
A Upper Bound

We provide the proof in the following three subsections. We will repeatedly use the following result.

Lemma 7. For all u > 0,
∑∞
t=u+1 P(Bk?,t < µ?) ≤ Mν

ρ−2
1

uρ−2 .

Proof. The proof is straightforward using a union bound.

P(Bk?,t < µ?) = P(∃m ∈ {1, . . . ,M}, ∃ 1 ≤ s ≤ t− 1, B(m)
k?,t

(s) ≤ µ?) (8)

=

M∑
m=1

t−1∑
s=1

P
(
X

(m)

k?,s − µ
(m)
k?

< µ? − µ(m)
k?
− ζ(m) − ψ−1

(
ρ log(t)

s

))

≤
M∑
m=1

t−1∑
s=1

νt−ρ ≤ Mνt1−ρ

In the third step we have used µ? − µ(m)
k ≤ ζ(m). The result follows by bounding the sum with the

integral
∑∞
t=u+1 t

1−ρ ≤
∫∞
u
t1−ρ = u2−ρ/(ρ− 2).

A.1 Proof of Lemma 5

We first provide a formal statement of Lemma 5.

Lemma 8. Let m ≤ M and consider any arm k ∈ K(m). After n time steps of (γ, ρ)-MF-UCB
with ρ > 2 and γ > 0, we have the following bounds on E[T

(`)
k,n] for ` = 1, . . . ,M .

T
(`)
k,n ≤

ρ log(n)

ψ(γ(m))
+ 1, ∀ ` < m, E[T

(m)
k,n ] ≤ ρ log(n)

ψ(∆
(m)
k /2)

+ κρ, E[T
(>m)
k,n ] ≤ κρ.

Here, κρ = 1 + ν
2 + Mν

ρ−2 is a constant.

Proof. As n is fixed in this proof, we will write E[·],P(·) for E[·|N = n],P(·|N = n). Let
φ

(m)
t = b ρ log(t)

ψ(γ(m))
c. By design of the algorithm we won’t play any arm more than φ(m)

n + 1 times at

any m < M . To see this, assume we have already played φ(m)
n + 1 times at any t < n. Then,

ψ−1

(
ρ log(t)

T
(m)
k,t−1

)
< ψ−1

(
ρ log(t)

ρ log(n)
ψ(γ(m))

)
≤ γ(m),

and we will proceed to the (m+ 1)th fidelity in step 2 of Algorithm 1. This gives the first part of the
theorem. For any ` ≥ m we can avoid the 1

ψ(γ(m))
dependence to obtain tighter bounds.

For the case ` = m, our analysis follows usual multi-armed bandit analyses [2, 5]. For any u ≤ n, we
can bound T (m)

k,n via T (m)
k,n ≤ u+

∑n
t=u+1 Z

(m)
k,t,u where Z(m)

k,t,u = 1
{
mt = m ∧ It = k ∧ T (m)

k,t−1 ≥
u
}

. We relax Z(m)
k,t,u further via,

Z
(m)
k,t,u ≤ 1

{
T

(`)
k,t−1 > φ

(`)
t ∀` ≤ m− 1 ∧ u ≤ T (m)

k,t−1 ≤ φ
(m)
t ∧ Bk,t > Bk?,t

}
≤ 1

{
T

(m)
k,t−1 ≥ u ∧ B(m)

k,t (T
(m)
k,t−1) ≥ µ?

}
+ 1

{
Bk?,t < µ?

}
≤ 1

{
∃u ≤ s ≤ t− 1 : B(m)

k,t (s) > µ?
}

+ 1
{
Bk?,t < µ?

}
.

This yields, E[T
(m)
k,n ] ≤ u+

∑n
t=u+1

∑t−1
s=u P(B(m)

k,t (s) > µ?) +
∑n
t=u+1 P(Bk?,t < µ?). The third

term in this summation is bounded by Mν/(ρ− 2) using Lemma 7. To bound the second, choose
u = dρ log(n)/ψ(∆

(m)
k /2)e. Then,

P(B(m)
k,t (s) > µ?) = P

(
X

(m)

k,s − µ(m)
k > µ? − µ(m)

k − ζ(m) − ψ−1
(ρ log(t)

s

))
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≤ P(X
(m)

k,s − µ(m)
k > ∆

(m)
k /2) ≤ ν exp

(
− sψ

(∆
(m)
k

2

))
≤ νn−ρ (9)

In the second and last steps we have used ψ−1(ρ log(t)/s) < ψ−1(ρ log(t)/u) ≤ ∆
(m)
k /2 since ψ−1

is increasing and u > ρ log(n)/ψ(∆
(m)
k /2). Since there are at most n2 terms in the summation, the

second term is bounded by νn2−ρ/2 ≤ ν/2. Collecting the terms gives the bound on E[T
(m)
k,n ].

