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Abstract
We consider sequential decision making problem in the adversarial setting, where
regret is measured with respect to the optimal sequence of actions and the feedback
adheres the bandit setting. It is well-known that obtaining sublinear regret in
this setting is impossible in general, which arises the question of when can we
do better than linear regret? Previous works show that when the environment is
guaranteed to vary slowly and furthermore we are given prior knowledge regarding
its variation (i.e., a limit on the amount of changes suffered by the environment),
then this task is feasible. The caveat however is that such prior knowledge is not
likely to be available in practice, which causes the obtained regret bounds to be
somewhat irrelevant.
Our main result is a regret guarantee that scales with the variation parameter of the
environment, without requiring any prior knowledge about it whatsoever. By that,
we also resolve an open problem posted by Gur, Zeevi and Besbes [8]. An important
key component in our result is a statistical test for identifying non-stationarity
in a sequence of independent random variables. This test either identifies non-
stationarity or upper-bounds the absolute deviation of the corresponding sequence
of mean values in terms of its total variation. This test is interesting on its own
right and has the potential to be found useful in additional settings.

1 Introduction
Multi-Armed Bandit (MAB) problems have been studied extensively in the past, with two important
special cases: the Stochastic Multi-Armed Bandit, and the Adversarial (Non-Stochastic) Multi-Armed
Bandit. In both formulations, the problem can be viewed as a T -round repeated game between
a player and nature. In each round, the player chooses one of k actions1 and observes the loss
corresponding to this action only (the so-called bandit feedback). In the adversarial formulation, it is
usually assumed that the losses are chosen by an all-powerful adversary that has full knowledge of
our algorithm. In particular, the loss sequences need not comply with any distributional assumptions.
On the other hand, in the stochastic formulation each action is associated with some mean value
that does not change throughout the game. The feedback from choosing an action is an i.i.d. noisy
observation of this action’s mean value.

The performance of the player is traditionally measured using the static regret, which compares
the total loss of the player with the total loss of the benchmark playing the best fixed action in
hindsight. A stronger measure of the player’s performance, sometimes referred to as dynamic regret2

(or just regret for brevity), compares the total loss of the player with this of the optimal benchmark,
playing the best possible sequence of actions. Notice that in the stochastic formulation both measures
coincide, assuming that the benchmark has access to the parameters defining the random process of

1We sometimes use the terminology arm for an action throughout.
2The dynamic regret is occasionally referred to as shifting regret or tracking regret in the literature.
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the losses but not to the random bits generating the loss sequences. In the adversarial formulation this
is clearly not the case, and it is not hard to show that attaining sublinear regret is impossible in general,
whereas obtaining sublinear static regret is possible indeed. This can perhaps explain why most of
the literature is concerned with optimizing the static regret rather than its dynamic counterpart.

Previous attempts to tackle the problem of regret minimization in the adversarial formulation mostly
took advantage of some niceness parameter of nature (that is, some non-adversarial behavior of the
loss sequences). This line of research becomes more and more popular, as full characterizations of the
regret turn out to be feasible with respect to specific niceness parameters. In this work we focus on a
broad family of such niceness parameters —usually called variation type parameters— originated
from the work of [8] in the context of (dynamic) regret minimization. Essentially, we consider a
MAB setting in which the mean value of each action can vary over time in an adversarial manner,
and the feedback to the player is a noisy observation of that mean value. The variation is then defined
as the sum of distances between the vectors of mean values over consecutive rounds, or formally,

VT
def
=

T∑
t=2

max
i
|µt(i)− µt−1(i)|, (1)

where µt(i) denotes the mean value of action i at round t. Despite the presentation of VT using the
maximum norm, any other norm will lead to similar qualitative formulations. Previous approaches to
the problem at hand relied on strong (and sometimes even unrealistic) assumptions on the variation
(we refer the reader to Section 1.3, in which related work is discussed in detail). The natural question
is whether it is possible to design an algorithm that does not require any assumptions on the variation,
yet can achieve o(T ) regret whenever VT = o(T ). In this paper we answer this question in the
affirmative and prove the following.

Theorem (Informal). Consider a MAB setting with two arms and time horizon T . Assume that at
each round t ∈ {1, . . . , T}, the random variables of obtainable losses correspond to a vector of
mean values µt. Then, Algorithm 1 achieves a regret bound of Õ

(
T 0.771 + T 0.82V0.18

T

)
.

