
Towards Conceptual Compression
Supplementary Material

Karol Gregor
Google DeepMind

karolg@google.com

Frederic Besse
Google DeepMind

fbesse@google.com

Danilo Jimenez Rezende
Google DeepMind

danilor@google.com

Ivo Danihelka
Google DeepMind

danihelka@google.com

Daan Wierstra
Google DeepMind

wierstra@google.com

1 Multi-layer Architectures

We explain how we can stack convolutional DRAW with a two layer example. The first layer is the
same as the one we introduced in the main paper. The second layer has the same structure: recurrent
encoder, recurrent decoder and a stochastic layer. The input to the second layer is the mean of the
approximate posterior of the first layer. The output of the second layer biases the prior of the latent
variable of the first layer and is also passed as input into the first layer decoder recurrent net. We
don’t use any reconstruction or error in the second layer. Systems with more layers can be built
analogously. In the following equations, ei and di refer to the encoder and decoder of the i-th layer
respectively, and zit refers to the latent variable of the i-th layer at time step t.

For t = 1, . . . , T

εt = x− µ(rt−1) (1)

he1t = RNN(x, εt, h
e1
t−1, h

d1
t−1) (2)

µ1
t , α

1
t = split(W 1he1t ) (3)

z1t ∼ q1t = q(z1t |µ1
t , exp(α

1
t )) (4)

he2t = RNN(he1t , h
e2
t−1, h

d2
t−1) (5)

µ2
t , α

2
t = split(W 2he2t ) (6)

z2t ∼ q2t = q(z2t |µ2
t , exp(α

2
t )) (7)

hd2
t = RNN(z2t , h

d2
t−1) (8)

hd1
t = RNN(z1t , h

d1
t−1, h

d2
t , rt−1) (9)

rt = rt−1 +Whd1
t (10)

where x is the input image, rt is the canvas at time t consisting of a mean µ(rt) and a log standard
deviation α(rt), qit is the approximate posterior of the i-th layer at time t, and W i, W are weights
used in the i-th layer and in the canvas accumulation step respectively.

The latent losses are defined by:

p2t = p(z2t |h
d2
t−1) (11)

p1t = p(z1t |h
d1
t−1, h

d2
t ) (12)

Lz2
t = KL(q2t |p2t ) (13)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Lz1
t = KL(q1t |p1t ) (14)

where pit is the prior of the i-th layer at time t, and Lzi
t is the latent loss of the i-th layer at time t.

At the end, at time T, the likelihood is calculated as:

µ, α = split(rT ) (15)
px = N (µ, exp(α))) (16)
qx = U(x− s/2, x+ s/2) (17)
Lx = log(qx/px) (18)

L = βLx +
∑T

t=1 L
z1
t +

∑T
t=1 L

z2
t (19)

where s is the quantization level of the image, typically 1/255, Lx is the pixel loss, L is the final
variational lower bound which we optimize for, and β is a constant that modulates the amount of
pressure we put on the network to reconstruct the image accurately at the pixel level.

2 Additional Samples

Below we show samples trained on 64× 64 ImageNet with input cost scaling β = 0.4 (Figure 1) and
β = 1 (Figure 2), as well as lossy compression results (Figure 3 and Figure 4).

2



Figure 1: Generated samples from a network trained on 64 × 64 ImageNet with input scaling
β = 0.4.

3



Figure 2: Generated samples from a network trained on 64× 64 ImageNet with input scaling β = 1.

4



Figure 3: Lossy Compression, Part 1 Analogous to Figure 2 of the main paper but for 64 × 64
inputs. Example images for various methods and amounts of compression. Top block: original
images. Each subsequent block has four methods of compression: JPEG, JPEG2000, convolutional
DRAW with full prior variance for generation and convolutional DRAW with zero prior variance.
Different blocks correspond to different compression levels, from top to bottom with bits per input
dimension: 0.05, 0.1, 0.15, 0.2, 0.4, 0.8. In the first block, JPEG was left gray because it does not
compress to this level.

5



Figure 4: Lossy Compression, Part 2

6


	Multi-layer Architectures
	Additional Samples

