Appendix

5.1 Some Key Properties of NESTT-G

To facilitate the following derivation, in this section we collect some key properties of NESTT-G.

First, from the optimality condition of the x update we have

1

it =" — </\T + Vg“( )) , (5.23a)

" @i, 1,
r+1@ r@) r_ AT 7v (57(J) v q ; 5.23b
) z z —ajnj( it 9i ("), YV j # ir. (5.23b)

Then using the update scheme of the A we can further obtain
: 1
)\;j'l = —Nv‘gu (zr), (5.24a)
1 (i .,

AL = —+ V(2 W, V5 # . (5.24b)

Therefore, using the definition of y; we have the following compact forms

. 1 .
AT = fNVgi(yi), i=1,---,N. (5.25)
1 1

Second, let us look at the optimality condition for the z update. The z-update (2.7) is given by

27T = arg min L({z]T'}, 2 A7)

_ r 7‘+1 & 7_'+1 _ 2
= arg min Z( fart =2+ Delt -2 )+g0(z)+h(z). (5.27)

Note that this problem is strongly convex because we have assumed that ) ., 7; > 3Lo; cf. As-
sumption [A-(c)].
Let us define

N r+1 N
yrH Doimy T Dy A

Zfil i

Y A T A I SARD Y
a Zi\; i i 211\;1 i
5 SN e — sl (N} +1/NVg;, (27) N SV AT

B Ziv 1M Zi\il i
6D @ ( Vi, (4 ) + Vi, (7)) B SN Vailyr

NZi:l i NZfV1 i

O )+ ey - PRI s
0 o — gurtt (5.29)

where in (i) we have defined 5 := 1/ Zl 1 Mi; in (ii) we have defined

::H = NZV
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Clearly if we pick a; = p; for all 7, then we have

Ezr[ r+1 |]:r — 7

N
Z (5.31)

Z\E

Using the definition of w'tl it is easy to check that

r+1

1
2"t = argmin %Hz —u" |2 4+ h(2) + go(2)

= prox,ll/’g [u" — BV go(2"TH)]. (5.32)
The optimality condition for the z subproblem is given by:
2T " BV g (27T 4 BT =0 (5.33)

where, "1 € Oh(z"*1) is a subgradient of h(z"*!). Using the definition of v;_ in (5.30), we
obtain

2 =2 = BT+ Vgo (2" + 7. (5.34)

Third, if o; = p;, then we have:

A+ 1/NVg, (27) 1 ¢ AR | -
E;, {H- - + D Ve =Y =Valyi )

o
r i=1 i=1

AL+ 1/NVgiT(zT)]

) (5.35)

where (a) is true because whenever o; = p; for all 4, then

+1/NVg; N
E,, { /ai gir } Zvéh - Z %Vg (yi~

s

The inequality in (b) is true because for a random variable = we have Var(z) < E[2?].

5.2 Proof of Lemma [2.1]
Step 1). Using the definition of potential function Q", we have:
]E[Qr _ Qrfl | j—_~r71]
Mg
=E lz 7 (97 = g:(z") + 90(27) = go(z"7) + h(z") = h(z"TT) | fr_l]

=1
N
>
042771‘

=1

2

1 (=1 7l r— 2
Nng(Z ) NVQZ( )

3p;
%2 U

+E

1 r 1 r—1
~ Voilz") = 5 Vaily; )

2
=)

(5.36)
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Step 2). The first term in (3.36) can be bounded as follows (omitting the subscript ).
N
1 T r—1 r r—1 r r—1 —1
E ZN (9:(2") = g:i(z"™1) + 90(z") = go(z" ) + h(z") = h(z""1) | FT

é |:1 Z ZT—ZT71>+<V90(ZT71),ZT—ZT71>

N
. L;,/N+ L
+ <§T,ZT o Zr71> + Zz:l / + Lo ”Zr i ZT71||2 | ];-7"1:|

2

N
1
< ngz r— 1)+£T+Vgo( ) B(ZTZTI),ZTZT1> ]:7‘1‘|
( _ZFJWN+“ﬂEAw_f*W

N
1
63 l<N ZVgi(zr_l) —Vj(r_1), 2 — zr_1> | ]—'T_ll
1
B

Li/N + 3L
T LN+ ﬂmﬂwflw

< /
(i) 1 N 2 /
< 20, 1/NZV91'(ZT_1) — vyl | FH + 1EzTH A
i=1
1 YN Li/N +3L
— E _ =1 2 EZTHZT‘ _ Z’I“71||2 (537)

where in (i) we have used the Lipschitz continuity of the gradients of g;’s as well as the convexity
of h; in (ii) we have used the fact that

(Vgo(z" 1), 2" — 2" 1) < (Vgo(2"), 2" — 2" 1) + Lo||2" — 2" 1|3 (5.38)
in (iil) we have applied the Young’s inequality for some ¢; > 0.