Our techniques rely on statistical tests designed to identify changes in the environment on the one
hand, but exploit the best option observed so far in case there was no such significant environment
change. We elaborate on the key ideas behind our techniques in Section 1.2.

1.1 Model and Motivation
A player is faced with a sequential decision making task: In each round t ∈ {1, . . . , T} = [T ], the
player chooses an action it ∈ {1, . . . , k} = [k] and observes loss `t(it) ∈ [0, 1]. We assume that
E [`t(i)] = µt(i) for any i ∈ [k] and t ∈ [T ], where {µt(i)}Tt=1 are fixed beforehand by the adversary
(that is, the adversary is oblivious). For simplicity, we assume that {`t(i)}Tt=1 are also generated
beforehand. The goal of the player is to minimize the regret, which is henceforth defined as

RT =

T∑
t=1

µt(it)−
T∑
t=1

µt(i
∗
t ),

where i∗t = arg mini∈[k]{µt(i)}. A sequence of actions {it}Tt=1 has no-regret if RT = o(T ). It is
well-known that generating no-regret sequences in our setting is generally impossible, unless the
benchmark sequence is somehow limited (for example, in its total number of action switches) or
alternatively, some characterization of {µt(i)}Tt=1 is given (in our case, {µt(i)}Tt=1 are characterized
via the variation). While limiting the benchmark makes sense only when we have a strong reason to
believe that an action sequence from the limited class has satisfactory performance, characterizing
the environment is an approach that leads to guarantees of the following type:

If the environment is well-behaved (w.r.t. our characterization), then our per-
formance is comparable with the optimal sequence of actions. If not, then no
algorithm is capable of obtaining sublinear regret without further assumptions on
the environment.

Obtaining algorithms with such guarantee is an important task in many real-world applications. For
example, an online forecaster must respond to time-related trends in her data, an investor seeks
to detect trading trends as quickly as possible, a salesman should adjust himself to the constantly
changing taste of his audience, and many other examples can be found. We believe that in many of
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these examples the environment is often likely to change slowly, making guarantees of the type we
present highly desirable.

1.2 Our Techniques
An intermediate (noiseless) setting. We begin with an easier setting, in which the observable
losses are deterministic. That is, by choosing arm i at round t, rather than observing the realization
of a random variable with mean value µt(i) we simply observe µt(i). Note that {µt}Tt=1 are still
assumed to be generated adversarially. In this setting, the following intuitive solution can be shown
to work (for two arms): Pull each arm once and observe two values. Now, in each round pull the arm
with the smaller loss w.p. 1− o(1) and the other arm w.p. o(1), where the latter is decreasing with
time. As long as the mean values of the arms did not significantly shift compared to their original
values, continue. Once a significant shift is observed, reset all counters and start over. We note that
while the algorithm is simple, its analysis is not straightforward and contains some counterintuitive
ideas. In particular, we show that the true (unknown) variation can be replaced with a crude proxy
called the observed variation (to be later defined), while still maintaining mathematical tractability of
the problem.

To see the importance of this proxy, let us first describe a different approach to the problem at hand
that in particular extends directly the approach of [8] who show that if an upper-bound on VT is
known in advance, then the optimal regret is attainable. Therefore, one might guess that having
an unbiased estimator for VT will eliminate the need in this prior knowledge. Obtaining such an
unbiased estimator is not hard (via importance sampling), but it turns out that it is not sufficient: the
values of the variation to be identified are simply too small in order to be accurately estimated. Here
comes into the picture the observed variation, which is loosely defined as the loss difference between
two successive pulls of the same arm. Clearly, the true variation is only larger, but as we show, it
cannot be much larger without us noticing it. We provide a complete analysis of the noiseless setting
in Appendix A. This analysis is not directly used for dealing with the noisy setting but acts as a warm
up and contains some of the key techniques used for it.

Back to our (noisy) setting. Here also we focus on the case of k = 2 arms. When the losses are
stochastic the same basic ideas apply but several new major issues come up. In particular, here as
well we present an algorithm that resets all counters and starts over once a significant change in the
environment is detected. The similarity however ends here, mainly because of the noisy feedback that
makes it hard to determine whether the changes we see are due to some environmental shift or due
to the stochastic nature of the problem. The straightforward way of overcoming this is to forcefully
divide the time into ‘bins’ in which we continuously pull the same arm. By doing this, and averaging
the observed losses within a bin we can obtain feedback that is not as noisy. This meta-technique
raises two major issues: The first is, how long should these bins be? A long period would eliminate
the noise originating from the stochastic feedback but cripple our adaptive capabilities and make us
more vulnerable to changes in the environment. The second issue is, if there was a change in the
environment that is in some sense local to a single bin, how can we identify it? and assuming we did,
when should we tolerate it?

