A Appendix: Proofs

A.1 Proof of Theorem 1

Proof technique is based on [Kottowski and Dembczynski, 2015], where they derive a similar bound
in the binary classification setting. We first relate the W-regret to weighted 0-1 loss regret. Define the
a-weighted 0-1 loss £, : R x R — [0, 1] as:

la(9,y) = ofy = 0][g = 1] + (1 = [y = 1][g = 0],

LetY = f(X) for some function f. The £,-risk of f with respect to the underlying distribution over
X,Y and Q is defined as:

Riska (Y, Y) = E[to(Ys;,Yi;)] = oFP(Y,Y) + (1 — a)FN(Y, Y).
Define the Bayes optimal corresponding to the above risk: % (X) = arg min Risk, (f(X),Y). Let
Risk}, := Risk(f%(X)). The £,-regret of f is defined as:

Reg,, (f(X)) := Riskq (f(X)) — Risk},.

Lemma 2. Let U be a linear-fractional performance metric as defined in (3), (4) or (5). Then for
a € (0,1) defined as:
. \IJ*CQ — C1
o \II*CQ —c + l:[/*dg — dl7
where c1,dy, ca, do are constants that depend on U, there exists some constant C' > 0 such that, for
any f:

«

©))

U~ W(F(X), Y) < C(Riska(f(X), V) — Riskl). (10)

Let ¢ : {0,1} x R — R, be a X -strongly proper composite loss [Agarwal, 2014], such as the
squared loss or the logistic. Given real-valued predictions Z € R™*%, we now argue that there exists
a thresholding Thry- (Z) € {0,1}"*% such that Risk, (Thrg-(Z),Y) is bounded by the ¢-regret of a
strongly proper loss ¢ (where Thr operator is defined as in Step 2 of Algorithm 1).

Lemma 3. Let ¢ be a A-strongly proper loss function, and « be defined as in (9). Then, there exists

0" s.t.
Reg,, (Thrg-(2)) < \/%/Rege(z) :

Finally, we show that estimating 6 from training samples (Step 3 of Algorithm 1) is sufficient for
bounding the ¥-regret.

Lemma 4. We have: R
max U(Thry(Z), Y) > U(Thry-(2), ),

and
~ 1
max ¥ (Thre(Zy), Yo) > max U(Thry(2), Y) — O(—>
0 0 V9
The proof of the Theorem is complete by chaining the above three Lemmas. [

Remark 7. When U* is known (in the noise-free or realizable setting, U* is the maximum possible
value of ), we can get a closed form for 0*, which is 8* = &(a) where £ is the link function
corresponding to the proper loss (.

A.1.1 Proof of Lemma 2
LetY = f(X). Consider the metric ¥ from family (3) for the moment. Define A(?) =ap+an TP+

~

0,01FP—|—0,10FN—|—0,00TN = 61FP—|—d1FN+61 and B(Y) = b()—|—b11TP—|—b01FP+b10FN—|—bOQTN =
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coFP+dsFN+-e5 (for constants ¢y, ¢o, d1, da, €1, €2 suitably defined), so that \I/(?, Y)= A(V) / B(V)
Let f* denote the Bayes optimal attaining U* = A*/B*. We have:

T (YY) = —‘IJ*B(Z)&)A(?)
~ U*B(Y) — A(Y) — (U*B* — A*)
B B(Y)
_ v (B(Y) - BY) - (A(Y) - 4Y)
B(Y)
_ (Trea — ) (FP(Y.Y) —FP(f*(X),Y)) + (¥"dz — da)(EN(Y,Y) — EN(/*(X).Y))
B(Y)
_ (Wep — ) (FR(Y,Y) — FP(f*(X), Y)) + (¥*dy — 1) (EN(Y, Y) — EN(/*(X). Y))
N Y

= C(Risk, (Y, Y) = Riska (£*(X),Y)) .
Assuming (¥*co — ¢1) > 0and (U*dy — dy) > 0, the last equality follows by defining:

\IJ*CQ — C1
= . 11
@ U*ecg — ¢ + U*dy — dy an

and C = MLW. The statement of the lemma follows. When W is a metric from family
(4), we can apply Proposition 1 of [Koyejo et al., 2015] to see that TP; = TP, FP; = FP and so on (as
the expectations are defined wrt TP;;, FP;;), which yields ¥* is identical as in the micro-averaging
case. So, the same regret bound applies as shown below: Define A; = ag + a11TP; + agFP; +
a10FN; + agoTN; = ¢1FP; + d1FN; + e; and B; similarly. As before, let U* = A*/B*. So when
U is of the form (4),

v —w(Y,Y) = 1 Z U B;i(Y) - Ai(Y)
n

=1 Bi(Y)

I B(Y) - Ai(\?): (U*B* — A¥)
n ; Bi(Y)

_ I W B(Y) - BY) — (A(Y) — 4)
n Z Bz‘(\?)
1N (Tea — e)(FRi(Y, Y) — FP(f*(X), Y)) + (¥*dy — dy) (FN; (Y, Y) — FN(f*(X), Y))
== Z —

i=1 B;(Y)
_ 1 (TFep — ) (FP(Y,Y) = FP(£*(X), Y)) + (¥*d> — di ) (EN(Y, Y) — FN(f*(X), Y))
> B.(Y)
_ (Wep — e} (FR(Y,Y) — FP(f*(X), Y)) + (¥*dy — 1) (EN(Y, Y) — EN(/*(X). Y))
< S

= C(Riskq (Y, Y) — Riska (£*(X),Y)) .

which is identical to the bound for family (3). It is easy to see that (5) also admits the above bound.
Therefore, relation (10) holds for all definitions of ¥, with the same .

A.1.2 Proof of Lemma 3
LetY,Y € {0,1}"*L. Note that for any ¢, Risk(f) is defined as:
Risk(f) = E[((Yij. Yij)] = ExerpEj)on By, wp( e €Yz, Yig),

where 7 denotes the sampling distribution over (i, j) pairs. Fix instance ¢ and label j. Let 7;; denote
the conditional probability of label j of instance ¢ being 1, i.e. 77;; = P(Y;; = 1|x;). For convenience,
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denote 7;; simply by 7. Given n € [0, 1], and § € {0, 1}, consider the conditional /,-risk of §:
Lo(n,9) = a(l =n)[[§ = 1]] + (1 — a)n[g = 0],

and the corresponding conditional ¢, regret of §:
Reg(1,9) = La(n,§) — min La(1, ),

where we have: arg ming L, (n,9) = [[n — a]]
More generally, for a loss ¢, and a number Z, we have:

Lé(ﬂv 2) = 6(27 1)77 =+ 6(270)(1 - 77)7

and
Regf (1. 2) = Le(n, 2) — min Ly (1, 2).

Now, observe that: R R
Riska (Y, Y) = Ex~ppEi j)~m La (i, Yij)s
and N N
Reg,(Y,Y) = ExppE(; j)~rRegk (ni;, Yij),

where the last equality follows from the fact that the Bayes optimal f* of the ¢,,-risk minimizes the
conditional L (7, .) risk for each (i, ). Let Z = f(X) € R™* denote real-valued predictions
obtained using some function f. Using the same arguments as by Kottowski and Dembczynski
[2015], we can show that, by setting threshold 8* = £(«), where ¢ is the monotonic link function
corresponding to \'-strongly proper loss ¢, and « is defined as in (9), the conditional ¢, regret of

?ij = [[Zi; > 6*]] for a fixed (4, j) can be bounded as:

RegZ (n;;, Y \/ Regy (nij,Zij)

Taking expectation wrt sampling distribution 7 and the distribution over instances P} on both the
sides of the above inequality, and applying Jensen’s inequality, the statement of the Lemma follows.

A.1.3 Proof of Lemma 4

The first part of the lemma is trivially true. For the second part, we can apply the same arguments as
in Lemma 9 of Koyejo et al. [2014].

A.2 Proof of Theorem 2

The following theorem bounds the error of the estimator W e R™*L in this model, via the result by
Lafond [2015].

