
Learning a Probabilistic Latent Space of Object
Shapes via 3D Generative-Adversarial Modeling

Jiajun Wu* Chengkai Zhang* Tianfan Xue
MIT CSAIL MIT CSAIL MIT CSAIL

William T. Freeman Joshua B. Tenenbaum
MIT CSAIL, Google Research MIT CSAIL

Abstract
We study the problem of 3D object generation. We propose a novel framework,
namely 3D Generative Adversarial Network (3D-GAN), which generates 3D ob-
jects from a probabilistic space by leveraging recent advances in volumetric convo-
lutional networks and generative adversarial nets. The benefits of our model are
three-fold: first, the use of an adversarial criterion, instead of traditional heuristic
criteria, enables the generator to capture object structure implicitly and to synthe-
size high-quality 3D objects; second, the generator establishes a mapping from
a low-dimensional probabilistic space to the space of 3D objects, so that we can
sample objects without a reference image or CAD models, and explore the 3D
object manifold; third, the adversarial discriminator provides a powerful 3D shape
descriptor which, learned without supervision, has wide applications in 3D object
recognition. Experiments demonstrate that our method generates high-quality 3D
objects, and our unsupervisedly learned features achieve impressive performance
on 3D object recognition, comparable with those of supervised learning methods.

1 Introduction
What makes a 3D generative model of object shapes appealing? We believe a good generative model
should be able to synthesize 3D objects that are both highly varied and realistic. Specifically, for
3D objects to have variations, a generative model should be able to go beyond memorizing and
recombining parts or pieces from a pre-defined repository to produce novel shapes; and for objects to
be realistic, there need to be fine details in the generated examples.

In the past decades, researchers have made impressive progress on 3D object modeling and synthe-
sis [Van Kaick et al., 2011, Tangelder and Veltkamp, 2008, Carlson, 1982], mostly based on meshes
or skeletons. Many of these traditional methods synthesize new objects by borrowing parts from
objects in existing CAD model libraries. Therefore, the synthesized objects look realistic, but not
conceptually novel.

Recently, with the advances in deep representation learning and the introduction of large 3D CAD
datasets like ShapeNet [Chang et al., 2015, Wu et al., 2015], there have been some inspiring attempts
in learning deep object representations based on voxelized objects [Girdhar et al., 2016, Su et al.,
2015a, Qi et al., 2016]. Different from part-based methods, many of these generative approaches
do not explicitly model the concept of parts or retrieve them from an object repository; instead,
they synthesize new objects based on learned object representations. This is a challenging problem
because, compared to the space of 2D images, it is more difficult to model the space of 3D shapes due
to its higher dimensionality. Their current results are encouraging, but often there still exist artifacts
(e.g., fragments or holes) in the generated objects.

In this paper, we demonstrate that modeling volumetric objects in a general-adversarial manner could
be a promising solution to generate objects that are both novel and realistic. Our approach combines

∗ indicates equal contributions. Emails: {jiajunwu, ckzhang, tfxue, billf, jbt}@mit.edu

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

the merits of both general-adversarial modeling [Goodfellow et al., 2014, Radford et al., 2016] and
volumetric convolutional networks [Maturana and Scherer, 2015, Wu et al., 2015]. Different from
traditional heuristic criteria, generative-adversarial modeling introduces an adversarial discriminator
to classify whether an object is synthesized or real. This could be a particularly favorable framework
for 3D object modeling: as 3D objects are highly structured, a generative-adversarial criterion, but
not a voxel-wise independent heuristic one, has the potential to capture the structural difference of
two 3D objects. The use of a generative-adversarial loss may also avoid possible criterion-dependent
overfitting (e.g., generating mean-shape-like blurred objects when minimizing a mean squared error).

Modeling 3D objects in a generative-adversarial way offers additional distinctive advantages. First, it
becomes possible to sample novel 3D objects from a probabilistic latent space such as a Gaussian
or uniform distribution. Second, the discriminator in the generative-adversarial approach carries
informative features for 3D object recognition, as demonstrated in experiments (Section 4). From
a different perspective, instead of learning a single feature representation for both generating and
recognizing objects [Girdhar et al., 2016, Sharma et al., 2016], our framework learns disentangled
generative and discriminative representations for 3D objects without supervision, and applies them
on generation and recognition tasks, respectively.