The algorithm we present overcomes the first issue by starting with an exploration phase, where both
arms are queried with equal probability. We advance to the next phase only once it is clear that the
average loss of one arm is greater than the other, and furthermore, we have a solid estimate of the
gap between them. In the next exploitation phase, we mimic the above algorithm for deterministic
feedback by pulling the arms in bins of length proportional to the (inverted squared) gap between the
arms. The techniques from above take care of the regret compared to a strategy that must be fixed
inside the bins, or alternatively, against the optimal strategy if we were somehow guaranteed that
there are no significant environment changes within bins. This leads us to the second issue, but first
consider the following example.
Example 1. During the exploration phase, we associated arm #1 with an expected loss of 0.5 and
arm #2 with an expected loss of 0.6. Now, consider a bin in which we pull arm #1. In the first half
of the bin the expected loss is 0.25 and in the second it is 0.75. The overall expected loss is 0.5,
hence without performing some test w.r.t. the pulls inside the bin we do not see any change in the
environment, and as far as we know we mimicked the optimal strategy. The optimal strategy however
can clearly do much better and we suffer a linear regret in this bin. Furthermore, the variation during
the bin is constant! The good news is that in this scenario a simple test would determine that the
outcome of the arm pulls inside the bin do not resemble those of an i.i.d. random variables, meaning
that the environment change can be detected.
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Figure 1: The optimal policy of an adversary that minimizes variation while maximizing deviation.

Example 1 clearly demonstrates the necessity of a statistical test inside a bin. However, there are
cases in which the changes of the environment are unidentifiable and the regret suffered by any
algorithm will be linear, as can be seen in the following example.

Example 2. Assume that arm #1 has mean value of 0.5 for all t, and arm #2 has mean value of
1 with probability 0.5 and 0 otherwise. The feedback from pulling arm i at a specific round is a
Bernoulli random variable with the mean value of that arm. Clearly, there is no way to distinguish
between these arms, and thus any algorithm would suffer linear regret. The point, however, is that
the variation in this example is also linear, and thus linear regret is unavoidable in general.

Example 2 shows that if the adversary is willing to put enough effort (in terms of variation), then
linear regret is unavoidable. The intriguing question is whether the adversary can put some less
effort (that is, to invest less than linear variation) and still cause us to suffer linear regret, while not
providing us the ability to notice that the environment has changed. The crux of our analysis is the
design of two tests, one per phase (exploration or exploitation), each is able to identify changes
whenever it is possible or to ensure they do not hurt the regret too much whenever it is not. This
building block, along with the ‘outer bin regret’ analysis mentioned above, allows us to achieve our
result in this setting. The essence of our statistical tests is presented here, while formal statements
and proofs are deferred to Section 2.

Our statistical tests (informal presentation). Let X1, . . . , Xn ∈ [0, 1] be a sequence of realiza-
tions, such that each Xi is generated from an arbitrary distribution with mean value µi. Our task is
to determine whether it is likely that µi = µ0 for all i, where µ0 is a given constant. In case there
is not enough evidence to reject this hypothesis, the test is required to bound the absolute deviation
of µn = {µi}ni=1 (henceforth denoted by ‖µn‖ad) in terms of its total variation3 ‖µn‖tv. Assume
for simplicity that µ̄1:n = 1

n

∑n
i=1 µi is close enough to µ0 (or even exactly equal to it), which

eliminates the need to check the deviation of the average from µ0. We are thus left with checking the
inner-sequence dynamics.

