
A Proofs of Main Theorems

This section is devoted to the proofs of Theorems 1 through 4. Certain technical aspects of the proofs
are deferred to later sections in appendix.

A.1 Proof of Theorem 1

In this section, we prove Theorem 1. The proof consists of three parts: starting with the case M = 3,
the first part shows the existence of a local maximum for certain GMMs, whereas the second part
shows that this local maximum has a log-likelihood that is much worse than that of the global
maximum. The third part provides the extension to the general case of M > 3 mixture components.

A.1.1 Existence of a local maximum

In this section, we prove the existence of a local maximum by first constructing a family of GMMs
parametrized by a scalar γ, and then proving the existence of local maxima in the limiting case when
γ → +∞. By continuity of the log-likelihood function, we can then conclude that there exists some
finite γ whose corresponding log-likelihood has local maxima.

We begin by considering the special case of M = 3 components in dimension d = 1. For parameters
R > 0 and γ � 1, suppose that the true centers µ∗ are given by

µ∗1 = −R, µ∗2 = R, µ∗3 = γR.

By construction, the two centers µ∗1 and µ∗2 are relatively close together near the origin, while the
third center µ∗3 is located far away from both of the first two centers.

We first claim that when γ is sufficiently large, there is a local maximum in the closed set:

D =

{
(µ1, µ2, µ3) ∈ R3 | µ1 ≤

γR

3
, µ2 ≥

2γR

3
and µ3 ≥

2γR

3

}
.

To establish this claim, we consider the value of population log-likelihood function L(µ̃) at an interior
point µ̃ = (0, γR, γR) of D, and compare it to the log-likelihood on the boundary of the set D. We
show that for a sufficiently large γ, the log-likelihood at the interior point is strictly larger than the
log-likelihood on the boundary, and use this to argue that there must be a local maxima in the set D.
Concretely, define v0 : = L(µ̃), and the maximum value of L(µ) on the three two-dimensional faces
of D, i.e.,

v1 : = sup
µ1=γR/3
µ2≥2γR/3
µ3≥2γR/3

L(µ), v2 : = sup
µ1≤γR/3
µ2=2γR/3
µ3≥2γR/3

L(µ), and v3 : = sup
µ1≤γR/3
µ2≥2γR/3
µ3=2γR/3

L(µ).

The population log-likelihood function is given by the expression

L(µ) = Eµ∗ log

(
3∑
i=1

e−
1
2 (X−µi)2

)
− log(3

√
2π).

As γ →∞, it is easy to verify that

v0 = L(µ̃)→ −2R2 + 3− 2 log(2)

6
− log(3

√
2π).

Similarly, we can calculate the value of v1, v2 and v3 as γ →∞; i.e., a straightforward calculation
shows that

lim
γ→+∞

v1 = −∞,

lim
γ→+∞

v2 = −2R2 + 3

6
− log(3

√
2π) (the maximum is attained at µ1 → 0 and µ3 → γR),

lim
γ→+∞

v3 = −2R2 + 3

6
− log(3

√
2π) (the maximum is attained at µ1 → 0 and µ2 → γR).
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This gives the relation v0 > max{v1, v2, v3} when γ → ∞. Since L is a continuous function of
γ, we know that v0, v1, v2, v3 are also continuous functions of γ. Therefore, there exists a finite A
such that, as long as γ > A, we will still have v0 > max{v1, v2, v3}. This in turn implies that the
function value at an interior point is strictly greater than the function value on the boundary of D,
which implies the existence of at least one local maximum inside D.

On the other hand, the global maxima of the population likelihood function are (−R,R, γR) and its
permutations, which are not in D. This shows the existence of at least one local maximum which is
not a global maximum.

A.1.2 Log-likelihood at a local maximum

In order to prove that the log-likelihood of a local maximum can be arbitrarily worse than the log-
likelihood of the global maximum, we consider the limit when R → ∞. In this case, the limiting
value of the global maximum will be

lim
R→∞

L(µ∗) = −1

2
− log(3

√
2π).

Let µ′ = (µ′1, µ
′
2, µ
′
3) be one of the local maxima in the closed setD. We have previously established

the existence of such a local maximum.