We show that our generative representation can be used to synthesize high-quality realistic objects,
and our discriminative representation can be used for 3D object recognition, achieving comparable
performance with recent supervised methods [Maturana and Scherer, 2015, Shi et al., 2015], and
outperforming other unsupervised methods by a large margin. The learned generative and discrim-
inative representations also have wide applications. For example, we show that our network can
be combined with a variational autoencoder [Kingma and Welling, 2014, Larsen et al., 2016] to
directly reconstruct a 3D object from a 2D input image. Further, we explore the space of object
representations and demonstrate that both our generative and discriminative representations carry
rich semantic information about 3D objects.

2 Related Work
Modeling and synthesizing 3D shapes 3D object understanding and generation is an important
problem in the graphics and vision community, and the relevant literature is very rich [Carlson,
1982, Tangelder and Veltkamp, 2008, Van Kaick et al., 2011, Blanz and Vetter, 1999, Kalogerakis
et al., 2012, Chaudhuri et al., 2011, Xue et al., 2012, Kar et al., 2015, Bansal et al., 2016, Wu et al.,
2016]. Since decades ago, AI and vision researchers have made inspiring attempts to design or learn
3D object representations, mostly based on meshes and skeletons. Many of these shape synthesis
algorithms are nonparametric and they synthesize new objects by retrieving and combining shapes and
parts from a database. Recently, Huang et al. [2015] explored generating 3D shapes with pre-trained
templates and producing both object structure and surface geometry. Our framework synthesizes
objects without explicitly borrow parts from a repository, and requires no supervision during training.
Deep learning for 3D data The vision community have witnessed rapid development of deep
networks for various tasks. In the field of 3D object recognition, Li et al. [2015], Su et al. [2015b],
Girdhar et al. [2016] proposed to learn a joint embedding of 3D shapes and synthesized images, Su
et al. [2015a], Qi et al. [2016] focused on learning discriminative representations for 3D object recog-
nition, Wu et al. [2016], Xiang et al. [2015], Choy et al. [2016] discussed 3D object reconstruction
from in-the-wild images, possibly with a recurrent network, and Girdhar et al. [2016], Sharma et al.
[2016] explored autoencoder-based networks for learning voxel-based object representations. Wu
et al. [2015], Rezende et al. [2016], Yan et al. [2016] attempted to generate 3D objects with deep
networks, some using 2D images during training with a 3D to 2D projection layer. Many of these
networks can be used for 3D shape classification [Su et al., 2015a, Sharma et al., 2016, Maturana
and Scherer, 2015], 3D shape retrieval [Shi et al., 2015, Su et al., 2015a], and single image 3D
reconstruction [Kar et al., 2015, Bansal et al., 2016, Girdhar et al., 2016], mostly with full supervision.
In comparison, our framework requires no supervision for training, is able to generate objects from a
probabilistic space, and comes with a rich discriminative 3D shape representation.
Learning with an adversarial net Generative Adversarial Nets (GAN) [Goodfellow et al., 2014]
proposed to incorporate an adversarial discriminator into the procedure of generative modeling. More
recently, LAPGAN [Denton et al., 2015] and DC-GAN [Radford et al., 2016] adopted GAN with
convolutional networks for image synthesis, and achieved impressive performance. Researchers have
also explored the use of GAN for other vision problems. To name a few, Wang and Gupta [2016]
discussed how to model image style and structure with sequential GANs, Li and Wand [2016] and
Zhu et al. [2016] used GAN for texture synthesis and image editing, respectively, and Im et al. [2016]

2

z G(z) in 3D Voxel Space
64×64×64

512×4×4×4
256×8×8×8

128×16×16×16 64×32×32×32

Figure 1: The generator in 3D-GAN. The discriminator mostly mirrors the generator.

developed a recurrent adversarial network for image generation. While previous approaches focus on
modeling 2D images, we discuss the use of an adversarial component in modeling 3D objects.

3 Models
In this section we introduce our model for 3D object generation. We first discuss how we build
our framework, 3D Generative Adversarial Network (3D-GAN), by leveraging previous advances
on volumetric convolutional networks and generative adversarial nets. We then show how to train
a variational autoencoder [Kingma and Welling, 2014] simultaneously so that our framework can
capture a mapping from a 2D image to a 3D object.