It is worthwhile to consider the problem from the adversary’s point of view: The adversary has full
control of the values of {µi}ni=1, and his task is to deviate as much as he can from the average without
providing us the ability to identify this deviation. Now, consider a partition of [n] into consecutive
segments, such that (µi − µ0) has the same sign for any iwithin a segment. Given this partition, it can
be shown that the optimal policy of an adversary that tries to minimize the total variation of {µi}ni=1
while maximizing its absolute deviation, is to set µi to be equal within each segment. The length
of a segment [a, b] is thus limited to be at most 1/|µ̄a:b − µ0|2, or otherwise the deviation is notable
(this follows by standard concentration arguments). Figure 1 provides a visualization of this optimal
policy. Summing the absolute deviation over the segments and using Hölder’s inequality ensures
that ‖µn‖ad ≤ n2/3‖µn‖1/3tv , or otherwise there exists a segment in which the distance between the
realization average and µ0 is significantly large. Our test is thus the simple test that measures this
distance for every segment. Notice that the test runs in polynomial time; further optimization might
improve the polynomial degree, but is outside the scope of this paper.

The test presented above aims to bound the absolute deviation w.r.t. some given mean value. As such,
it is appropriate only for the exploitation phase of our algorithm, in which a solid estimation of each
arm’s mean value is given. However, it turns out that bounding the absolute deviation with respect to
some unknown mean value can be done using similar ideas, yet is slightly more complicated.

3We use standard notions of total variation and absolute deviation. That is, the total variation of a sequence
{µi}ni=1 is defined as ‖µn‖tv =

∑n
i=2 |µi − µi−1|, and its absolute deviation is ‖µn‖ad =

∑n
i=1 |µi − µ̄1:n|,

where µ̄1:n = 1
n

∑n
i=1 µi.
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Alternative approaches. We point out that the approach of running a meta-bandit algorithm over
(logarithmic many) instances of the algorithm proposed by [8] will be very difficult to pursue. In this
approach, whenever an EXP3 instance is not chosen by the meta-bandit algorithm it is still forced to
play an arm chosen by a different EXP3 instance. We are not aware of an analysis of EXP3 nor other
algorithm equipped to handle such a harsh setting. Another idea that will be hard to pursue is tackling
the problem using a doubling trick. This idea is common when parameters needed for the execution
of an algorithm are unknown in advanced, but can in fact be guessed and updated if necessary. In
our case, the variation is not observed due to the bandit feedback, and moreover, estimating it using
importance sampling will lead to estimators that are too crude to allow a doubling trick.

1.3 Related Work
The question of whether (and when) it is possible to obtain bounds on other than the static regret is
long studied in a variety of settings including Online Convex Optimization (OCO), Bandit Convex
Optimization (BCO), Prediction with Expert Advice, and Multi-Armed bandits (MAB). Stronger
notions of regret include the dynamic regret (see for instance [17, 4]), the adaptive regret [11], the
strongly adaptive regret [5], and more. From now on, we focus on the dynamic regret only. Regardless
of the setting considered, it is not hard to construct a loss sequence such that obtaining sublinear
dynamic regret is impossible (in general). Thus, the problem of minimizing it is usually weakened in
one of the two following forms: (1) restricting the benchmark; and (2) characterizing the niceness of
the environment.

With respect to the first weakening form, [17] showed that in the OCO setting the dynamic regret
can be bounded in terms of CT =

∑T
t=2 ‖at − at−1‖, where {at}Tt=1 is the benchmark sequence. In

particular, restricting the benchmark sequence with CT = 0 gives the standard static regret result.
[6] suggested that this type of result is attainable in the BCO setting as well, but we are not familiar
with such result. In the MAB setting, [1] defined the hardness of a bencmark sequence as the number
of its action switches, and bounded the dynamic regret in terms of this hardness. Here again, the
standard static regret bound is obtained if the hardness is restricted to 0. The concept of bounding the
dynamic regret in terms of the total number of action switches was studied by [14], in the setting of
Prediction with Expert Advice.

With respect to the second weakening form, one can find an immense amount of MAB literature that
uses stochastic assumptions to model the environment. In particular, [16] coined the term restless
bandits; a model in which the loss sequences change in time according to an arbitrary, yet known in
advance, stochastic process. To cope with the hard nature of this model, subsequent works offered
approximations, relaxations, and more detailed models [3, 7, 15, 2]. Perhaps the first attempt to
handle arbitrary loss sequences in the context of dynamic regret and MAB, appears in the work of [8].
In a setting identical to ours, the authors fully characterize the dynamic regret: Θ(T 2/3V1/3

T ), if a
bound on VT is known in advance. We provide a high-level description of their approach.