Theorem 5 ( Lafond [2015]). Assume 7 is uniform, and consider the 1-bit matrix completion
sampling model (2). Let W be the solution to the trace-norm regularized optimization problem (6)
using logistic loss for £ (with input X assumed to be identity matrix of size n), number of observations
2| > log(n + L)min(n, L) max(c, log? (c/min(n, L)),1/9), and setting the regularization

parameter \ = 2c,, %%. Then, with probability at least 1 — 3(n + L)1, the following
holds:
|W — W2 < Crmax max(n, L) rank(W*)log(n + L) 521 1) 2 log(n + L)
nL €2 jul
where C, Cy, ¢, 1, 0y are numerical constants and y = max;; |W;;|.

The above theorem can be extended to general distributions 7 satisfying Assumption 2. See Lafond
[2015] for more details. Now, we use the fact that £ is 1-Lipschitz (say, by choosing logistic loss),

and b01}nd E[{(Wi;, Yij) — (W55, Y45)] < - D i Wi — W;,|. Observing that W —W*;, <
VnL||W — W*|| p, and combining with the bound in Theorem 5, the proof is complete.
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A.3 Weakness of using Lafond [2015] for Multi-label Learning

In the multi-label learning model (1), one could hope to directly apply the analysis of Lafond [2015]
for recovering XW* € R™*% and in turn, W* € R%* L In lieu of problem (6), we would then solve
the optimization problem in Lafond [2015]:

< 1
W = arg min —_— Y/ X, W 7Yi' + A XW . (12)
Wi XW <y || (Z_%;Q ({6, w;), Yiz) + A XW]|

Note that the only difference is how the trace-norm regularization is performed: || XW]||. versus our
proposed ||W||. in Algorithm 1. The following corollary of Theorem 5 provides a bound for the

recovery error of W.

Corollary 2. Assume 1, 7 is uniform, and consider the sampling model (1). Let W be the solution to
the trace-norm regularized optimization problem (12) using logistic loss for £, number of observations
2| > log(n + L)min(n, L) max(c/, 10g2(c’7’ min(n, L)), 1/9), and setting the regularization
parameter A = 2c/ %%. Then, with probability at least 1 — 3(n + L)~%, the following
holds:

|W—w % C max(n, L) rank(W*)log(n + L) [ , , [log(n+1L)
a4 2@ 0F T ~ o 7
TR Q] Iy il Q)

/
9

/! 7 — .. ..
¢, o are numerical constants and y = max;; |(XW*);;|.

where C', Cy, Clyy O,
Proof. In the multilabel setting, Theorem 5 bounds | XW — XW*||%/nL, which in turn can be
lowerbounded using Lemma 6 and then Lemma 7. Introducing (1/d) on both sides of the resulting
inequality gives the average error stated in the corollary. O

When n > L and |Q| = O(n), which is quite common in multi-label scenario, the above bound
suggests that W from (12) is not even a consistent estimator, even when 7 is uniform.

A.4 Proof of Theorem 3

The statement is a corollary of the more general Theorem 8, proved in Appendix B. We can compute
(1+e7)?

the constants for the logistic loss as: 5, < 1 and g, > ~=_=~, over the domain [—,].

A.5 Proof of Theorem 4

The following result by [Hsieh et al., 2015] gives recovery bound for the resulting estimator W, as
described in the text (Section 4.2.3).

Theorem 6 ([Hsich et al., 2015]). With probability at least 1 — 2(n + L)1,

Vi ++VL

W — W% log(n + L)
<6 +20 . Y2
nL = VnL(l-p) (1—p)nL

where C' is absolute constant and ||W*||. < t. The proof is complete by using the same argument for
1-Lipschitz ¢ as in the proof of Theorem 2.
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B Appendix B: Sampling from Exponential Distribution

We now consider the generalized matrix completion problem when the values are sampled iid from
an exponential distribution parameterized by the input features x € R?. This setting extends that of
Lafond [2015]. Let y;; € R denote a random sample corresponding to the user ¢ and label j, which is
distributed as:

Yij [ Xi, Wy ~ expy, o(xi, W;) := h(yi;) exp ((xi, W;)yi; — G((xi, w;))). (13)
where (x;,w;),i=1,2,...,nand j = 1,2,..., L are the canonical parameters, h and G are the
base measure and log-partition functions associated with this canonical representation.