To bound T (>m)
k,n we write T (>m)

k,n ≤ u+
∑n
t=u+1 Z

(>m)
k,t,u where

Z
(>m)
k,t,u = 1

{
mt > m ∧ It = k ∧ T

(>m)
k,t−1 ≥ u

}
≤ 1

{
T

(`)
k,t−1 > φ

(`)
t ∀` ≤ m ∧ Bk,t > Bk?,t ∧ T

(>m)
k,t−1 ≥ u

}
≤ 1

{
T

(m)
k,t−1 > φ

(m)
t ∧ B(m)

k,t (T
(m)
k,t−1) > µ?

}
+ 1

{
Bk?,t < µ?

}
≤ 1

{
∃φ(m)

t + 1 ≤ s ≤ t− 1 : B(m)
k,t (s) > µ?

}
+ 1

{
Bk?,t < µ?

}
This yields, E[T

(>m)
k,n ] ≤ u +

∑n
t=u+1

∑t−1

s=φ
(m)
t +1

P(B(m)
k,t (s) > µ?) +

∑n
t=u+1 P(Bk?,t < µ?).

The inner term inside the double summation can be bounded via,

P(B(m)
k,t (s) > µ?) = P

(
X

(m)

k,s − µ(m)
k > µ? − µ(m)

k − ζ(m) − ψ−1
(ρ log(t)

s

))
≤ P(X

(m)

k,s − µ(m)
k > ∆

(m)
k − γ(m)) ≤ ν exp(−sψ(∆

(m)
k − γ(m)))

≤ ν exp

(
−ψ(∆

(m)
k − γ(m))

ψ(γ(m))
ρ log(t)

)
≤ νt−ρ (10)

The second step follows from s > φ
(m)
t > ρ log(t)/ψ(γ(m)) and the last step uses ψ(∆

(m)
k −γ(m)) >

ψ(γ(m)) when ∆
(m)
k > 2γ(m). To bound the summation, we use u = 1 and bound it by an integral:∑n

t=u+1 t
−ρ+1 ≤ 1/(2uρ−2) ≤ 1/2. Collecting the terms gives the bound on E[T

(>m)
k,n ].

A.2 Proof of Lemma 6

We first provide a formal statement of Lemma 6.

Lemma 9. Consider any arm k ∈ K(m). For (γ, ρ)-MF-UCB with ρ > 2 and γ > 0, we have the
following concentration results for ` = 1, . . . ,M for any x ≥ 1.

P

(
T

(m)
k,n > x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

))
≤

νκ̃
(m)
k,ρ

(x · log(n))ρ−1
+

ν

nxρ−1
.

P
(
T

(>m)
k,n > x

)
≤ Mν

ρ− 1

1

xρ−1
+

1

(ρ− 2)xρ−2

Here, κ̃(m)
k,ρ = M

ρ−1

(
ψ(∆

(m)
k /2)

ρ

)ρ−1

.

Proof. For the first inequality, we modify the analysis in Audibert et al. [2] to the multi-fidelity
setting. We begin with the following observation for all u ∈ N.

{∀ t : u+ 1 ≤ t ≤ n,B(m)
k,t (u) ≤ µ?} ∩ (11)

M⋂
m=1

{∀ 1 ≤ s ≤ n− u : B(m)
k?,u+s(s) > µ?} =⇒ T

(m)
k,n ≤ u

To prove this, consider s(m),m = 1, . . . ,M such that s(1) ≥ 1, s(m) ≥ 0,∀m 6= 1. For all
u+

∑M
m=1 s

(m) ≤ t ≤ n and for all ` = 1, . . . ,M we have

B(`)
k?,t

(s(`)) ≥ B(`)
k?,u+s(s

(`)) > µ? ≥ B(m)
k,t (u) ≥ B(m)

k,t (T
(m)
k,t−1).

11



This means that arm k will not be the Bk,t maximiser at any time u < t < n and consequently it
won’t be played more than u+ 1 times at the mth fidelity. Via the union bound we have,

P(T
(m)
k,n > u) ≤

n∑
t=u+1

P(B(m)
k,t (u) > µ?) +

M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?).