Roughly speaking, their algorithm divides the time horizon into (equally-sized) blocks and applies
the EXP3 algorithm of [1] in each of them. This guarantees sublinear static regret w.r.t. the best fixed
action in the block. Now, since the number of blocks is set to be much larger than the value of VT (if
VT = o(T )), it can be shown that in most blocks, the variation inside the block is o(1) and the total
loss of the best fixed action (within a block) turns out to be not very far from the total loss of the best
sequence of actions. The size of the blocks (which is fixed and determined in advance as a function
of T and VT ) is tuned accordingly to obtain the optimal rate in this case. The main shortcomings of
this algorithms are the reliance on prior knowledge of VT , and the restarting procedure that does not
take the variation into account.

We also note the work of [13], in which the two forms of weakening are combined together to obtain
dynamic regret bounds that depend both on the complexity of the benchmark and on the niceness of
the environment. Another line of work that is close to ours (at least in spirit) aims to minimize the
static regret in terms of the variation (see for instance [9, 10]).

A word about existing statistical tests. There are actually many different statistical tests such as
z-test, t-test, and more, that aim to determine whether a sample data comes from a distribution with
a particular mean value. These tests however are not suitable for our setting since (1) they mostly
require assumptions on the data generation (e.g., Gaussianity), and (2) they lack our desired bound
on the total absolute deviation of the mean sequence in terms of its total variation. The latter is
especially important in light of Example 2, which demonstrates that a mean sequence can deviate
from its average without providing us any hint.
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2 Competing with Optimal Sequences
Before presenting our algorithm and analysis we introduce some general notation and definitions. Let
Xn = {Xi}ni=1 ∈ [0, c]n be a sequence of independent random variables, and denote µi = E [Xi].
For any n1, n2 ∈ [n], where n1 ≤ n2, we denote by X̄n1:n2

the average of Xn1
, . . . , Xn2

, and by
X̄c
n1:n2

the average of the other random variables. That is,

X̄n1:n2 =
1

n2 − n1 + 1

n2∑
i=n1

Xi and X̄c
n1:n2

=
1

n− n2 + n1 − 1

(
n1−1∑
i=1

Xi +

n∑
i=n2+1

Xi

)
.

We sometimes use the notation
∑
i/∈{n1,...,n2} for the second sum when n is implied from the context.

The expected values of X̄n1:n2
and X̄c

n1:n2
are denoted by µ̄n1:n2

and µ̄cn1:n2
, respectively. We use

two additional quantities defined w.r.t. n1, n2:

ε1 (n1, n2)
def
=

(
1

n2 − n1 + 1

)1/2

and ε2 (n1, n2)
def
=

(
1

n2 − n1 + 1
+

1

n− n2 + n1 − 1

)1/2

.

We slightly abuse notation and define Vn1:n2

def
=
∑n2

i=n1+1 |µi − µi−1| as the total variation of a
mean sequence µn = {µi}ni=1 ∈ [0, 1]n over the interval {n1, . . . , n2}.
Definition 2.1. (weakly stationary, non-stationary) We say that µn = {µi}ni=1 ∈ [0, 1]n is α-weakly
stationary if V1:n ≤ α. We say that µn is α-non-stationary if it is not α-weakly stationary4.

Throughout the paper, we mostly use these definitions with α = 1/
√
n. In this case we will shorthand

the notation and simply say that a sequence is weakly stationary (or non-stationary). In the sequel,
we somewhat abuse notation and use capital letters (X1, . . . , Xn) both for random variables and
realizations. The specific use should be clear from the context, if not spelled out explicitly. Next, we
define a notion of a concentrated sequence that depends on a parameter T . In what follows, T will
always be used as the time horizon.

Definition 2.2. (concentrated, strongly concentrated) We say that a sequence Xn = {Xi}ni=1 ∈
[0, c]n is concentrated w.r.t. µn if for any n1, n2 ∈ [n] it holds that:

(1)
∣∣X̄n1:n2

− µ̄n1:n2

∣∣ ≤ (2.5c2 log(T )
)1/2

ε1 (n1, n2).

(2)
∣∣X̄n1:n2

− X̄c
n1:n2

− µ̄n1:n2
+ µ̄cn1:n2

∣∣ ≤ (2.5c2 log(T )
)1/2

ε2 (n1, n2).

We further say that Xn is strongly concentrated w.r.t. µn if any successive sub-sequence {Xi}n2
i=n1

⊆
Xn is concentrated w.r.t. {µi}n2

i=n1
.