Since µ∗1 − µ∗2 = 2R, we know that either | µ∗2 − µ′1 |> R or | µ∗1 − µ′1 |> R has to be true. Without
loss of generality, we may assume that | µ∗2 − µ′1 |> R. From the definition of the set D, we can also
see that | µ∗2 − µ′2 |> R and | µ∗2 − µ′3 |> R. Putting together the pieces yields

lim
R→+∞

L(µ′) ≤ lim
R→+∞

1

3
EX∼N (µ∗2 ,1) log

(
3∑
i=1

e−
1
2 (X−µ′i)

2

)
− 1

3
log(3

√
2π) = −∞.

Again, by the continuity of the function L with respect to R, we know for any Cgap > 0, there always
exists a large constant A′, so that if R > A′, we will have L(µ∗)− L(µ′) > Cgap. This completes
the proof for case M = 3.

A.1.3 Extension to the case M > 3

We now provide an outline of how this argument can be extended to the general setting of M > 3.
Consider a GMM with true centers

µ∗i =
(2i− k)R

k − 2
, for i = 1, · · · ,M − 1 and µ∗M = γR,

for some parameter γ > 0 to be chosen. We claim that when γ is sufficiently large, there is at least
one local maximum in the closed set

DM =

{
(µ1, · · · , µM ) | µ1 ≤

γR

3
, µ2 ≥

2γR

3
, · · · , µM ≥

2γR

3

}
.

The proof follows from an identical argument as in the M = 3 case.

A.2 Proof of Theorem 2

In this section, we prove Theorem 2. We first present an important technical lemma that addresses
the behavior of the EM algorithm for a particular configuration of true and initial centers. We then
prove the theorem by constructing a bad example and recursively applying this lemma. The proof of
this lemma is given in Appendix B.

We focus on the one-dimensional setting throughout this proof. We use Bx(δ) to denote an interval
centered at x with radius δ, that is, Bx(δ) = [x − δ, x + δ]. We also use Bx(δ) to represent the
complement of the interval Bx(δ), i.e. Bx(δ) = (−∞, x− δ) ∪ (x+ δ,∞).

As a preliminary, let us define a class of GMMs, which we refer to as diffuse GMMs. We say that a
mixture model GMM(µ∗) consisting of M̃ components is (c, δ)-diffuse if:

(a) For some M ≤ M̃ , there are M centers contained in Bcδ(δ) ∪ B−cδ(δ);
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(b) Each of the sets Bcδ(δ) and B−cδ(δ) contain at least one center;

(c) The remaining M̃ −M centers are all in B0(20cδ).

Consider the EM algorithm, and denote by M (t)
1 ,M

(t)
2 and M (t)

3 the number of centers the EM
algorithm has in the tth iteration in the sets B−cδ(2δ),Bcδ(2δ) and B0(20cδ) respectively, where c
and δ are those specified in the definition of the diffuse GMM. To be clear, M (0)

1 ,M
(0)
2 and M (0)

3
denote the number of centers in these sets in the initial configuration specified to the EM algorithm.
With these definitions in place, we can state our lemma.
Lemma 1. Suppose that the true underlying distribution is a (c, δ)-diffuse GMM with c > 20 and
δ > logM + 3, and that the EM algorithm is initialized so that M (0)

1 ,M
(0)
2 ≥ 1.

(a) If M = M̃ , then

M
(t)
1 = M

(0)
1 and M

(t)
2 = M

(0)
2 for every t ≥ 0. (8)

(b) If M < M̃ , suppose further that for each center in µ∗j ∈ B0(20cδ), there is an initial center

µ
(0)
j′ such that |µ(0)

j′ − µ∗j | ≤ |µ∗j |/10. Then the same conditions (8) hold.

Intuitively, these results show that if the true centers are clustered together into two clusters that are
well separated, and the EM algorithm is initialized so that each cluster is accounted for by at least
one initial center then the EM algorithm remains trapped in the initial configuration of centers. A
concrete implication of part (a) is that if the true distribution is a (c, δ)-diffuse GMM with M̃ = M
and M∗1 ,M

∗
2 true clusters lie in B−cδ(δ) and Bcδ(δ) respectively, then there are only three possible

ways to initialize the EM algorithm that might possibly converge to a global maximum of the log-
likelihood function; i.e., the pair (M

(0)
1 ,M

(0)
2 ) must be one of {(M, 0), (M∗1 ,M

∗
2 ), (0,M)}, where

M = M∗1 +M∗2 .