We will use u = dx(1 + ρ log(n)/ψ(∆
(m)
k /2))e. Bounding the inner term of the second double

summation closely mimics the calculations in (8) via which it can be shown P(B(m)
k?,u+s(s) < µ?) ≤

ν(u+ s)−ρ. The second term is then bounded by an integral as follows,
M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?) ≤M

n−u∑
s=1

ν(u+ s)−ρ ≤Mν

∫ n

u

t−ρ ≤ Mνu1−ρ

ρ− 1
≤

νκ̃
(m)
k,ρ

(x · log(n))ρ−1

The inner term of the first summation mimics the calculations in (9). Noting that s >

xρ log(n)/ψ(∆
(m)
k /2) it can be shown P(B(m)

k,t (u) > µ?) ≤ νn−ρx which bounds the outer summa-
tion by νn−ρx+1. This proves the first concentration result.

For the second, we begin with the following observation for all u ∈ N.

{∀ t : u+ 1 ≤ t ≤ n, B(m)
k,t (T

(m)
k,t−1) ≤ µ? ∨ T

(m)
k,t−1 ≤ φ

(m)
t } ∩ (12)

M⋂
m=1

{∀ 1 ≤ s ≤ n− u : B(m)
k?,u+s(s) > µ?} =⇒ T

(>m)
k,n ≤ u

To prove this first note that when T (m)
k,t−1 ≤ φ

(m)
t we will play at the mth fidelity or lower. Otherwise,

consider s(m),m = 1, . . . ,M such that s(1) ≥ 1 and s(m) ≥ 0,∀m. For all u+
∑M
m=1 s

(m) ≤ t ≤ n
and for all ` = 1, . . . ,M we have

B(`)
k?,t

(s(`)) ≥ B(`)
k?,u+s(s

(`)) > µ? ≥ B(m)
k,t (T

(m)
k,t−1).

This means that arm k will not be played at time t and consequently for any t > u. After a further
relaxation we get,

P(T
(>m)
k,n > u) ≤

n∑
t=u+1

t−1∑
s=φ

(m)
t +1

P(B(m)
k,t (s) > µ?) +

M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?)

The second summation is bounded via Mν
(ρ−1)uρ−1 . Following an analysis similar to (10), the inner

term of the first summation can be bounded by νt−ρ which bounds the first term by u2−ρ/(ρ− 2).
The result follows by using u = x in (12).

A.3 Proof of Theorem 2

We first establish the following Lemma.

Lemma 10 (Regret of MF-UCB). Let ρ > 4. There exists Λ0 depending on λ(1), λ(M) such that for
all Λ > Λ0, (γ, ρ)-MF-UCB satisfies,

E[R(Λ)] ≤ µ?λ(M) +

K∑
k=1

∆
(M)
k

[k]−1∑
`=1

λ(`) ρ(log(nΛ) + c)

ψ(γ(`))
+ λ(JkK) ρ(log(nΛ) + c)

ψ(∆
(JkK)
k /2)

+ µ?κρλ
(M)


Here c = 1 + log(2) and κρ = 1 + ν

ρ−2 + Mν
ρ−2 are constants.

Denote the set of arms “above" K(m) by K̂(m) =
⋃M
`=m+1K(`) and those “below" K(m) by K̂(m) =⋃m−1

`=1 K(`). We first observe,(
∀m ≤M − 1, ∀k ∈ K(m), T

(m)
k,n ≤ x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
∧ T

(>m)
k,n ≤ y

)
(13)

=⇒
M−1∑
m=1

Q(m)
n ≤ Ky +

M−1∑
m=1

∑
k∈K(m)

x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+

M−1∑
m=1

|K̂(m)|
(

1 +
ρ log(n)

ψ(γ(m))

)

12



To prove this we first note that the LHS of (13) is reducible to,

∀m ≤M − 1, Q(m)
n ≤

∑
k∈K̂(m)

T
(m)
k,n +

∑
k∈K(m)

x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+

∑
k∈K̂(m)

(
1 +

ρ log(n)

ψ(γ(m))

)

The statement follows by summing the above from m = 1, . . . ,M − 1 and rearranging the T (>m)
k,n

terms to obtain,

M−1∑
m=1

∑
k∈K̂(m)

T
(m)
k,n =

M−1∑
m=1

m−1∑
`=1

∑
k∈K(`)

T
(m)
k,n =

M−2∑
m=1

∑
k∈K(m)

M−1∑
`=m+1

T
(`)
k,n ≤

M−2∑
m=1

∑
k∈K(m)

T
(>m)
k,n

≤ (K − |K(M−1) ∪ K(M) ∪ K?|)y ≤ Ky.