Whenever the mean sequence is inferred from the context, we will simply say that Xn is concen-
trated (or strongly concentrated). The parameters in the above definition are set so that standard
concentration bounds lead to the statement that any sequence of independent random variables is
strongly concentrated with high probability. The formal statement is given below and is proven in
Appendix B.

Claim 2.3. Let XT = {Xi}Ti=1 ∈ [0, c]T be a sequence of independent random variables, such that
T ≥ 2 and c > 0. Then, XT is strongly concentrated with probability at least 1− 1

T .

2.1 Statistical Tests for Identifying Non-Stationarity

TEST 1 (the offline test). The goal of the offline test is to determine whether a sequence of
realizations Xn is likely to be generated from a mean sequence µn that is close (in a sense) to some
given value µ0. This will later be used to determine whether a series of pulls of the same arm (inside
a single bin) in the exploitation phase exhibit the same behavior as those observed in the exploration
phase. We would like to have a two sided guarantee. If the means did not significantly shift the
algorithm must state that the sequence is weakly stationary. On the other hand, if the algorithm states
that the sequence is weakly stationary we require the absolute deviation of µn to be bounded in terms
of its total variation. We provide an analysis of Test 1 in Appendix B.
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Input: a sequence Xn = {Xi}ni=1 ∈ [0, c]n, and a constant µ0 ∈ [0, 1].
The test: for any two indices n1, n2 ∈ [n] such that n1 < n2, check whether∣∣X̄n1:n2 − µ0

∣∣ ≥ (√2.5c+ 2
)

log1/2(T )ε1 (n1, n2) .

Output: non-stationary if such n1, n2 were found; weakly stationary otherwise.

TEST 1: (the offline test) The test aims to identify variation during the exploitation phase.

Input: a sequence XQ = {Xi}Qi=1 ∈ [0, c]Q, that is revealed gradually (one Xi after the other).
The test: for n = 2, 3, . . . , Q:

(1) observe Xn and set Xn = {Xi}ni=1.
(2) for any two indices n1, n2 ∈ [n] such that n1 < n2, check whether∣∣X̄n1:n2

− X̄c
n1:n2

∣∣ ≥ (√2.5c+ 1
)

log1/2(T )ε2 (n1, n2) .

and terminate the loop if such n1, n2 were found.
Output: non-stationary if the loop was terminated before n = Q, weakly stationary otherwise.

TEST 2: (the online test) The test aims to identify variation during the exploration phase.

TEST 2 (the online test). The online test gets a sequence XQ in an online manner (one variable
after the other), and has to stop whenever non-stationarity is exhibited (or the sequence ends). Here,
the value of Q is unknown to us beforehand, and might depend on the values of sequence elements
Xi. The rationale here is the following: In the exploration phase of the main algorithm we sample
the arms uniformly until discovering a significant gap between their average losses. While doing
so, we would like to make sure that the regret is not large due to environment changes within
the exploration process. We require a similar two sided guarantee as in the previous test, with an
additional requirement informally ensuring that if we exit the block in the exploration phase the
bound on the absolute deviation still applies. We provide the formal analysis in Appendix B.

2.2 Algorithm and Analysis

Having this set of testing tools, we proceed to provide a non-formal description of our algorithm.
Basically, the algorithm divides the time horizon into blocks according to the variation it identifies.
The blocks are denoted by {Bj}Nj=1, where N is the total number of blocks generated by the
algorithm. The rounds within block Bj are split into an exploration and exploitation phase,
henceforth denoted Ej,1 and Ej,2 respectively. Each exploitation phase is further divided into bins,
where the size of the bins within a block is determined in the exploration phase and does not change
throughout the block. The bins within block Bj are denoted by {Aj,a}

Nj

a=1, where Nj is the total
number of bins in block Bj . Note that both N and Nj are random variables. We use t(j, τ) to denote
the τ -th round in the exploration phase of block Bj , and t(j, a, τ) to denote the τ -th round of the
a-th bin in the exploitation phase of block Bj . As before, notice that t(j, τ) might vary from one run
of the algorithm to another, yet is uniquely defined per one run of the algorithm (and the same holds
for t(j, a, τ)). Our algorithm is formally given in Algorithm 1, and the working scheme is visually
presented in Figure 2. We discuss the extension of the algorithm to k arms in Appendix D.