We are now equipped to prove Theorem 2. We will first focus on the case M = 2m for some positive
integer m; the case of arbitrary M will be addressed later. At a high level, we will first construct the
distribution GMM(µ∗) that establishes the theorem, and then use the above technical lemma in order
to reason about the behavior of the EM algorithm on this distribution.

Case M = 2m: First, define the collection of 2m binary vectors of the form ε = (ε1, ε2, · · · , εm)
where each εi ∈ {−1, 1}. Consider the distribution, GMM(µ∗), with the locations of the true centers
indexed by these 2m vectors; i.e., each center is located at

µ(ε) =

m∑
i=1

εi

( 1

100

)i−1

R, (9)

where we choose R ≥ 100m+1(M + 1). This in turn implies that the distance between the closest
pair of true centers is at least 104 × (M + 1).

Our random initialization strategy samples the initial centers µ1, µ2, · · · , µM i.i.d. from the distribu-
tion GMM(µ∗). We can view this sampling process as two separate steps:

(i) Sample an integer Zi uniformly from [M ].
(ii) Sample value µi from the Gaussian distribution N (µ∗Zi , I).

Concentration properties of the Gaussian distribution will ensure that µi will not be too far from its
expectation µ∗Zi . Formally, we define the following event:

EM :=
{

all M initial points µi are contained in Bµ∗Zi (M)
}
. (10)

By standard Gaussian tail bounds, we have

P(EM ) = (1− PX∼N (0,1)(|X| > M))M ≥ (1− 2Me−M
2/2) ≥ 1− e−Ω(M)

This implies that the event EM will hold with high probability (when M is large). Conditioned on the
event EM , we are guaranteed that all initialized points are relatively close to some true center.
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A key observation regarding the configuration of centers in the model GMM(µ∗) specified by
equation (9) is that the true centers can be partitioned into two well separated regions. More precisely,
it is easy to verify that there are M/2 true centers in the interval B−R(R/99) while the remaining
M/2 true centers are contained in the interval BR(R/99). In what follows, we refer to B−R(2R/99)
as the left urn and to BR(2R/99) as the right urn.

Conditioned on EM , each initial point lands in either the left urn or the right urn with equal probability.
Suppose we initialize EM with (M1,M2) centers in the left and right urn respectively. By Lemma 1(a),
the only three possible values of the pair (M1,M2) for which the EM algorithm might converge to a
global optimum are (0,M), (M, 0), (M/2,M/2). A simple calculation will show that the first and
second possibilities occur with exponentially small probability. However, the third possibility occurs
with only polynomially small probability, and so we need to further investigate this possibility.

Consider, for example, the left urn: the true centers in the left urn can further be partitioned into
two intervals B−1.01R(R/9900) and B−0.99R(R/9900) with M/4 true centers in each. Thus, each
urn can be further partitioned into a left urn and a right urn. Following the same analysis as above
and now using part (b) of Lemma 1 instead of part (a), we see that in order to ensure that the EM
algorithm converges to a global optimum, the number of initial centers in B−1.01R(2R/9900) and
B−0.99R(2R/9900) must be one of the following pairs {(0,M/2), (M/2, 0), (M/4,M/4)}.
Our configuration of centers in equation (9) guarantees that this argument can be recursively applied
until we reach an interval which contains only two true centers. For a configuration of M initial
centers, we call these initial centers a good initialization for a collection of true centers if one of the
following holds:

(a) M = 1,
(b) the number of initial centers assigned to the left urn and the right urn of the collection of

true centers are either (0,M) or (M, 0),
(c) the number of initial centers assigned to the left urn and the right urn of the collection of

true centers are (M/2,M/2); and further recursively the initialization in both the left and
the right urns are good initializations.

