
A Proofs

A.1 Proof of Theorem 1

Proof According to the way A generates iterates, we have

|w(k)(η)− w∗(η)| = |sk(η)− 1/η|, η ∈ [µ,L]

for some polynomial sk(η) of degree at most k. By Lemma 6, we have

min
s(η)∈Pk

∥∥∥∥s(η)− 1

η

∥∥∥∥
L∞([µ,L])

≥ L− µ
2Lµ

(√
κ− 1√
κ+ 1

)k
,

where κ = L/µ. Thus,

|w(k)(η)− w∗(η)| ≥ min
s(η)∈Pk

∥∥∥∥s(η)− 1

η

∥∥∥∥
L∞([µ,L])

≥ L− µ
2Lµ

(√
κ− 1√
κ+ 1

)k
≥ |w∗(η)|L− µ

2L

(√
κ− 1√
κ+ 1

)k
.

Now, since fη is µ-strongly convex, we have,

f(w(k)(η))− f(w∗(η))| ≥ µ

2
|w(k)(η)− w∗(η)|2

≥ µ

2

(
|w∗(η)|L− µ

2L

(√
κ− 1√
κ+ 1

)k)2

=
µ

2

(
|w∗(η)|L− µ

2L

)2(√
κ− 1√
κ+ 1

)2k

.

Hence, by Lemma 12, the minimal number of iterations required to get an ε-optimal solution is at
least

1

4

√
κ− 1

(
ln
µ

2
+ 2 ln

(
|w∗(η)|L− µ

2L

)
+ ln(1/ε)

)
.

A.2 Proof of Theorem 2 - Finite Sums

When dealing with multivariate polynomials it is convenient to define multi-indices i = (i1, . . . , in) ∈
Nn0 , where Nn0 is the set of all n-tuples of non-negative integers. In addition, with a slight abuse of
notation, we define

Pnk := span
{
ηi | i ∈ Nn0 , |i| ≤ k

}
, (20)

where we put ηi = ηi11 · · · ηinn and |i| = i1 + · · · + in. In words, Pnk is the set of all multivariate
polynomials over n indeterminates whose total degree (the maximal sum of the degrees over all
terms) is less than or equal to k. Lastly, given s(η) ∈ Pnk we define

si(ηi) := s

−L− µ
2

, . . . ,−L− µ
2

, ηi︸︷︷︸
i’th entry

,−L− µ
2

, . . . ,−L− µ
2

 .

This notation will come in handy in the main proof.

The lemma below describes the functional form assumed by iterates produced by oblivious CLIs.

Lemma 1. When applied on (12) with suitable first-order and coordinate-descent oracles (as defined
in 14), the coordinates of iterates produced by oblivious stochastic CLIs form multivariate polynomials
in η with random real coefficients whose total degree does not exceed the iteration number.
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Proof Let A be an oblivious stochastic CLI, and suppose we apply A on the class of problems (12)
parameterized by η, using both first-order and coordinate-descent oracles as defined in 14. We use
mathematical induction to show that for any k = 0, 1, . . . , the coordinate of the k’th iterate produced
by such process can be expressed as a distribution over multivariate polynomials in η of degree at
most k.

As the first iterate w
(0)
i is allowed to depend only on L, µ and n, the base case is trivial. That is, the

coordinates of w(0)
i form distributions over R = Pn0 which do not depend on η.

For the inductive step, assume that any coordinate of w(k)
i (η) can be expressed as a distribution over

Pnk . It is easy to see that for any w
(k)
i (η), the answers of both oracles,

First-order oracle: O(w
(k)
i ;A,B, c, j) = A(Qηjw

(k)
i − q) +Bw

(k)
i + c,

Coordinate-descent oracle: O(w
(k)
i ; i, j) =

(
I − (1/(Qηj )ii)ei(Qηj )i,∗

)
w

(k)
i − qi/(Qηj )iiei,

form a distribution over Pnk+1, as all the random quantities involved in the expressions
(A,B, c, i and j) do not depend on η1, . . . , ηn (due to obliviousness) and the rest of the terms
(I,Qηj , 1/(Qηj )ii, (Qηj )i,∗, ei, qi and q) are either linear in ηj or constants. Lastly, w(k+1)

i are
computed by simply summing up all the oracle answers, and as such, form again distributions over
Pnk+1.

Proof [Theorem 2] LetA be an oblivious stochastic CLI. By Lemma 1 the first coordinate of w(k)
1 (η)

(the point returned by the algorithm at the k’th iteration) when applied on class of problems (12)
distributes according to some distribution D over Pnk . Thus, by Yao principle, since each polynomial
in (Pnk )d represents a single deterministic algorithm, we have

max
η∈H

E
w

(k)
1 (η)∼D‖w

(k)
1 (η)−w∗(η)‖ ≥ min

s(η)∈(Pnk )d
Eη∼U(H)‖s(η)−w∗(η)‖ (21)

where U(H) denotes a distribution overH which corresponds to first drawing j ∼ U([n]) at random,
and then setting the coordinates of η as follows{

ηi ∼ U([−(L− µ)/2, (L− µ)/2] i = j

ηi = −L−µ2 , i 6= j
. (22)

Furthermore, it is easy to verify that the corresponding minimizers of (12) are

w∗(η1, . . . , ηn) =

(
1

n

n∑
i=1

Qηi

)−1
q =

 Rµ
√

2
(
L+µ
2 + 1

n

∑n
i=1 ηi

) , Rµ
√

2
(
L+µ
2 + 1

n

∑n
i=1 ηi

) , 0, . . . , 0
> .