Choosing ¢; = 5 ﬁ , we have:

| X
N Z V(2" 1) - Vi(r_1)
=1

N r—1 r—1 N 2
1 1 Al(T 1) + 1/JVVgi(r—l)(Z ) 1 _
N ; sz(z ) O‘i(rfl) ; Nv.gz (y
D - 1 ?
2 zf—f () = V)
—1 l
Overall we have the following bound for the first term in (5.36):
Al
E lz 5 (6 =iz 1) +90(2") = go(z" ) + h(z") — (=" | fr_l] (5.39)
=1
N 2 N
ﬂ — 1 r—2 3 Zi:l Ll/N+3LO r r—1)12
; Py ) Nv.gl (yi ) 48 9 E.-||2 z ” :
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Step 3). We bound the second term in (5.36)) in the following way:
E[IVgi(z") = Vagily; I* | F7']
=E[IVai(z") = Vaily! ™) + Vai(") = Vi HI1? | F7Y
®)

1
2 (14 €)Eur [Vas(=") — Vsl D) + (1 " 5_) B, Vo) — Vil )P
D (1 4 &)E|[Vai(=") - Vel DI + (1 —m( : ) IV 2) - Vagul=" V)
(5.40)

where in (i) we have used the fact that the randomness of 2"~1 comes from i,_s, SO fixing F r—1
2"~ is deterministic; we have also applied the following inequality:

(a+b)?< (1+£)a2+(1+%)b2 VeSO,

The equality (ii) is true because the randomness of yT I comes from ir—1, and for each 7 there is a
probability p; such that z7 is updated, so that Vg, (y; ) = Vg;(2"1), otherwise z; is not updated

so that Vg, (y; ") = Vgi(y; ).
Step 4). Applying (5.40) and set o; = p;, the second part of (3.36) can be bounded as

N osp |1 1 2 3p |1 1 2
2 r r—1 ? r—1 r—2 r—1
ELX_; P N Voile") = 5 Vailyi ) T am ~§ VoilZ" ) = 5 Valyi 7)) I F ]
N
3L? 112
< T T_ T
o a;n;iN? (14 &) Earlz 7
3 (e 5 1) [Avaer) - Lvgey| (5.41)
o, Pi gl N gi(y N gil\z .
Combining (3.39) and (3.41) eventually we have
Sty
2
1 1
1-— i 1 _ r—1\ _ — ; r—
<3 (o o (0w g -1} [eae - fowory
N
SN Li/N + 3Ly 3L7 —1y2
i= L (14&) SE |27 — 272 5.42
+{ Y 5 ;amw(%) e = 2" (5.42)
Let us define {¢;} and ¢ as following:
B 3 ( 1 )
c; = — + ]-_i 1+* —1
g, (=2 fz‘)
N
= —— = 1 i)
c=-15+ 5 +;ainiN2( +&)
In order to prove the lemma it is enough to show that ¢; < —z- Vi, and ¢ < — ZN L. Letus
pick
2 ,
—pi &= =, pi= ——. (5.43)
pl Zi:1 i
Recall that 3 = Z -.These values yield the following
1 3 i
@.:_(p S JER S R
N M 2 ni o 20 2n;
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To show that ¢ < — Zf\il % let us assume that n; = d; L; for some d; > 0. Note that by assumption
we have

N
Z 1 > 3Lg.
i=1

Therefore we have the following expression for ¢:

As a result, to have ¢ < 725\;1 L, we need
L; /1 d; 9 d;L;
Liflp_ 4 9 ), 4l 3 5.44
d; (4z oN p§N2>— g i 4
Or equivalently
1 d; 9
lp_ & 9 3 5.45
8" T oN pgNZ—O’ Vi (5:45)

By finding the root of the above quadratic inequality, we need d; >
choosing the following parameters

9 . . .
Npi? which is equivalent to

(5.46)

The lemma is proved. Q.E.D.