Lemma 1 implies that the EM algorithm converges to a global maximum only if a good initialization
is realized. We will now show that the probability of a good initialization is exponentially small.

Let FM represent the event that a good initialization is generated on a mixture with M components,
for our configuration of true centers. Let M1 and M2 represent the number of initial centers in the
left urn and the right urn, respectively. Conditioning on the event EM from equation (10), we have

P(FM | EM ) ≤ P(M1 = 0) + P(M1 = M) + P(M1 = M/2) ·
(
P(FM/2 | EM )

)2
≤ 2×

(
M

0

)
1

2M
+

(
M

M/2

)
1

2M
·
(
P(FM/2 | EM )

)2
≤ 1

2M−1
+

1

2
·
(
P(FM/2 | EM )

)2
.

Since P(F1 | EM ) = 1, solving this recursive inequality implies that P(FM | EM ) ≤ e−cM for some
universal constant c. Thus, the probability that the EM algorithm converges to a global maximum is
upper bounded by:

P(FM ) ≤ P(EM )P(FM | EM ) + P(EM ) ≤ P(FM | EM ) + P(EM ) ≤ e−Ω(M).

To complete the proof for the case when M = 2m for a positive integer m, we need to argue that on
the event P(FM ), the log-likelihood of the solution reached by the EM algorithm can be arbitrarily
worse than that of the global maximum. We claim that when the event FM occurs, the EM algorithm
returns a solution µ for which there is at least one urn containing two true centers which is assigned a
single center by the EM algorithm at every iteration t ≥ 0. As a consequence, there is at least one
true center µ∗j for which we have that |µ∗j − µ′i| ≥ R

100m for all i = 1, . . . ,M . Now, we claim that
we can choose R to be large enough to ensure an arbitrarily large gap in the likelihood of the EM
solution and the global maximum. Concretely, as R→∞, we have:

lim
R→+∞

L(µ) ≤ lim
R→+∞

1

M
EX∼N (µ∗j ,1) log

(
M∑
i=1

e−
1
2 (X−µi)2

)
− 1

M
log(M

√
2π) = −∞.

13



However, the global maximum µ∗ has log-likelihood

lim
R→+∞

L(µ∗) = −1

2
− log(M

√
2π).

Once again we can use the continuity of the log-likelihood as a function of R to conclude that there
is a finite sufficiently large R > 0 such that the conclusion of Theorem 2 holds.

Case 2m−1 < M ≤ 2m: At a high level, we deal with this case by constructing a configuration
with 2m centers and pruning this down to have M centers, while ensuring that the resulting urns are
still approximately balanced which in turn ensures that our previous calculations continue to hold.

Our configuration of true centers in equation (9) can be viewed as the 2m leaves of a binary tree with
depth M , where the vectors ε indexing the true centers represent the unique path from the root and to
the leaf: the value of εi indicates whether to go down to the left child or to the right child at the i-th
level of the tree. We choose M true centers from the 2m leaves by the following procedure. Starting
from the root, we assign dM/2e true centers to the left sub-tree, and assign bM/2c true centers to
the right sub-tree. For any sub-tree, suppose that it was assigned l true centers, then we assign dl/2e
true centers to its left subtree and bl/2c true centers to its right subtree. This procedure is recursively
continued until all the true centers are assigned to leaves. Each leaf corresponds to a point on the real
line and we choose this point as the location of the corresponding center.

The above construction has the following two properties: first, the locations of the true centers
satisfy the separation requirements we used in dealing with the case when M = 2m, and further the
assignment of the centers to the left and right urns in each case is roughly balanced. By leveraging
these two properties we can follow essentially the same steps as we did in the case with M = 2m,
and we omit these remaining proof details here.

A.3 Proof of Theorem 3

We now embark on the proof of Theorem 3. The proof follows from a similar outline to the proof of
Theorem 2 and we only develop the main ideas here. Concretely, it is easy to verify that in order to
prove the result we only need to establish the analogue of Lemma 1 for the first-order EM algorithm.