3.1 3D Generative Adversarial Network (3D-GAN)
As proposed in Goodfellow et al. [2014], the Generative Adversarial Network (GAN) consists of
a generator and a discriminator, where the discriminator tries to classify real objects and objects
synthesized by the generator, and the generator attempts to confuse the discriminator. In our 3D
Generative Adversarial Network (3D-GAN), the generator G maps a 200-dimensional latent vector z,
randomly sampled from a probabilistic latent space, to a 64× 64× 64 cube, representing an object
G(z) in 3D voxel space. The discriminator D outputs a confidence value D(x) of whether a 3D
object input x is real or synthetic.

Following Goodfellow et al. [2014], we use binary cross entropy as the classification loss, and present
our overall adversarial loss function as

L3D-GAN = logD(x) + log(1−D(G(z))), (1)

where x is a real object in a 64× 64× 64 space, and z is a randomly sampled noise vector from a
distribution p(z). In this work, each dimension of z is an i.i.d. uniform distribution over [0, 1].
Network structure Inspired by Radford et al. [2016], we design an all-convolutional neural
network to generate 3D objects. As shown in Figure 1, the generator consists of five volumetric fully
convolutional layers of kernel sizes 4 × 4 × 4 and strides 2, with batch normalization and ReLU
layers added in between and a Sigmoid layer at the end. The discriminator basically mirrors the
generator, except that it uses Leaky ReLU [Maas et al., 2013] instead of ReLU layers. There are no
pooling or linear layers in our network. More details can be found in the supplementary material.
Training details A straightforward training procedure is to update both the generator and the
discriminator in every batch. However, the discriminator usually learns much faster than the generator,
possibly because generating objects in a 3D voxel space is more difficult than differentiating between
real and synthetic objects [Goodfellow et al., 2014, Radford et al., 2016]. It then becomes hard
for the generator to extract signals for improvement from a discriminator that is way ahead, as all
examples it generated would be correctly identified as synthetic with high confidence. Therefore,
to keep the training of both networks in pace, we employ an adaptive training strategy: for each
batch, the discriminator only gets updated if its accuracy in the last batch is not higher than 80%. We
observe this helps to stabilize the training and to produce better results. We set the learning rate of
G to 0.0025, D to 10−5, and use a batch size of 100. We use ADAM [Kingma and Ba, 2015] for
optimization, with β = 0.5.

3.2 3D-VAE-GAN
We have discussed how to generate 3D objects by sampling a latent vector z and mapping it to the
object space. In practice, it would also be helpful to infer these latent vectors from observations. For
example, if there exists a mapping from a 2D image to the latent representation, we can then recover
the 3D object corresponding to that 2D image.

3

Following this idea, we introduce 3D-VAE-GAN as an extension to 3D-GAN. We add an additional
image encoder E, which takes a 2D image x as input and outputs the latent representation vector z.
This is inspired by VAE-GAN proposed by [Larsen et al., 2016], which combines VAE and GAN by
sharing the decoder of VAE with the generator of GAN.

The 3D-VAE-GAN therefore consists of three components: an image encoder E, a decoder (the
generator G in 3D-GAN), and a discriminator D. The image encoder consists of five spatial
convolution layers with kernel size {11, 5, 5, 5, 8} and strides {4, 2, 2, 2, 1}, respectively. There
are batch normalization and ReLU layers in between, and a sampler at the end to sample a 200
dimensional vector used by the 3D-GAN. The structures of the generator and the discriminator are
the same as those in Section 3.1.

Similar to VAE-GAN [Larsen et al., 2016], our loss function consists of three parts: an object
reconstruction loss Lrecon, a cross entropy loss L3D-GAN for 3D-GAN, and a KL divergence loss LKL
to restrict the distribution of the output of the encoder. Formally, these loss functions write as

L = L3D-GAN + α1LKL + α2Lrecon, (2)

where α1 and α2 are weights of the KL divergence loss and the reconstruction loss. We have

L3D-GAN = logD(x) + log(1−D(G(z))), (3)
LKL = DKL(q(z|y) || p(z)), (4)
Lrecon = ||G(E(y))− x||2, (5)

where x is a 3D shape from the training set, y is its corresponding 2D image, and q(z|y) is the
variational distribution of the latent representation z. The KL-divergence pushes this variational
distribution towards to the prior distribution p(z), so that the generator can sample the latent repre-
sentation z from the same distribution p(z). In this work, we choose p(z) a multivariate Gaussian
distribution with zero-mean and unit variance. For more details, please refer to Larsen et al. [2016].