Theorem 2.4. Set θ = 1
2 and λ =

√
37−5
2 . Then, with probability of at least 1 − 10

T the regret of
Algorithm 1 is

RT =

T∑
t=1

µt(it)−
T∑
t=1

µt(i
∗
t ) ≤ O

(
log(T )T 0.82V0.18

T + log(T )T 0.771
)
.

Proof sketch. Notice that the feedback we receive throughout the game is strongly concentrated with
high probability, and thus it suffices to prove the theorem for this case. We analyze separately (a)
blocks in which the algorithm did not reach the exploitation, and (b) blocks in which it did.

4We use stationarity-related terms to classify mean sequences. Our definition might be not consistent with
stationarity-related definitions in the statistical literature, which are usually used to classify sequences of random
variables based on higher moments or CDF’s.
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Figure 2: The time horizon is divided into blocks, where each block is split into an exploration phase and an
exploitation phase. The exploitation phase is further divided into bins.

Input: parameters λ and θ.

Algorithm: In each block j = 1, 2, . . .

(Exploration phase) In each round τ = 1, 2, . . .
(1) Select action it(j,τ) ∼ Uni{1, 2} and observe loss `t(j,τ)(it(j,τ)).

(2) Set Xt(j,τ)(i) =

{
2`t(j,τ)(it(j,τ)) if i = it(j,τ)
0 otherwise,

and add Xt(j,τ)(i) (separately, for i ∈ {1, 2}) as an input to TEST 2.
(3) If the test identifies non-stationarity (on either one of the actions), exit block. Otherwise, if

∆
def
= |X̄t(j,1):t(j,τ)(1)− X̄t(j,1):t(j,τ)(2)| ≥ 16

(√
10 + 2

)2
log(T )τ−λ/2

move to the next phase with µ̂0(i) = X̄t(j,1):t(j,τ)(i) for i ∈ {1, 2}.

(Exploitation phase) Play in bins, each of size n = 4/∆2. During each bin a = 1, 2, . . .

(1) Select action it(j,a,1), . . . , it(j,a,n) =

{
arg mini{µ̂0(i)} w.p. 1− a−θ
Uni{1, 2} otherwise,

and observe losses {`t(j,a,τ)(it(j,a,τ))}nτ=1.
(2) Run TEST 1 on {`t(j,a,τ)(it(j,a,τ))}nτ=1, and exit the block if it returned non-stationary.

Algorithm 1: An algorithm for the non-stationary multi-armed bandit problem.

Analysis of part (a). From TEST 2, we know that as long as the test does not identify non-
stationarity in the exploration phase E1, we can “trust” the feedback we observe as if we are in
the stationary setting, i.e. standard stochastic MAB, up to an additive factor of |E1|2/3V1/3

E1
to the

regret. This argument holds even if TEST 2 identified non-stationarity, by simply excluding the last
round. Now, since our stopping condition of the exploration phase is roughly ∆ ≥ τ−λ/2, we suffer
an additional regret of |E1|1−λ/2 throughout the exploration phase. This gives an overall bound of
|E1|2/3V1/3

E1
+ |E1|1−λ/2 for the regret (formally proven in Lemma C.4). The terms of the form

|E1|1−λ/2 are problematic, as summing them may lead to an expression linear in T . To avoid this
we use a lower bound on the variation VE1

guaranteed by the fact that TEST 2 caused the block to
end during the exploration phase. This lower bound allows to express |E1|1−λ/2 as |E1|1−λ/3Vλ/3E1

leading to a meaningful regret bound on the entire time horizon (as detailed in Lemma C.5).

Analysis of part (b). The regret suffered in the exploration phase is bounded by the same arguments
as before, where the bound on |E1|1−λ/2 is replaced by |E1|1−λ/2 ≤ |B|1−λ/3V1−λ/3

B with B being
the set of block rounds. This bound is achieved via a lower bound on VB , the variation in the block,
guaranteed by the algorithm behavior along with fact that the block ended in the exploitation phase.
For the regret in the exploitation phase, we first utilize the guarantees of TEST 1 to show that at the
expense of an additive cost of |E2|2/3V1/3

E2
to the regret, we may assume that there is no change to the

environment inside bins. From hereon the analysis becomes very similar to that of the deterministic
setting, as the noise corresponding to a bin is guaranteed to be lower than the gap ∆ between the
arms, and thus has no affect on the algorithm’s performance. The final regret bound for blocks of type
(b) comes from adding up the above mentioned bounds and is formally given in Lemma C.10.
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