Intuitively, we first argue that the first-order EM updates can be viewed as less aggressive versions of
the corresponding EM updates, and we use this fact to argue that Lemma 1 continues to hold for the
first-order EM algorithm. Concretely, we can compare the update of EM algorithm:

µnew, EM
i =

Eµ∗wi(X) ·X
Eµ∗wi(X)

with the update of the first-order EM algorithm:

µnew, first-order EM
i = µi + sEµ∗wi(X)(X − µi).

If for any parameter µi, we choose the stepsize s = 1
Eµ∗wi(X) , for the first-order EM algorithm, then

the two updates will match for that parameter. For the first-order EM algorithm, we always use a step
size s ∈ (0, 1), while 1

Eµ∗wi(X) ≥ 1. Consequently, there must exist some θi ∈ [0, 1] such that

µnew, first-order EM
i = θiµi + (1− θi)µnew, EM

i .

Thus, we see that the first-order EM update is a less aggressive version of the EM update. An
examination of the proof of Lemma 1 reveals that this property suffices to ensure that its guarantees
continue to hold for the first-order EM algorithm, which completes the proof of Theorem 3.

A.4 Proof of Theorem 4

In this section, we prove Theorem 4. Throughout this proof, we use the fact that the first-order EM
updates with step size s ∈ (0, 1) take the form

µnew = µ + s∇L(µ). (11)

In order to reason about the behavior of the first-order EM algorithm, we first provide a result that
concerns the Hessian of the log-likelihood.
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Lemma 2. For any scalar s ∈ (0, 1) and for any µ, we have s∇2L(µ) � −I .

We prove this claim at the end of the section. Taking this lemma as given, we can now prove the
theorem’s claims. We first show that the first-order EM algorithm with stepsize s ∈ (0, 1) converges
to a critical point. By a Taylor expansion of the log-likelihood function, we have

L(µnew) =L(µ) + 〈∇L(µ),µnew − µ〉+
1

2
(µnew − µ)T∇2L(µ̃)(µnew − µ),

for some µ̃ on the line joining µ and µnew. Applying Lemma 2 guarantees that

L(µnew) ≥L(µ) + 〈∇L(µ),µnew − µ〉 − 1

2s
‖µnew − µ‖22.

From the form (11) of the gradient EM updates, we then have

L(µnew) ≥L(µ) +
(
s− s

2

)
‖∇L(µ)‖22.

Consequently, for any choice of step size s ∈ (0, 1) and any point µ for which∇L(µ) 6= 0, applying
the gradient EM update leads to a strict increase in the value of the population likelihood L. Since
L is upper bounded by a constant for a mixture of M spherical Gaussians, we can conclude that
first-order EM must converge to some point. It is easy to further verify that it must converge to a
point for which ∇L(µ) = 0 which concludes the first part of our proof.

Next we show that the first-order EM algorithm will not converge to strict saddle points almost
surely. We do this via a technique that has been used in recent papers [Lee et al., 2016, Panageas
and Piliouras, 2016], exploiting the stable manifold theorem from dynamical systems theory. For
this portion of the proof, it will be convenient to view the first-order EM updates as a map from the
parameter space to the parameter space; i.e., we define the first-order EM map by:

g(µ) := µ + s∇L(µ). (12)
Recalling Definition 1 of strict saddle points, we denote by Dss the set of initial points from which
the first-order EM algorithm converges to a strict saddle point. With these definitions in place, we
can state an intermediate result:
Lemma 3 ([Lee et al., 2016, Panageas and Piliouras, 2016]). If the map µ 7→ g(µ) defined by
equation (12) is a local diffeomorphism for each µ, then Dss has zero Lebesgue measure.

Denote the Jacobian matrix of map g at point µ as ∇g(µ) where [∇g(µ)]ij = ∂
∂µj

gi(µ). By
Lemma 2, the Jacobian ∇g(µ) = I + s∇2L(µ) is strictly positive definite, and hence invertible for
all µ, which implies that the map g is a local diffeomorphism everywhere. Furthermore, our random
initialization strategy specifies the distribution of the initial point µ(0) which is absolutely continuous
with respect to Lebesgue measure. Combined these facts with lemma 3, we have proved Theorem 4.