5.3 Proof of Theorem 2.1]

First, using the fact that f(z) is lower bounded [cf. Assumption A-(a)], it is easy to verify that {Q"}
is a bounded sequence. Denote its lower bound to be Q. From Lemma itis clear that {Q" —Q} is
a nonnegative supermartingale. Apply the Supermartigale Convergence Theorem [R1, Proposition
4.2] we conclude that {Q"} converges almost surely (a.s.), and that

HVgi(zr_l) — Vgi(yiT_Q)H2 =0, E.rlz"—2""Y =0, as., Vi (5.47)
The first inequality implies that [|A] — )\::IH — 0. Combining this with equation (2.3) yields
7 —2z"~'|| — 0, which further implies that ||z" — 2"~ !|| — 0. By utilizing (2.8b) — (2:8¢), we
can conclude that

2f — a7 =0, [N =AY =0, as, Vi (5.48)

That is, almost surely the successive differences of all the primal and dual variables go to zero. Then
it is easy to show that every limit point of the sequence (z", z", \") converge to a stationary solution
of problem (1.2) (for example, see the argument in [R2, Theorem 2.1]. Here we omit the full proof.
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Part 1). We bound the gap in the following way (where the expectation is taking over the nature
history of the algorithm):

E[lls" = prox/ [" = BV(9(=") + go(=" ]I
R [l - 27+ prox)/*ur ! = BVgo(=" )] — prox;*[2" — BV (g(=") + go(=")]I?]

®)
< 3E|2" — 2" T2+ 3E[u"t — 27 + BVg(2")|? + 3LGB% 2T — 27|

(© 10 . X +1/NVg (") &
< SEll=" - 2P+ 36°E |[[Vg(2") — == o =Y 1/NVgily; HI?
r =1
@ 10 r TJrl 2 2 1 r 1 r—1 g
< gEHZ - I +38 Z NVgi(Z )*ﬁvgi(yi )
10 1 2
< VR — 2712 N - V(! .
< Ogjer -2 +32 HNW ) - V) (5.49)

where (a) is due to (3.32); (b) is true due to the nonexpansivness of the prox operator, and the
Cauchy-Swartz inequality; in (c¢) we have used the definition of w in (3.29) and the fact that 3L <

Zij\il n; = % [cf. Assumption A-(c)]. In the last inequality we have applied (5.43), which implies
that

1 1
A__ L _1 (5.50)
Qi p; Zj:l nj
Note that 7;’s has to satisfy (5.46)). Let us follow (2.11)) and choose
N
TN T T Ny
We have
N
mi = \|9Li/N Y n; =\/9L;/N (5.51)
j=1
Summing ¢ from 1 to N we have
(5.52)

Then we conclude that

N N 2
1
3= D oni= (Z \/9L¢/N> . (5.53)
i=1 i=1
So plugging the expression of 3 into (3.50) and (5.51)), we conclude

V/Li;/N N
a=pi=—F———, 1 =+9L;/N>» +/9L;/N. (5.54)
Y, VLi/N ; ’

After plugging in the above inequity into (2:13)), we obtain:

E[G"] €21

2

N
1 .
= WIEIIZ T“IF{ZBZ HNV‘% 2 = Vel ) (5.55)
e - =3 (Z VI /N) Q)
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If we sum both sides overr =1, - - - , R, we obtain:

R
Z Gr S % (Z /T,. /N) QR+1].

Using the definition of 2™, we have

R
E[G™) =Err [En[G™ | F']| = 1/RY Er[G"]

r=1

Therefore, we can finally conclude that:

T)’L 8 QR+1]
E[G™] < 5 <Z\/L /N) = < | (5.56)

which proves the first part.
Part 2). In order to prove the second part let us recycle inequality in (5.53) and write

GT+25 2]

L0 porer g2y i LVa(") - Vg™
> 352 - B N i N i\Y;

1 _
ng ") = 3 Valy; D)

2

<33

Also note that

N
E,. [er+1 r } Z

Combining the above two inequalities, we conclude

80 a i
< fE[Q Qr+1 (Z > r _ Qr+1].

2

1
—Vgily, ™)

)~ ¥ (5.57)

1
ARl

011771

N
Err[G"] + Egzr lz 3n? Hx?“ — ZTHQ]

i=1
N 30 2
:Efr[Gr]+Efr Z ]é : ||ZL’;+1 72”‘” ‘|

i=1

1 r—1
N gz ) - Nv.gz(yi )

2

G" + Z B 1

< % (Z \/Li/N> Er Q" — Q"] (5.58)
i=1

where in the first equality we have used the relation % = n; [cf. (5.50)]. Using a similar argument

as in first part, we conclude that

E[G™] +E

N 0 [ - Q"]
> 8[| — = ] sg(ZW) B

i=1

This completes the proof. Q.E.D.