Let W* € R4*L denote the ground-truth parameter matrix with w;’s as columns. Similarly, let
Y € R™F (with entries y;;) denote a random sample from XW*. As in the standard matrix
completion setting, we only observe values of Y corresponding to a set of indices €2 sampled iid from
a fixed distribution 7.

Notation. With a slight abuse, we will continue to use (., .) when the arguments are matrices, instead
of the trace operator, i.e. for matrices A and B of appropriate dimensions, (A, B) := trace(AT B).

Let || Allo = max;; | Ay, [|Allr = /> ;; A;» [|All« denote the trace norm (sum of singular values

of A), omax(A) = || A||2 denote the operator norm (maximum singular value) of A, and o, (A)
denote its smallest singular value.

Maximum Log-likelihood Estimator.

We consider the negative log-likelihood of the observations, given by:
1
Py (X, W) = T D wiiixiwy) — G((xi, w;).
(.9)€lQ

Constrained ML estimator is obtained as:

W= in  OF(X, W) := By (X, W) + A[W]. 14
arg i BHOGW) = By (X W)+ AW (14)
Assumption 3. 1. The function G(zx) is twice differentiable and strongly convex on [—v,7],
such that there exists constants 5, > 0 and ¢.,, > 0 satisfying:
ol <G"(x) <53,

forany x € [—,7].

2. There exists a constant 0, > 0 such that for all x € [—,~] and y ~ expy, ¢(z):

- G'(z
vy

Definition 1. Given convex function G(x) define the Bregman divergence between two scalars
/
z,z’ € Ras:

dg(z,2') = G(z) — G(2') — G'(2")(x — o). (15)
Remark 8. Under Assumption 3.1, for any x, ' € [—~,~], the Bregman divergence G satisfies:
gi(:c —12')? < 2dg(z,2') < 6,%(17 — )2 (16)

Let E;; € R"*! denote the indicator matrix with zeros everywhere except at (i, j) where it is 1. For

(€i5) ‘5':1 a Rademacher sequence independent from (€2, Yy, ), define:

1
YR =T Z i Eij. (17)
(i,5)€Q
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Theorem 7. Assume 3.1, 2.1, | XW*|loe < 7, Ouin(X) > 0 and 2| X"V ®y(X, W*)||a < . Then,
with probability at least 1 — 2(n + L)™%, the following holds:
|W — W*||F Cu’n ( </\2 n 2\ 7?2 [log(n+ L)
max | L rank(W*)| — ———==+d( E||Zz]|2 s —— =],
LS 0,00.4 W\ gg oz, PR ) T

where C'is a numerical constant and Y.y is defined as in (17).

Proof. The proof closely follows that of Theorem 5 of Lafond [2015]. As W is the minimizer of (14),
we have: .
It follows that:
R . 1 v . *
AW = W) + 9] > i (xi Wi = W) + G((xi,W;)) — G((xi, W) <0
(4,§)€Q
Using the fact that the gradient matrix:
* * 1 *
Vdy (X, W*) := Vxw- Py (X, W*) = il Z (yi; — G'((x4, W) By (18)
(i,5)€Q

(where E;; are the indicator matrices defined earlier) in the above inequality, we have:
AW — W) + V(X W) XOW = W) )+

Z ((xi, W) — G({x;, W) — G’((xi,w;f>)(<xi,vifj —-wj)) <0.

)EQ
Using the definition of the divergence (15), and the fact that <V<I>y(X LW, X(W™ — W)> =
<XTV<I>y(X,W*)7 wW* — w> it follows that:

1
9]
The first term in the RHS of above inequality can be bounded first using Lemma 16-(iii) of Lafond

[2015]. The second term can be bounded using the trace inequality (that uses the duality between
[I-ll« and ||.||2) and the assumption on A stated in the Theorem. We get:

DG(XW,XW*) := D dalxiWy), (xi w5)) < A(IW*[L—W].)— <XTV<I>y(X,W*)7W*—W>

(i,7)€Q

3 * 3 * 1 *
DE(XW, XW*) < A(|| Py~ (W — W) ||, + 5||w — W* ).