Finally, the only remaining detail is to prove Lemma 2. By definition, we have

I + s∇2L(µ) =

[
(1− sEw1(X))Id . . . 0

. . . . . .
0 . . . (1− sEwM (X))Id

]
︸ ︷︷ ︸

:= D

+sQ,

where the matrix Q has d-dimensional blocks of the form

Qij =

{
E(wi(X)− w2

i (X))(X − µi)(X − µi)> if i = j

−Ewi(X)wj(X)(X − µi)(X − µj)> otherwise.
Since wi(X) ≤ 1 for all i ∈ [M ] and s < 1, it follows that the diagonal matrix D is strictly positive
definite. Consequently, in order to prove Lemma 2, it suffices to show that Q is positive semidefinite.
Letting v = (v>1 , . . . ,v

>
M )>, where vi ∈ Rd, be arbitrary vectors, we have:

v>Qv =

M∑
i=1

Ewi(X)[v>i (X − µi)]2 −
M∑
i=1

M∑
j=1

Ewi(X)wj(X)[v>i (X − µi)][v>j (X − µj)]

(i)

≥
M∑
i=1

Ewi(X)[v>i (X − µi)]2 −
M∑
i=1

M∑
j=1

1

2

[
Ewi(X)wj(X)[v>i (X − µi)]2 + Ewi(X)wj(X)[v>j (X − µj)]2

]
(ii)
=

M∑
i=1

Ewi(X)[v>i (X − µi)]2 −
M∑
i=1

Ewi(X)[v>i (X − µi)]2 = 0,
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where step (i) uses the elementary inequality |ab| ≤ 1
2 (a2 + b2); and step (ii) uses the fact that∑M

i=1 wi(X) = 1 for any X . This completes the proof.

B Proofs of Technical Lemmas

The bulk of this section is devoted to the proof of Lemma 1, which is based on a number of technical
lemmas.

B.1 Proof of Lemma 1

Underlying our proof is the following auxiliary result:
Lemma 4. Suppose that:

(a) The true distribution is a GMM(µ∗) with M components and that all true centers are
located in (−∞,−10a) ∪ (a,+∞) with at least one center in (a, 3a), with a > logM + 3.

(b) The current configuration of centers has the property that for any true center µ∗j in
(−∞,−10a), there exists a current center µj′ such that |µj′ − µ∗j | ≤ |µ∗j |/6.

Then, for any i ∈ [M ] for which the current parameter µi ∈ [0, 4a], we have Ewi(X)X ≥ 0.

See Section B.2 for the proof of this claim.

Using Lemma 4, let us now prove Lemma 1. Without loss of generality, we may assume that
µi ∈ Bcδ(2δ), for some i ∈ [M ]. Thus, in order to establish the claim, it suffices to show that after
one step of the EM algorithm, the new iterate µnew

i belongs to Bcδ(2δ) as well.

In order to show that µnew
i ∈ Bcδ(2δ), note that by the update equation (5), we have µnew

i = Ewi(X)X
Ewi(X) .

Thus, it is equivalent to prove that
Ewi(X)(X − (c− 2)δ) ≥ 0, and Ewi(X)(X − (c+ 2)δ) ≤ 0.

The first inequality can be proved by substituting Z = X − (c− 2)δ and applying Lemma 4 to Z.
Similarly, the second inequality can be proved by defining Y : = (c+ 2)δ −X , and then applying
Lemma 4 to Y .

B.2 Proof of Lemma 4

Our proof of this claim hinges on two auxiliary lemmas, which we begin by stating. Intuitively,
our first lemma shows that if the data are generated by a single Gaussian, whose mean is at least
Ω(logM) to the right of the origin, then it will affect any µi ≥ 0, by forcing it to the right no matter
where the other {µj}j 6=i are.
Lemma 5. Suppose that the true distribution is a unit variance Gaussian with mean µ∗ ≥ a for
some a > logM + 3, and that the current configuration of centers, µ1, · · · , µM , has the ith center
µi ≥ 0. Then we have

Ewi(X)X ≥ 0. (13a)
Furthermore, if µ∗ ≤ 3a, and 0 ≤ µi ≤ 4a, then:

Ewi(X)X ≥ a

5M
e−9a2/2. (13b)