5.4 Proof of Theorem[2.2]

We first need the following lemma, which characterizes certain error bound condition around the
stationary solution set.

Lemma 5.1. Suppose Assumptions A and B hold. Let Z* denotes the set of stationary solutions of
problem (I.1), and dist (z, Z*) := minyez~ ||z — u||. Then we have the following

1. (Error Bound Condition) For any £ > min, f(z), exists a positive scalar T such that the
following error bound holds
dist (2,27) < 7|[Vi/sf(2)] (5.60)
forallz € (ZNdom h)and z € {z : f(z) < &}

2. (Separation of Isocost Surfaces) There exists a scalar 6 > 0 such that
lz—wv| > whenever ze€ Z*,veZ*, f(z)# f(v). (5.61)

The first statement holds true largely due to [R3, Theorem 4], and the second statement holds true
due to [R4, Lemma 3.1]; see detailed discussion after [R3, Assumption 2]. Here the only difference
with the statement [R3, Theorem 4] is that the error bound condition holds true globally. This
is by the assumption that Z is a compact set. Below we provide a brief argument.

From [R3, Theorem 4], we know that when Assumption B is satisfied, we have that for any £ >
min, f(z), there exists scalars 7 and e such that the following error bound holds

dist(z,Z2%) < T||@1/5f(z)\|, whenever |Wl/5f(z)|| <e f(z) <& (5.62)
To argue that when Z is compact, the above error bound is independent of ¢, we use the following
two steps: (1) for all z € Z N dom(h) such that |V ,5f(2)|| < 0, it is clear that the error bound

(5.60) holds true; (2) for all z € Z N dom(h) such that ||@1/5f(z)|| > ¢, the ratio % isa
1/8J (%

continuous function and well defined over the compact set Z N dom(h) N {z | IV1sf(2)] =6 } .
Thus, the above ratio must be bounded from above by a constant 7" (independent of b, and no

greater than max, . cz ||z — 2||/9). Combining (1) and (2) yields the desired error bound over the
set Z N dom(h). QE.D.

Proof of Theorem

From Theoremwe know that (z", 2", A") converges to the set of stationary solutions of problem
(L.2). Let (z*, z*, \*) be one of such stationary solution. Then by the definition of the @) function
and the fact that the successive differences of the gradients goes to zero (cf. (5.47)), we have
N
Q" = f(z") =) _1/Ngi(z") + go(z") + p(z"). (5.63)

i=1

Then by Lemma - (2) we know that f(z") = Zi\; 1/Ng;(z")
settle at some isocost surface of f, i.e., there exists some finite 7 >
v € R such that

+ go(2") + p(z") will finally
0 such that for all » > 7 and

fZ) =9, Vr>r (5.64)

2" — z||. Therefore, combining the fact that ||z" T — 2"|| — 0, [|2" ! —
— 0and || A" — A"|| — 0 (cf. (5-87), (5.88)), it is easy to see that

Lz, 2", \")=f(Z") =0, Vr>r, (5.63)

where Z", \" are defined similarly as z".

where 2" = argmin, ¢z~
2 = 0, ]t — 2

Now we prove that the expectation of A™+! := Q"+ — o diminishes Q-linearly. All the expectation
below is w.r.t. the natural history of the algorithm. The proof consists of the following steps:
Step 1: There exists o7 > 0 such that

N
EQ"-Q ™ >0 (Ezm =P+ Y E|1/NVagi(z") - 1/NVgi(y§"_1)|2> ;

=1
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Step 2: There exists 7 > 0 such that
Ellz" = 2"|> < 7|E[V1sf (2N
Step 3: There exists oo > 0 such that

N
IE[V1/6f (=" )]I1? < o2 (Ezr“ — 2P+ Y E|L/NVagi(z") — 1/NV9i(y§1)I2> ;

i=1

Step 4: There exists o3 > 0 such that the following relation holds true for all » > 7

N
EQ™ —7] <03 <]EIIZT — 2P+ E|2 = 27|P + Y E(1/NVgi(2") — 1/NVgi(y; )||2>

=1

These steps will be verified one by one shortly. But let us suppose that they all hold true. Below we
show that linear convergence can be obtained.