To bound the first term in the above equation, we can apply Lemma 16-(ii) of Lafond [2015]. Lemma
5 gives a bound for the second term. Together we have:

DE(XW, XW*) < 3A/2 rank(W*)|[W — W*| . (19)
By strong convexity of G (Assumption 3.1), we have:
3 * 1 A * *
AL(XW, XW*) := @ > (i Wy —wi))? < DG(XW XW™). (20)
(3,5)€Q W
Now, we will get a lower bound for A%,(XW, XW*).  To do so, let us define § :=
8ey?y/log(n + L)/|Q| and distinguish the two following cases:

Case 1 If E[((x;,w; — w7))?] < f3, where E is defined wrt the sampling distribution as in
Assumption 2, then Lemma 18 of Lafond [2015] yields,

XW — XW*
M < pp. (21)
nlL
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Case2 IfE[((x;,w;—w))’] >3, consider W € C(83, 32udL rank(W*)), where C(., .) is defined
as:

C(B,r) = {w e RE| [WF — W, < \/TE[A$(XW, XW*)]; E[AG(XW, XW*)] > 5}. (22)
Then, from Lemma 19 of Lafond [2015], it holds with probability at least 1 — 2(n + L) ! that
AL(XW, XW*) > %E[A%(XW, XW*)] — 512¢(E[||Sg||2)? udL rank(W*). (23)
Combining the above inequality with (20), (19) and Lemma 18 of Lafond [2015] yields:

[IXW — XW* |5

by )
ol 512¢(E[| 2 r|2)?udL rank(W*) < S,—2\/2 rank(W*)|W — W*| .
=Y

We can use Lemma (6) to bound the first term from below. Applying the identity ab < (a? + b%) /4,
multiplying both sides of the inequality by 1/d, rearranging and combining with (21), the proof is
complete. O

Q>L+dand A = 2Ty Then, with

Theorem 8. Assume 1, 2, 3. Choose, n > C' .d, L > d,
V1€

probability at least 1 — 3(n + L)™' — 2(d + L)1, the following holds:

||‘7V—W*H2F<C’2,u2m8LX L rank(W*)log(n + L) 5’_,2y+1 7* [log(n + L)
T < d 0 )T e )

where ¢, C', Cy are numerical constants.

Proof. Tt suffices to show 2||XT V®(X, W*)||y < X for chosen X in the statement of the Theorem
and a suitable bound for E||Xr||2 (the result would then follow by applying Theorem 7). The latter
term can be readily bounded applying the corresponding arguments in the proof of Theorem 6 of
Lafond [2015], which yields:

« |2elog(n+ L v
E||Sxll: < ¢ \/ & )( . ) (24)
min

9] (n, L)

where we use the fact that Zlel Thl = m (by Assumption 2). where ¢* is a numerical
constant.

We can apply Lemma 1 to bound ||X” V& (X, W*)||o, with the A chosen in the statement of the
Theorem. The proof is complete noting that for the choice of n as in the statement of the Theorem,
Lemma 7 implies 02, (X) > Cn and that for the choice of n and L as in the statement of the

min
Theorem, <1.

__d
min(n,L) —
O

Lemma 5. Let XW,XW € R satisfy | XW||oo < 7 and |XW|oe < 7. Assume
2 XTVB (X, W)y < N and B3 (X, W) < &3 (X, W). Then:
(i) || P, (W = W)l < 3] Py (W — W)

*

(ii) |[W = W||. < 41/2 rank(W)||W — W|| 5.

Proof. The proof closely follows that of Lemma 17 of [Lafond, 2015]. By definition, we have:

or,

Dy (X, W) = Dy (X, W) < A([W = W) .