Now for the given Λ under consideration, define δΛ = 1
log(Λ/λ(1))

. In addition define,

xn,δ = max

(
1 ,

1

ρ

(
3 +

log(2νπ2K/(3δ))

log(n)

)
,

(
2π2KνM

3(ρ− 1)δ

) 1
ρ−1 ψ(∆

(m)
k /2)

ρ
n

2
ρ−1

)
.

yn,δ = max

(
1 ,

(
2π2KMν

3(ρ− 1)δ

) 1
ρ−1

n
2
ρ−1 ,

(
π2K

3δ

) 1
ρ−2

n
2
ρ−2

)
.

Now choose n0,Λ to be the smallest n such that the following holds for all n ≥ n0,Λ.

n

2
≥ Kyn,δΛ +

M−1∑
m=1

∑
k∈K(m)

xn,δΛ

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+

M−1∑
m=1

∑
k∈K̂(m)

1 +
ρ log(n)

ψ(γ)
, (14)

For such an n0,Λ to exist, for a given Λ, we need both xn, yn sublinear. This is true since ρ > 4.
In addition, observe that n0,Λ grows only polylogarithmically in Λ since (14) reduces to np &
(log(Λ))1/2 where p > 0 depends on our choice of ρ.

By (13), the RHS of (14) is an upper bound on the number of plays at fidelities lower than M .
Therefore, for all n ≥ n0,Λ,

P
(
Q(M)
n <

n

2

)
≤
M−1∑
m=1

∑
k∈K(m)

P
(
T

(m)
k,n > xn,δ

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

))
+ P

(
T

(>m)
k,n > yn,δ

)
(15)

≤
M−1∑
m=1

∑
k∈K(m)

ν

nρxn,δΛ−1 +
νκ̃

(m)
k,ρ

(xn,δΛ log(n))ρ−1
+

νM

(ρ− 1)yρ−1
n,δΛ

+
1

2yρ−2
n,δΛ

≤ K
(

4× 3δ

2Kn2π2

)
≤ 6δ

n2π2
.

The last step follows from the fact that each of the four terms inside the summation in the second
line are ≤ 3δ/(2Kn2π2). For the last term we have used that (ρ− 2)/2 > 1 and that 3δ/(π2K) is
smaller than 1. Note that the double summation just enumerates over all arms in K.

We can now specify the conditions on Λ0. Λ0 should be large enough so that for all Λ ≥ Λ0, we have
bΛ/λ(M)c ≥ n0,Λ. Such an Λ0 exists since n0,Λ grows only polylogarithmically in Λ. This ensures
that we have played a sufficient numer of rounds to apply the concentration result in (15).

Let the (random) expended capital after n rounds of MF-UCB be Ω(n). Let E = {∃n ≥ n0,Λ :

Ω(n) < nλ(M)/2}. Since Ω(n) ≥ λ(M)Q
(M)
n , by using the union bound on (15) we have P(E) ≤ δΛ.

Therefore,

P
(
N >

2Λ

λ(M)

)
= P

(
N >

2Λ

λ(M)

∣∣∣E)P(E)︸︷︷︸
≤ δΛ

+ P
(
N >

2Λ

λ(M)

∣∣∣Ec)︸ ︷︷ ︸
= 0

P(Ec) < δΛ

13



The last step uses the following reasoning: Conditioned on Ec, n > 2Ω(n)/λ(M) is false for n > n0,Λ.
In particular, it is true for the random number of plays N since Λ > Λ0 =⇒ N ≥ n0,Λ. Now,
clearly Λ > Ω(N) and therefore N > 2Λ/λ(M) is also false.