Combining step 4 and step 2 we conclude that there exists o3 > 0 such that for all » > 7

N
E[Q" 1] < o (Tnmvwﬂf1>1||2+E||zr+1zr|2+ZE||1/Nv9i< ")~ 1/NVily] >||2>-

i=1

Then if we bound ||E(G")||? using step 3, we can simply make a o4 > 0 such that

E[Q™ — 0] < o (Enzm — 272+ S EI1/N V() - 1/NVaily] >II2>

i=1
Finally, applying step 1 we reach the following bound for E[Q"T! — ]
E[Q —9) < ZE[Q - Q) ¥r>7
o1
which further implies that for o5 = g—;‘ > 0, we have
05

E[A™] < —2—E[A"], Vr>7.
1+ 05

Now let us verify the correctness of each step. Step 1 can be directly obtained from equation (2:12).
Step 2 is exactly Lemma (3.1)). Step 3 can be verified using a similar derivation as in

Below let us prove the step 4, which is a bit involved. From (2.7) we know that
1 i 1
P —argmlnh )+ go(z +Z it — —i—é”x:+ — 2|

This implies that

N
B g0l + DO @l = ) ¢ e
i=1

N
z" T Ny r —r
< R(Z") + go(Z") + Z; A R LA (5.66)

Rearranging the terms, we obtain

N
1 1 " 1 or2
h(2"h) + go (") — h(Z") z_: Ry AR
SWe simply need to replace —z" ' + prox,’?[u"~! — BVgo(2"~1)] in step (a) of (549 by —2" +

prox}t/ Plu" — BV go(z")] and using the same derivation.
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Using this inequality we have:

N
Q=0 <Y 1N (g:(z"T) = gi27) + (AT, 2T - &)
=1
N
+Z%||m7“ 27|12+ 11/N(Vgi(z") — Vi (yr |1 (5.67)

=1

The first term in RHS can be bounded as follows:

N

D UN (i) = gi(2))

i=1

< Zl/N Vgi(2"), 2"t — 2" + L; /2N ||z — 27|
i=1
N

< D VYN(VGi(Z") + Vi) = Vgi(2"H), 271 — 27) + Li/2N|| 2"+ — 272
i=1

—~
<o
~

'MZ

s
Il
-

1/N(Vgi(z" 1), 2" = 27) + 8Li/2N||z" — 2"|)%,

where (a) is true due to the descent lemma; and (b) comes from the Lipschitz continuity of the Vg;.

Plugging the above bound into (5.67), we further have:

1/N(Vgi(z"™) = Vgi(yr =), 2" — ") + 3L; /2N || 2"+ — 27|

O
S
+
|
]|
IN
i)

_|_
M\S

it — 2|2 4 [1/N(Vgi(=") — Vil Y12

I
Mz

1/N(Vgi(2"") + Vg;(2") — Vgi(z") — Vi (y 1), 2" — 27)

—_

+

‘\’L* I

gt = 2+ /N (Vgi(=") = Vaily; )%+ 3Li/2N||2" = 27|17,

where in the first inequality we have used the fact that \7 = —+Vg;(y/~'); of . (5:23). Applying
the Cauchy-Schwartz inequality we further have:

N
QU —o <Y 1/201/N (Vi) + Vgi(2") IIP + /2] = 27

i=1

N
+ ) 1/201/N (Vgi(2") = Vagily; ) I+ 1/2]z7H — 27|

=1
+ %HI:—Q—l _ ZT||2 =+ H]_/N(ng(zr) _ VQZ(y:’—l)||2 + 3L1/2N||ZT+1 . ZT||2
N
L? 3 "
7 r+1 2 2 i 1 o
< ; [2]\72"2 - 2" +W”gz(z ) — Vai(y; )” ”xz 7|
+(1+3Li/2N) |2+ = 27|12 (5.68)
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Now let us bound 7% | %

N
>l - 7| = Z%uxz*l LR AR &
=1 7

r+1 r||2

x; in the above inequality:

N
< S mpllaf = R o - 2
=1
N
=3 mllaptt = 2 2T = 2P g - |
=1

N
<D 2milla T = 2P 4 2mallz = 2 2 - 2R
=1

Using the fact that 27t = 2" when i # i, we further have:
N

N
S0 Bt - 27 < 2 o = I Y 2l — 2R 2 2

i=1

N

2

= o X, + 1NV, I+ Y 2mll2" = 2P+l — 272
i i =

ir

2

= m”v%(zr) — Vg, (i DI

N
+ 32— YR o = 2 — 2

2

r 2
< WHV%T(Z )= Vi, (Y

N
+ > dmlem = 2P+ 2|2 — 22 (5.69)

Take expectation on both sides of the above equation and set p; = «;, we obtain:
U +1_ or 2
Z Bl =2 < Z

+ ZMJEII/ = 2P+ 2Bl - 2|

") = Vgily; HI?