Writing W € R as W = W + P (W — W) + Py (W — W), Lemma 16-(i) of [Lafond, 2015]
and triangle inequality together give:

Wl > [IW]l + PG (W = W)l + | P (W = W),
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Or, _ _ ~
By (X, W) — By (X, W) > A([|Pg (W = W)||. + [ Pg (W = W)]|.) . (25)

Note that by convexity of ®y:
Dy (X, W) — Dy (X, W) < <v<1>y(x, W), XW — xw> = <xTv<1>Y(x, W), W — w>,
By trace inequality, we have:
Dy (X W) — By (X, W) < X7y (X, W) oW — W] < 2 W — WL

where the last inequality is by assumption, || X" V®y (X, W)||2 < A/2. The last term in the above
inequality can be bounded by 5 <||73§ (W — W)l + [P (W — W)||. ]. Together with (25), we get

the first part of the Lemma. We can now conclude the proof of part two using identical arguments as
in Lemma 17 of [Lafond, 2015]. O

Lemma 6. Let 0in(X) denote the smallest singular value of X. Then for any W, W, Then:
IXW = XWI[5 = o (X)W — W[5

Proof. Observe that || X(W — W)||% = trace(X(W — W)(W — W)TX") = trace((W — W)(W —
W)TXTX) > i (X" X)trace(W — W)(W — W)T) = i (X)2||W — W||2. O
Lemma 7. Let X € R"*? be a matrix with rows sampled from sub-Gaussian distribution satisfying

Assumption 1. Furthermore, choose:

n>0C'd.
Then, with probability at least 1 — 2e~%, each of the following statements is true:
anlax(XT)() S C_’TL,

Omin (XT)() 2 Qna
where C',C and C are absolute constants that depend only on the parameters K and 3. of the
sub-Gaussian distribution.

Proof. Using Lemma 16 of Bhatia et al. [2015b], we have for any § > 0, with probability at least
1 — 9, each of the following statements hold:

Tmax(XTX) < 0max(S) . 0+ CxVen + ty/n,

Tanin(XTX) > 0min (D) . n — CxVdn — ty/n,
where ¢t = | /i log %, and cg, C'k are absolute constants that depend only on the sub-Gaussian
norm K of the distribution Px. Now, choosing § = 2e~% or log(2/5) = d, we have:

CreV/dn + 1/ = OV + || —dn = Wm(cK + ,/i>.
CK Ck

For ease, define C}< =Ckg + 1/%. Now, choosing n > (UC—%E))Q . d, and substituting above we
have: 1
CxVdn +tyn < §O'min(2) .

Therefore: )
Umax(XTX) S (Umax(z) + §Gmin(2)> n,
T 1
amin(X X) Z Eo-min(z) .n.
The proof is complete. O



Proof of Lemma 1

Let H denote the matrix with h;; = y;; — G'({(x;,w?)). Let h’ denote the ith row of H. Let Po(H)
denote the projection of H onto the observed indices 2. Let (2; denote the observed indices in row ¢
of Y. For a vector v, let v, denote its projection onto the observed indices €2;.

Fix u € R and v € RY. Define a; = x] wand b; = (vq,, h}, ). We have:

1

TvyT
—u X sz al 7
jo R Z
b;
= o1 2 Ivadllz - aig—r
€2 ; v, |2

Consider b; = 3 _; ;e vjhi;. Note that h;’s are sub-Gaussian random variables with sub-Gaussian
norm «. Using Lemma 5 9 of Vershynin [2010], we have b; is sub-Gaussian with norm ||vg, ||2c.

In turn, this implies —” is sub-Gaussian with sub-Gaussian norm «. Therefore, T ‘“b’“ is a-

> lv

subexponential. Applying Proposition 5.16 of Vershynin [2010], we have, with probability at least

2
> v o % -+ ma v, 1o 5

1=1

for some absolute constant c. Noting that: ||v|j2 = 1 and for anyj €L, |{i:(5,5) e Q} < CI'L‘Q

for some constant ¢/, we have, with probability at least 1 —

|Q|Z||vn oot < S (Wﬁmg 3

We conclude the proof by a covering argument: Taking a union bound over e-ball of u and v, we
have, with probability at least 1 — (d + L)~*

X"V Dy (X, W)

|, < |Q| ( |Q|\/W+d+L)

Assuming d < L and || > (L + d), the proof is complete.
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