By noting that nΛ = Λ/λ(M) and that log(Λ/λ(1)) is always an upper bound on log(N), we have,

E[log(N)] ≤ log(2nΛ)P(N < 2nΛ) + log

(
Λ

λ(1)

)
P(N > 2nΛ) ≤ log(nΛ) + 1 + log(2) (16)

Lemma 10 now follows by an application of Lemma 5. First we condition on N = n to obtain,

E[R(Λ)|N = n] ≤ µ?λ
(M) +

K∑
k=1

M∑
m=1

∆
(M)
k λ(m)T

(m)
k,n

≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k

[k]−1∑
`=1

λ(`) ρ log(n)

ψ(γ(m))
+ λ(JkK) ρ log(n)

ψ(∆
(JkK)
k /2)

+ κρλ
(M)


The theorem follows by plugging in the above in E[R(Λ)] = E[E[R(Λ)|N ]] and using the bound for
E[log(N)] in (16).

We can now bound the regret for MF-UCB.

Proof of Theorem 2. Recall that ψ(γ(m)) = λ(m)

λ(m+1)ψ(ζ(m)). Plugging this into Lemma 10 we get

E[R(Λ)] ≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k

[k]−1∑
`=1

λ(`+1) ρ(log(nΛ) + c)

ψ(ζ(`))
+ λ(JkK) ρ(log(nΛ) + c)

ψ(∆
(JkK)
k /2)

+ κρλ
(M)


≤ µ?λ

(M) +

K∑
k=1

∆
(M)
k · λ(JkK)ρ(log(nΛ) + c)

(
2

ψ(ζ(JkK−1))
+

1

ψ(∆
(JkK)
k /2)

)
+ ∆

(M)
k κρλ

(M)

The second step uses Assumption 1. The theorem follows by noting that for any k ∈ K(m) and ` < m,
∆

(m)
k = ∆

(`)
k + ζ(`) − ζ(m) + µ

(`)
k − µ

(M)
k + µ

(M)
k − µ(m)

k ≤ 2γ(`) + 2ζ(`) ≤ 4ζ(`). Therefore
1/ψ(∆

(m)
k ) > c1/ψ(ζ(`)) where c1 depends on ψ (for sub-Gaussian distributions, c1 = 1/16).

B Lower Bound

The regret Rk incurred by any multi-fidelity strategy after capital Λ due to a suboptimal arm k is,

Rk(Λ) = ∆
(M)
k

M∑
m=1

λ(m)T
(m)
k,N ,

here N is the total number of plays. We then have, R(Λ) =
∑
k Rk(Λ). For what follows, for an

arm k and any fidelity m denote KL
(m)
k = KL(µ

(m)
k ‖µ? − ζ(m)). The following lemma provides an

asymptotic lower bound on Rk.

Lemma 11. Consider any set of Bernoulli reward distributions with µ? ∈ (1/2, 1) and ζ(1) < 1/2.
For any k with ∆

(`)
k < 0 for all ` < p and ∆

(p)
k > 0, there exists a problem dependent constant cp

such that any strategy satisfying Assumption 3 must satisfy,

lim inf
Λ→∞

Rk(Λ)

log(nΛ)
≥ c′p ∆

(M)
k min

`≥p,∆(`)
k >0

λ(`)

∆
(`)
k

2

Proof. For now we will fix N = n and consider any game after n rounds. Our proof we will modify
the reward distributions of the given arm k for all ` ≥ p and show that any algorithm satisfying
Assumption 3 will not be able to distinguish between both problems with high probability. Since
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the KL divergence is continuous, for any ε > 0 we can choose µ̃(p)
k ∈ (µ? − ζ(p), µ? − ζ(p) +

min`<p−∆
(`)
k ) such that KL(µ

(p)
k ‖µ̃

(p)
k ) < (1 + ε)KL(µ

(p)
k ‖µ? − ζ(p)) = (1 + ε)KL

(p)
k .

The modified construction for arm k, will also have Bernoulli distributions with means
µ̃

(1)
k , µ̃

(2)
k , . . . , µ̃

(M)
k . µ̃(p)

k will be picked to satisfy the two constraints above and for the remaining
fidelities,

µ̃
(`)
k = µ

(`)
k for ` < p, µ̃

(`)
k = µ̃

(p)
k + ζ(p) − ζ(`) for ` > p.

Now note that for ` < p, µ̃(M)
k − µ̃(`)

k = µ̃
(p)
k + ζ(p)−µ(`)

k < µ?− ζ(p)−∆
(`)
k + ζ(p)−µ(`)

k = ζ(`);
similarly, µ̃(M)

k − µ̃(`)
k = µ̃

(p)
k + ζ(p) − µ(`)

k > µ? − µ(`)
k > µ

(M)
k − µ(`)

k > −ζ(`). For ` > p,
µ̃

(M)
k − µ̃(`)

k = ζ(`). Hence, the modified construction satisfies the conditions on the lower fidelities
laid out in Section 2 and we can use Assumption 3. Further µ̃(M)

k > µ?, so k is the optimal arm in
the modified problem. Now we use a change of measure argument.