Combining equations (5.68) and (5.69), eventually one can find o3 > 0 such that

N

EQ"™! ~ 9] <03 (EIIZT — 2P+ Bl =277+ Y E|1/NVgi(z") - 1/NVgily] )||2>
i=1

which completes the proof of Step 4.

In summary, we have shown that Step 1 - 4 all hold true. Therefore we have shown that the NESTT-G
converges Q-linearly. Q.E.D.

5.5 Some Key Properties of NESTT-E

To facilitate the following derivation, in this section we collect some key properties of NESTT-E.
First, for i = 4,, using the optimality condition for z; update step (3.16) we have the following
identity:

1

~ Vi (@) AL+, (] -2 =0, (5.70)
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Combined with the dual variable update step (3.17) we obtain

1 T T
NVgiT(xi:rl) = —A7HL (5.71)

Second, the optimality condition for the z-update is given by:

2" = prox, [2"T' = V.(L(z", 2,\") — h(2))] (5.72)
N \r
= prox,, lzrﬂ - Zm (z”‘l -z — z) - Vgo(zr'*'l)} . (5.73)
; i
=1

5.6 Proof of Theorem 3.1]

To prove this result, we need a few lemmas.

For notational simplicity, define new variables {#7 "'}, {\7*1} by
i;"’l = argmin U;(z;, 2" T, A, 5\?“ = A+ an; (ﬁ::“ — z’““) , Vi (5.74)
i
These variables are the virtual variables generated by updating all variables at iteration r + 1. Also
define:
1 L? i -0 Ly

L" = L(z", 2" A" = A = — P = - — —
(@252, wi=(z,2,0), B Zij\ilm’ ¢ a;n;N? 2+ a; N

First, we need the following lemma to show that the size of the successive difference of the dual
variables can be upper bounded by that of the primal variables. This is a simple consequence of
(5.71); also see [R2, Lemma 2.1]. We include the proof for completeness.

Lemma 5.2. Suppose assumption A holds. Then for NESTT-E algorithm, the following are true:

.2 . L . )
AT = A7)? < N*ZH%T“ |3 AT =P < N*ZH»T?“ —z|?, Vi. (5.752)

Proof. We only show the first inequality. The second one follows an analogous argument.

To prove (3.754), first note that the case for i # i, is trivial, as both sides of are zero. For the
index i,., we have a closed-form expression for A following (5.71). Notice that for any given i, the
primal-dual pair (z;, A;) is always updated at the same iteration. Therefore, if for each i we choose

the initial solutions in a way such that \{ = —Vg;(2?), then we have
1 X .
NVgi(J:;'H) =Nt Vi=12---N. (5.76)

Combining with Assumption A-(a) yields the following:

T 1 T T Ll T
N =N = Vg™ = Vel < S llei ™ = 2i ]

K3

The proof is complete. Q.E.D.

Second, we bound the successive difference of the potential function.
Lemma 5.3. Suppose Assumption A holds true. Then the following holds for NESTT-E

N
E[L’I-J,_l _ L7-|x7-’z7-] S _%Hz'y-.l,_l _ 27-||2 + ZPICZHLL‘Z _ jjvi"+1||2' (577)
i=1
Proof. First let us split L™ T — L" in the following way:
L' — L =0 — L™ 2NN 4 L™ 2T — L (5.78)
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The first two terms in (5.78) can be bounded by

N
Lr+1 _ L(l,r-',-l’Zr—i-l; /\r) _ Zo\lﬂrl )\:7 :Jrl _ 27"+1>
=1
2
(@) 1 T2 () L r+1 ro2
)\r+ )\ _ r+l 5.79
I e A (5.79)

where in (a) we have used (3.17)), and the fact that \J ™! — X7 = 0 for all variable blocks except 7,.th
block; (b) is true because of Lemma|5.2}

The last two terms in can be written in the following way:

L{al*1}, 24 — L7

= L(z™ 2" AT — D", 2" TN 4 Lz, 2" AT — L (5.80)
The first two terms in (3.80) characterizes the change of the Augmented Lagrangian before and after

the update of x. Note that z updates do not directly optimize the augmented Lagrangian. Therefore
the characterization of this step is a bit involved. We have the following:

L<xr+1’zr+1; /\r) _ L(Z‘T,ZT+1;)\T)

() & :
< 3 (VL@ 2 )t - af) = Dl — )

€T,

r ’ ’LT U

\V L(ZCT+1, r+1. /\r) r+1 _ 'r> ’YZT ” r+1 ZHQ

SEURCETRICASE RS x”l—xw—hmr“—x: I

> Vg, i 2 i
@ (1t -l -t ) - el - af P
< 120 (LI A el =l ) - e o P
e AR R 581

r

where

e (a) is true because L(z, z, A) is strongly convex with respect to ;.

e (b) is true because when i # i,., we have 2 "' = 7.

*+1 is optimal solution for the problem min U; (x;,, 2”1, Ai ) (satis-

r+1

e (c) is true because 7
fying (3.70)), and we 'have used the optimality of such z]

e (d) and (e) are due to Lemma

Similarly, the last two terms in (5.80) can be bounded using equation (3.70) and the strong convexity
of function L with respect to the variable z. Therefor We have:

Lz, "L\ — L7 < —%Hz”l — 2 (5.82)
Combining equations (5.79), (5.81)) and (5.82)), eventually we have:
L' — L(a", 2"\ < ¢ ||laf — 2T (5.83)

Lr—i—l L' < _%Hzr—i—l _ ZT”Q +C'LTH'T'7L _ 'T:j1||2 (584)

r

Taking expectation on both side of this inequality with respect to 4,., we can conclude that:
E[LT’-‘,-l _L'r‘ | Z’r‘,xr] S ZH r+1 _ T||2+szCzH$ A’7r;‘+1H2 (585)

where p; is the probability of picking ith block. The lemma is proved. Q.E.D.
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Lemma 5.4. Suppose that Assumption A is satisfied, then L™ > f.
Proof. Using the definition of the augmented Lagrangian function we have:
N

1 " B s i " T ‘s T
LHl:E:(Nw@T”+%M“JTJ—Z“%+2W?J—2“2)+%@*W+p@+5
=1

Iz
M-

1 r 1 r r r iy »r r r r
(o™ + g Taal )57 = a4+ Boagtt = a2 ) gl 4 (a7

=1 N ' N
o N 1 . i L; ,
> ; Ngi(zf+1) + <Z — 2]\7) Hzr+1 _ xlrJrlHQ +90(Z7+1) +p(zr+1)
© 1
> 2§l o) +p(e") > f (5.86)

&
Il
-

where (a) is true because of equation (3.71)); (b) follows Assumption A-(b); (c) follows Assumption
A-(d). The desired result is proven. Q.E.D.

Proof of Theorem 3.1} We first show that the algorithm converges to the set of stationary solutions,
and then establish the convergence rate.

Step 1. Convergence to Stationary Solutions. Combining the descent estimate in Lemma [5.3 as
well as the lower bounded condition in Lemma 5.4} we can again apply the Supermartigale Conver-
gence Theorem [R1, Proposition 4.2] and conclude that

it — 2| =0, [z — 27| — 0, with probability 1. (5.87)

From Lemma[5.2] we have that the constraint violation is satisfied
I = AT =0, i =2 0. (5.88)
The rest of the proof follows similar lines as in [R2, Theorem 2.4]. Due to space limitations we omit

the proof.
Step 2. Convergence Rate. We first show that there exists a o1 (o) > 0 such that

N N
- L2
IVLw")?+ ) e lei = 2|* < o1(@) (IIzT — 2P 4D flaf - %“HQ) . (589
1=1

i=1
Using the definition of || VL" (w")|| we have:

IVL" (w")|[* = ||2" = prox,, [ — V=(L" — h(z"))] ||
N

2

i=1

2

1
NVgi(azf) + A+ mi(x] —27) (5.90)

From the optimality condition of the z update (5.73) we have:

7

N
A\
2 = prox,, [zrﬂ - E 7 <zT+1 —xi — 1) — Vg()(z”l)} .
i=1
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Using this, the first term in equation (5.90) can be bounded as:
12" = prox;, [2" = Vo (L" = h(z"))]]

N
)\’I‘
27— 2" 4 2" prox,, [z —E ni(z" —x] — =) = Vgo(z H‘
i

7

=1
)\7‘
< Jl2" = 2| + ||prox, [ Zm( — —n) Vgo(z ’"H)]
N AT
— prox,, [z mez -z 777—) Vgo(z )] H
=1 g
N
<2l — 2| + <Z i +Lo> |27 — 2"+, (5.91)
=1

where in the last inequality we have used the nonexpansiveness of the proximity operator.

