastic block model, neighbors of some randomly selected nodes are
connected to each other acting as noise to the underlying community structure, In Fig. 3 we numeri-
cally examined the performance of X-Laplacian using Ã, i.e. LX = Ã+X , on networks generated
by perturbed stochastic block model [1], with exactly the same network size and parameters as in
[1] (see Fig. 5 in their SI), with parameter a and b denoting expected number of edges per node
connecting nodes in the same group and in different groups, respectively. By comparing Fig. 3 with
Fig. 5 in SI of [1] we can see from X-Laplacian works similarly to the semi-definite programming
while Bethe-Hessian based method does not work at all.
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Figure 2: Accuracy of community detection, represented by overlap between inferred partition and
the planted partition, for several method on networks generated by the degree corrected stochastic
block model, and a power-law degree distribution with exponent −2.5 (left); triangular stochastic
block model (right) with average degree c = 3 and ρ = 0.5 which means half of edges belong to
triangles rather than single edges [unpublished]. All networks has n = 10000 nodes and q = 2
groups. In X-axis, ε = cout/cin controls the hardness of the problem. Each data point is averaged
over 20 realizations.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a − b)/
√

2(a + b)

O
v
e

rl
a

p

n=16000, average degree=(a+b)/2=10
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Figure 3: X-Laplacian using Ã on networks generated by the perturbed stochastic block model [1],
with exactly the same network size and parameters as in Fig.5 of SI in [1]. a and b denote average
degree connecting nodes in the same group and different groups respectively, and α is the fraction
of selected noisy nodes. Each point is averaged over 20 instances.

4 Additional numerical evaluations on spectral clustering using pairwise
similarity measurements

In this section we compare the performance of spectral algorithms using the data matrix, the Bethe
Hessian and the X-Laplacian, on the model recently proposed in [3], which generates pairwise mea-
surements between two groups of nodes from different probability distributions. Two distributions
pin and pout are chosen to be Gaussian with unit variance and mean 0.75 and −0.75 respectively.
On top of the network we add two different kinds of noise, i.e. cliques and hubs to the random
graph topology. And from figures we can see that the results are qualitatively similar to right panel
of Fig. 4 in the main text where X-Laplacian outperforms both Bethe Hessian and X-Laplacian in
reconstructing the planted partition.
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Figure 4: Spectral clustering using sparse pairwise measurements, using model proposed in [3].
The overlap in Y-axis is the fraction of correctly reconstructed labels, X-axis denotes the average
number of pairwise measurements per data point. (Left): the topologies are random graphs with
average degree c together with 10 size-20 cliques. (Right): panel the topologies are random graphs
with average degree c together with 10 hubs whose degrees are 50. Each point in the figure is
averaged over 20 realizations of data set of size 104.
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