Following Bubeck and Cesa-Bianchi [5], Lai and Robbins [9], denote the expectations, probabilities
and distribution in the original problem as E,P, P and in the modified problem as Ẽ, P̃, P̃ . Denote a
sequence of observations when playing arm k at by {Z(`)

k,t}t≥0 and define,

L
(`)
k (s) =

s∑
t=1

log

(
µ

(`)
k Z

(`)
k,t + (1− µ(`)

k )(1− Z(`)
k,t)

µ̃
(`)
k Z

(`)
k,t + (1− µ̃(`)

k )(1− Z(`)
k,t)

)
=

∑
t:Z

(`)
k,t=1

log
µ

(`)
k

µ̃
(`)
k

+
∑

t:Z
(`)
k,t=0

log
1− µ(`)

k

1− µ̃(`)
k

.

Observe that E[s−1L
(`)
k (s)] = KL(µ

(`)
k ‖µ̃

(`)
k ). Let A be any event in the σ-field generated by the

observations in the game.

P̃(A) =

∫
1(A)dP̃ =

∫
1(A)

M∏
`=p

( T
(`)
k,n∏
i=1

θ̃
(`)
k (Z

(`)
k,i )

θ
(`)
k (Z

(`)
k,i )

)
dP

= E
[
1(A) exp

(
−
∑
`≥p

L
(`)
k (T

(`)
k,n)

)]
(17)

Now let f (`)
n = C log(n) for all ` such that ∆

(`)
k < 0 and f (`)

n = 1
M−p

1−ε
KL(µ

(p)
k ‖µ̃

(p)
k )

log(n) otherwise.

(Recall that ∆
(`)
k < 0 for all ` < p and ∆

(p)
k > 0). C is a large enough constant that we will specificy

shortly. Define the following event An.

An =

{
T

(`)
k,n ≤ f (`)

n , ∀` ∧ L
(`)
k (T

(`)
k,n) ≤ 1

M − p (1− ε/2) log(n), ∀` : ∆
(`)
k > 0

}
By (17) we have P̃(An) ≥ P(An)n−(1−ε/2). Since k is the unique optimal arm in the modified
construction, by Assumptions 3 we have ∀ a > 0,

P̃(An) ≤ P
(∑

m

T
(m)
k,n < Θ(log(n))

)
≤

E
[
n−∑m T

(m)
k,n

]
n−Θ(log(n))

∈ o(na−1)

By choosing a < ε/2 we have P(An)→ 0 as n→∞. Next, we upper bound the probability of An
in the original problem as follows,

P(An) ≥ P

(
T

(`)
k,n ≤ f (`)

n , ∀`︸ ︷︷ ︸
An,1

∧ max
s≤fn

L
(`)
k (s) ≤ 1

M − p (1− ε/2) log n, ∀` : ∆
(`)
k > 0︸ ︷︷ ︸

An,2

)

We will now show that An,2 remains large as n→ 0. Writing An,2 =
⋂
`:∆

(`)
k >0

An,2,`, we have

P(An,2,`) = P

(
f

(`)
n (M − p)

(1− ε) log(n)
· 1

f
(`)
n

max
s≤f(`)

n

L
(m)
k (s) ≤ 1− ε/2

1− ε

)
.
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As f (`)
n →∞, by the strong law of large numbers 1

f
(`)
n

max
s≤f(`)

n
L

(m)
k (s)→ KL(µ

(m)
k ‖µ̃(m)

k ). After

substituting for f (`)
n and repeating for all `, we get limn→∞ P(An,2) = 1. Therefore, P(An,1) ≤ o(1).