Similarly, the optimality condition of the z; subproblem is given by

]- AT T 2T a

NVgi(xiH) + AT (7T — 2 = 0. (5.92)
Applying this identity, the second term in equation (5.90) can be written as follows:

>

1 2
NV%(I?) + A+ ey —2")

i=1
= 2
Z - 7v91(w+1) +ni(xf —2") — aumi(&] r+l _ T'-H)
N ) 2
Z ng - NVgi(g@ZHl) (el — T 4 T — L g ) g (a0 — 2
1—a;)?L? , . . .
: 42 [( 2 SRt ) Jartt = ot 4 27 - 59

where (a) holds because of equation (5:92); (b) holds because of Lemma|5.2}
Finally, combining (3.91)) and (5.93) leads to the following bound for proximal gradient

N N 2
L < 4znz+(mo+zm) o — a2

=1 i=1
N
L7 (1 — i)’ Ly r_ artl)2
+;4 <N2 N e ET (5.94)
Also note that:
N g2
Z N2 HCU - ZTHQ < Z3Nz2 [H:c: A7"+1||2 + H AT+l r+1H2 + ||Zr+1 _ Zr”z]
i=1
N
L7 A (R 1 AT T2 1 _ 2

N L2 L
<Y a3k [lef —al P + 2N2AT*l—xz||2+|z’°+1—zr||2].

(5.95)
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The two inequalities (5.94) — (5.93) imply that:

N
- L?
VLT +Y e lei = 2|12

i=1

N N N
L2
- (z4n3+<z+zm+Lo>2+3z ;)nzr—ww
) =1

i=1

1 L? L} L? o
+Z( ( ( 1)2N2) +3<04‘N477~2+N2>> 2t — &7+, (5.96)

Define the following quantities:
) L 1 > L2 L} L2
01(a)mlax{4 <N2 (0411> N2>+3<(W+N2>

)

N N 1.2
=;4’7?+(2+Z’7i+L0)Z+3ZN2-

=1 =1

Setting 01 () = max(d1 (), 1) > 0, we have

2

N N
- L .
VLY E g - 12 < 1 (0) (w N xﬁw) e
=1

=1

From Lemma[5.3] we know that

B[LH - L]e", 0] < - 2 - ’“H2+szcz||z sk (598)

Note that v, = vazl 1; — Lo, then define &5 and &5 as

F2(a) = max Ji L _l-oei i
2 - 7 4 2 amiNQ (677 N

N
~ Zi=1771' — Ly
09 = f

We can set o2 («) = max(G2(a), 52) to obtain

E[L" — L™ 2", 2"] > o9(a (Z (7 — 2l |2 + || - z"||2> : (5.99)
Combining (3.97) and (5.99) we have

N
H(w") = |VL"|? + Y L/Nja} —="|]* <

=1

01(04)

E[L" — L"tYF".
O |F"]

~—

Q

Letus set C'(a) = 2% Eag and take expectation on both side of the above equation to obtain:

E[H(w")] < C(a)E[L" — L"]. (5.100)
Summing both sides of the above inequality over » =1, - - - , R, we obtain:
> E[H(w")] < C(a)E[L' — L. (5.101)

Using the definition of w™ = (z™, 2™, \™), and following the same line of argument as Theorem
(21 we eventually conclude that

C(a)E[L — LI+
7 .
The proof is complete. Q.E.D.

E[H(w™)] < (5.102)
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5.7 Proof of Proposition 4.1

Applying the optimality condition on z subproblem in (5.32) we have:
2" = argmin h(z) + go(2) + gﬂz — "2 (5.103)

where the variable u" ! is given by (cf. (5.29))

N

u =B (A + . (5.104)
i=1

Now from one of the key properties of NESTT-G [cf. Section[5.1] equation (5.28)], we have that
1 1

el LY Ve (1)) 4 (N 5.105

u 2" =8 (Nair (Vgi, (2") = Vi, (yi 1) + N; Vgi(y; ™) ) ( )

This verifies the claim. Q.E.D.
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