See Section B.3 for the proof of this claim. In a similar vein, if the data is generated by a single
Gaussian far to the left of the origin, and some current center µj is sufficiently close to it then this
Gaussian will force µi towards the negative direction, but will only have a small effect on µi. More
formally, we have the following result:
Lemma 6. Suppose that the true distribution is a unit variance Gaussian with mean µ∗ = −r, and
that the current configuration of centers, µ1, · · · , µM , has the ith center µi ≥ 0 and further has at
least one µj such that |µj − µ∗| ≤ r

6 . Then we have that:

Ewi(X)X ≥ −3re−r
2/18. (14)
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See Section B.4 for the proof of this claim.

Equipped with these two auxiliary results, we can now prove Lemma 4. Without loss of generality,
suppose that the centers are sorted in ascending order, and that the `th true center is the smallest true
center in (0,+∞). From the assumptions of Lemma 4, we know µ∗` belongs to the interval (a, 3a).
Thus, when X is drawn from a Gaussian mixture, we have

Ewi(X)X =
1

M

M∑
j=1

EX∼N (µ∗j ,1)wi(X)X

=
1

M

`−1∑
j=1

EX∼N (µ∗j ,1)wi(X)X +
1

M
EX∼N (µ∗` ,1)wi(X)X +

1

M

M∑
j=`+1

EX∼N (µ∗j ,1)wi(X)X.

We now use Lemma 6 to bound the first term. Since f(y) = −3y ·e−y2/18 is monotonically increasing
in [3,+∞), and from the assumptions of Lemma 4, we have |µ∗j | > −10a > −(9a+ 2) for all j < `.
Then:

1

M

`−1∑
j=1

EX∼N (µ∗j ,
1
2 )wi(X)X ≥ − 1

M

`−1∑
j=1

3 | µi | e−µ
2
i /18 ≥ −3(9a+ 2)e−(9a+2)2/18.

By Lemma 5, we know that the third term is non-negative and that the second term can be lower
bounded by a sufficiently large quantity. Putting together the pieces, we find that

EXwi(X)X ≥ −3(9a+ 2)e−9a2/2−2a− 2
9 +

a

5M2
e−9a2/2

≥ e−9a2/2
[ a

5M2
− 3(9a+ 2)e−2 logM−6

]
≥ e−9a2/2−6

M2
[80a− 3(9a+ 2)]

≥ 0,

which completes the proof.

B.3 Proof of Lemma 5

Introducing the shorthand w∗ : = minx∈[1,2] wi(x), we have

Ewi(X)X ≥ 1√
2π

∫ 0

−∞
wi(x)xe−(x−µ∗)2/2dx+

1√
2π

∫ 2

1

wi(x)xe−(x−µ∗)2/2dx

+
1√
2π

∫ 3a

a

wi(x)xe−(x−µ∗)2/2dx.

We calculate the first two terms: for this purpose, the following lemma is useful:
Lemma 7. For any µ1, · · · , µM where µi ≥ 0, we have following:

min
x∈[1,2]

wi(x) ≥ 1

Me2
max

x∈(−∞,0]
wi(x). (15)

See Section B.3.1 for the proof of this claim. From Lemma 7, we have that:

1√
2π

∫ 0

−∞
wi(x)xe−(x−µ∗)2/2dx+

1√
2π

∫ 2

1

wi(x)xe−(x−µ∗)2/2

≥ 1√
2π

[∫ 0

−∞
Me2w∗xe−(x−µ∗)2/2dx+

∫ 2

1

w∗xe−(x−µ∗)2/2dx

]
≥ w∗√

2π

[∫ 0

−∞
Me2(x− µ∗)e−(x−µ∗)2/2dx+

∫ 2

1

xe−(x−µ∗)2/2dx

]
≥ w∗√

2π

[
−Me2−(µ∗)2/2 + e−(µ∗−1)2/2

]
=
w∗e−(µ∗)2

√
2π

[
eµ
∗−1/2 −Me2

]
≥ 0.
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The last inequality holds since µ∗ > a > logM + 3. The third term is always positive, and this
finishes the proof of first claim.