To conclude the proof, we upper bound E[Rk(Λ)] as follows,

E[Rk(Λ)]

∆
(M)
k

≥ P(∃ ` s.t.T
(`)
k,N > f

(`)
N ) · E[Rk(Λ) | ∃ ` s.t.T

(`)
k,N > f

(`)
N ] ≥ P(An,1) ·min

`
f (`)
nΛ
λ(`)

≥ (1− o(1)) min
`≥p

(1− ε) log(nΛ)λ(`)

(M − p)KL(µ
(`)
k ‖µ̃

(`)
k )

≥ log(nΛ)

M − p (1− o(1))
1− ε
1 + ε

min
`>m

λ(`)

KL
(`)
k

Above, the second step uses the fact that N ≥ nΛ and log is increasing. In the third step, we have
chosen C > max`≥p λ(`)∆

(M)
k /KL(µ

(`)
k ‖µ̃

(`)
k ) for ` < p large enough so that the minimiser will be

at ` ≥ p. The lemma follows by noting that the statements holds for all ε > 0 and that for Bernoulli
distributions with parameters µ1, µ2, KL(µ1‖µ2) ≤ (µ1 − µ2)2/(µ2(1− µ2)). The constant given
in the theorem is c′p = 1

M−p min`>p(µ? − ζ(`))(1− µ? + ζ(`)).

We can now use the above Lemma to prove theorem 4.

Proof of Theorem 4. Let k ∈ K(m)
3 . We will use Lemma 11 with p = m. It is sufficient to show that

λ(`)/∆
(`)
k

2
& λ(m)/∆

(m)
k

2
for all ` > m. First note that

∆
(`)
k = µ?−µ(m)

k −ζ(m)+µ
(m)
k −µ?+µ?−µ(`)

k +ζ(m)−ζ(`) ≤ ∆
(m)
k +2ζ(m) ≤ 2∆

(m)
k

√
λ(m+1)

λ(m)

Here the last step uses that ∆
(m)
k > 2γ(m) =

√
λ(m)/λ(m+1)ζ(m). Here we have used ψ(ε) = 2ε2

which is just Hoeffding’s inequality. Therefore, λ(m)

∆
(m)
k

2 ≤ 4λ
(m+1)

∆
(`)
k

2 ≤ 4 λ(`)

∆
(`)
k

2 .

When k ∈ K(m)
7 , we use Lemma 11 with p = `0 = min{`; ∆

(`)
k > 0}. However, by repeating the

same argument as above, we can eliminate all ` > m. Hence, we only need to consider ` such that
`0 ≤ ` ≤ m and ∆

(`)
k > 0 in the minimisation of Lemma 11. This is precisely the set Lm(k) given in

the theorem. The theorem follows by repeating the above argument for all arms k ∈ K. The constant
cp in Theorem 4 is c′p/4 where c′p is from Lemma 11.

C Details on the Simulations

We present the details on the simulations used in the experiment. Denote ~ζ = (ζ(1), ζ(2), . . . , ζ(M))

and ~λ = (λ(1), λ(2), . . . , λ(M)). Figure 3 illustrates the mean values of these arms.

1. Gaussian: M = 500, M = 3, ~ζ = (0.2, 0.1, 0), ~λ = (1, 10, 1000).
The high fidelity means were chosen to be a uniform grid in (0, 1). The Gaussian distribu-
tions had standard deviation 0.2.

2. Gaussian: M = 500, M = 4, ~ζ = (1, 0.5, 0.2, 0), ~λ = (1, 5, 20, 50).
The high fidelity means were sampled from a N (0, 1) distribution. The Gaussian distribu-
tions had standard deviation 1.

3. Bernoulli: M = 200, M = 2, ~ζ = (0.2, 0), ~λ = (1, 10).
The high fidelity means were chosen to be a uniform grid in (0.1, 0.9). The Gaussian
distributions had standard deviation 1.

4. Bernoulli: M = 1000, M = 5, ~ζ = (0.5, 0.2, 0.1, 0.05, 0), ~λ = (1, 3, 10, 30, 100).
The high fidelity means were chosen to be a uniform grid in (0.1, 0.9). The Gaussian
distributions had standard deviation 1.

In all cases above, the lower fidelity means were sampled uniformly within a ±ζ(m) band around
µ

(M)
k . In addition, for the Gaussian distributions we modified the lower fidelity means of the optimal

arm µ
(m)
k?

,m < M to be lower than the corresponding mean of a suboptimal arm. For the Bernoulli
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Figure 3: An illustration of the means of the arms used the simulation probelms. The top row are the Gaussian
rewards with (K,M) equal to (500, 3), (500, 4) while the second row are the Bernoulli rewards with (200, 2),
(1000, 5) respectively.

rewards, if µ(m)
k fell outside of (0, 1) its value was truncated. Figure 3 illustrates the mean values of

these arms.

For both MF-UCB and UCB we used ρ = 2 [5].
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