Training 3D-VAE-GAN requires both 2D images and their corresponding 3D models. We render 3D
shapes in front of background images (16, 913 indoor images from the SUN database [Xiao et al.,
2010]) in 72 views (from 24 angles and 3 elevations). We set α1 = 5, α2 = 10−4, and use a similar
training strategy as in Section 3.1. See our supplementary material for more details.

4 Evaluation
In this section, we evaluate our framework from various aspects. We first show qualitative results
of generated 3D objects. We then evaluate the unsupervisedly learned representation from the
discriminator by using them as features for 3D object classification. We show both qualitative and
quantitative results on the popular benchmark ModelNet [Wu et al., 2015]. Further, we evaluate
our 3D-VAE-GAN on 3D object reconstruction from a single image, and show both qualitative and
quantitative results on the IKEA dataset [Lim et al., 2013].

4.1 3D Object Generation
Figure 2 shows 3D objects generated by our 3D-GAN. For this experiment, we train one 3D-GAN
for each object category. For generation, we sample 200-dimensional vectors following an i.i.d.
uniform distribution over [0, 1], and render the largest connected component of each generated object.
We compare 3D-GAN with Wu et al. [2015], the state-of-the-art in 3D object synthesis from a
probabilistic space, and with a volumetric autoencoder, whose variants have been employed by
multiple recent methods [Girdhar et al., 2016, Sharma et al., 2016]. Because an autoencoder does not
restrict the distribution of its latent representation, we compute the empirical distribution p0(z) of the
latent vector z of all training examples, fit a Gaussian distribution g0 to p0, and sample from g0. Our
algorithm produces 3D objects with much higher quality and more fine-grained details.

Compared with previous works, our 3D-GAN can synthesize high-resolution 3D objects with detailed
geometries. Figure 3 shows both high-res voxels and down-sampled low-res voxels for comparison.
Note that it is relatively easy to synthesize a low-res object, but is much harder to obtain a high-res
one due to the rapid growth of 3D space. However, object details are only revealed in high resolution.

A natural concern to our generative model is whether it is simply memorizing objects from training
data. To demonstrate that the network can generalize beyond the training set, we compare synthesized
objects with their nearest neighbor in the training set. Since the retrieval objects based on `2 distance in
the voxel space are visually very different from the queries, we use the output of the last convolutional

4

Our results (64× 64× 64) NN

Gun

Chair

Car

Sofa

Table

Objects generated by Wu et al. [2015] (30× 30× 30)

Table Car

Objects generated by a volumetric autoencoder (64× 64× 64)

Chair Table Sofa

Figure 2: Objects generated by 3D-GAN from vectors, without a reference image/object. We show,
for the last two objects in each row, the nearest neighbor retrieved from the training set. We see that
the generated objects are similar, but not identical, to examples in the training set. For comparison,
we show objects generated by the previous state-of-the-art [Wu et al., 2015] (results supplied by the
authors). We also show objects generated by autoencoders trained on a single object category, with
latent vectors sampled from empirical distribution. See text for details.

High-res Low-res High-res Low-res High-res Low-res High-res Low-res
Figure 3: We present each object at high resolution (64× 64× 64) on the left and at low resolution
(down-sampled to 16 × 16 × 16) on the right. While humans can perceive object structure at a
relatively low resolution, fine details and variations only appear in high-res objects.
layer in our discriminator (with a 2x pooling) as features for retrieval instead. Figure 2 shows that
generated objects are similar, but not identical, to the nearest examples in the training set.

4.2 3D Object Classification
We then evaluate the representations learned by our discriminator. A typical way of evaluating
representations learned without supervision is to use them as features for classification. To obtain
features for an input 3D object, we concatenate the responses of the second, third, and fourth
convolution layers in the discriminator, and apply max pooling of kernel sizes {8, 4, 2}, respectively.
We use a linear SVM for classification.
Data We train a single 3D-GAN on the seven major object categories (chairs, sofas, tables, boats,
airplanes, rifles, and cars) of ShapeNet [Chang et al., 2015]. We use ModelNet [Wu et al., 2015] for
testing, following Sharma et al. [2016], Maturana and Scherer [2015], Qi et al. [2016].∗ Specifically,
we evaluate our model on both ModelNet10 and ModelNet40, two subsets of ModelNet that are often

� For ModelNet, there are two train/test splits typically used. Qi et al. [2016], Shi et al. [2015], Maturana
and Scherer [2015] used the train/test split included in the dataset, which we also follow; Wu et al. [2015], Su

5