For second claim: if we further know that µ∗ ≤ 3a, and µi ≤ 4a, then for any x ∈ [a, 3a],

wi(x) ≥ e−9a2/2

M , we have:

1√
2π

∫ 3a

a

wi(x)xe−(x−µ∗)2/2dx ≥ 1

M
√

2π
e−9a2/2a

∫ 3a

a

e−(x−µ∗)2/2dx

≥ a

M
√

2eπ
e−9a2/2 ≥ a

5M
e−9a2/2.

The last inequality is true by integrating over an interval of length 1 around µ∗ contained in (a, 3a).

B.3.1 Proof of Lemma 7

We split the proof into two cases.

Case µi ∈ [0, 2]: In this case, we are guaranteed that maxx∈(−∞,0] wi(x) ≤ 1. Also, for any
x ∈ [1, 2], we have:

wi(x) =
e−(x−µi)2/2∑
j e
−(x−µj)2/2

≥ 1

Me2
, (16)

which proves the required result.

Case µi > 2: In this case, we have

wi(x) =
e−(x−µi)2/2∑
j e
−(x−µj)2/2

=
1∑

j 6=i
1

M−1 + e[(x−µi)2−(x−µj)2]/2

=
1∑

j 6=i
1

M−1 + e(µi−µj)(µi+µj−2x)/2
=

1∑
j 6=iAij(x)

,

where Aij(x) := 1
M−1 + e(µi−µj)(µi+µj−2x)/2. It suffices to show that

Aij(x) ≤MAij(x
′) for any x ∈ [1, 2], x′ ∈ (−∞, 0] and j ∈ [M ]. (17)

Using this, we know:

wi(x) =
1∑

j 6=iAij(x)
≥ 1∑

j 6=iMAij(x′)
=

1

M
wi(x

′), (18)

and the claim of Lemma 7 easily follows. In order to establish the claim of equation (17), we note
that if µj ≤ µi, then since x′ < x, we have

(µi − µj)(µi + µj − 2x) ≤ (µi − µj)(µi + µj − 2x′),

which implies that Aij(x) ≤ Aij(x′). If µi < µj , then we know:

(µi − µj)(µi + µj − 2x) < 0. (19)

This implies Aij(x) ≤ 1
M−1 + 1 = M

M−1 . On the other hand, we always have Aij(x′) ≥ 1
M−1 , this

gives Aij(x) ≤MAij(x
′), which finishes the proof.

B.4 Proof of Lemma 6

We have

Ewi(X)X ≥ 1√
2π

∫ −2r/3

−∞
wi(x)xe−(x−µ∗)2/2dx+

1√
2π

∫ 0

−2r/3

wi(x)xe−(x−µ∗)2/2dx.

For the first term, we know for any x ∈ (−∞,−2r/3], we have:

wi(x) ≤ e−x
2/2

e−(x−µj)2/2
= e−xµj+µ

2
j/2 ≤ e− 2r

3 µj+µ
2
j/2 ≤ e− 7

72 r
2

≤ e−r
2/18.
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The second last inequality is true since µj ≥ − 7r
6 . Thus, we know:

1√
2π

∫ −2r/3

−∞
wi(x)xe−(x−µ∗)2/2dx ≥ e−r

2/18

√
2π

∫ −2r/3

−∞
xe−(x−µ∗)2/2dx

≥e
−r2/18

√
2π

[∫ −2r/3

−∞
(x− µ∗)e−(x−µ∗)2/2dx+ µ∗

√
2π

]

≥e
−r2/18

√
2π

[
−1

2
e−r

2/18 − r
√

2π

]
≥ −2re−r

2/18.

For the second term, we have:

1√
2π

∫ 0

−2r/3

wi(x)xe−(x−µ∗)2/2dx ≥− 2r

3
√

2π

∫ 0

−2r/3

e−(x−µ∗)2/2dx

≥− 2r

3
√

2π

∫ +∞

−2r/3

e−(x−µ∗)2/2dx ≥ −2r

3
e−r

2/18.

Putting the pieces together we obtain,

Ewi(X)X ≥ −(
2

3
+ 2)e−r

2/18 ≥ −3re−r
2/18,

as desired.
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