(23)

We now have,

min
s(η)∈(Pnk )d

Eη∼U(H)‖s(η)−w∗(η)‖ = min
s(η)∈(Pnk )d

Ei∼U([n])Eηi∼U([−L−µ2 ,L−µ2 ])‖s(η)−w∗(η)‖

≥ 1

n
min

s(η)∈Pnk

n∑
j=1

Eηj∼U([−L−µ2 ,L−µ2 ])

∣∣∣∣∣sj(ηj)− Rµ√
2( 1
n

∑n
i=1 ηi + L+µ

2 )

∣∣∣∣∣
=
Rµ√

2
min

s(η)∈Pnk

n∑
j=1

Eηj∼U([−L−µ2 ,L−µ2 ])

∣∣∣∣∣sj(ηj)− 1

ηj − (n− 1)L−µ2 + nL+µ2

∣∣∣∣∣
=
Rµ√

2
min

s(η)∈Pnk

n∑
j=1

∫ L−µ
2

−L−µ2

∣∣∣∣∣sj(ηj)− 1

ηj − (n− 1)L−µ2 + nL+µ2

∣∣∣∣∣ 1

L− µ
dηj

=
Rµ√

2(L− µ)
min

s(η)∈Pnk

n∑
j=1

∫ L−µ
2

−L−µ2

∣∣∣∣∣sj(ηj)− 1

ηj − (n− 1)L−µ2 + nL+µ2

∣∣∣∣∣ dηj
(24)
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where the first inequality follows by focusing on the first coordinate of s(η) − w∗(η). Now, set
α = −(n− 1)L−µ2 + nL+µ2 and note that√

2α+ L− µ
2α+ µ− L

=

√√√√2(−(n− 1)L−µ2 + nL+µ2 ) + L− µ
2(−(n− 1)L−µ2 + nL+µ2 ) + µ− L

=

√
κ− 1

n
+ 1.

Thus, by Lemma 8 (using the same value for α and noting that α > (L− µ)/2) yields

∫ L−µ
2

−L−µ2

∣∣∣∣∣sj(ηj)− 1

ηj − (n− 1)L−µ2 + nL+µ2

∣∣∣∣∣ dηj ≥

√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

kj

.

where kj denotes the degree of sj(ηj). Plugging in this into Inequality (24) we get

max
η∈H

E
w

(k)
1 (η)∼D‖w

(k)
1 (η)−w∗(η)‖ ≥ nRµ√

2(L− µ)
min

s(η)∈Pnk

1

n

n∑
j=1


√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

kj

.

Since u 7→ ρu is a decreasing and convex function for any 1 > ρ > 0, we have

nRµ√
2(L− µ)

min
s(η)∈Pnk

1

n

n∑
j=1


√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

kj

≥ nRµ√
2(L− µ)

min
s(η)∈Pnk


√

κ−1
n + 1− 1√
κ−1
n + 1 + 1


1
n

∑n
j=1 kj

≥ nRµ√
2(L− µ)


√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

k/n

where the last inequality is due to the fact that s(η) ∈ Pnk which implies that
∑n
j=1 kj ≤ k. Finally,

we have,

max
η∈H

E
w

(k)
1 (η)∼D[Fη(w

(k)
1 (η))− Fη(w∗(η))] ≥ max

η∈H
E
w

(k)
1 (η)∼D

µ

2
‖w(k)

1 (η)−w∗(η)‖2

≥ µ

2

 nRµ√
2(L− µ)


√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

k/n
2

=
µ

2

(
nRµ√

2(L− µ)

)2

√

κ−1
n + 1− 1√
κ−1
n + 1 + 1

2k/n

where the first inequality follows by the µ-strong convexity of Fη and the second inequality follows
by Jensen inequality. Using Lemma 12, we get that the iteration complexity of A is at least

1

4

(√
n(κ− 1)

)
(ln

µ

2
+ 2 ln

nRµ√
2(L− µ)

+ ln(1/ε)).

This, together with Theorem 5 below (through which we establish the Ω(n) part), concludes the
proof.

We bound from below the number of iterations required to obtain a non-trivial accuracy.

Lemma 2. Let j ∈ [n], let ηj,1 ∈ H be a parameters vector whose all coordinates are −L−µ2 and
let ηj,2 ∈ H be a parameters vector whose all coordinates are −L−µ2 , except for the j’th coordinate
which we set to be L−µ

2 . If κ > 3, then

‖w∗(η1)−w∗(η2)‖ ≥ 2R

n+ 2
.
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Proof By Equation (13) we have

‖w ∗ (η1)−w ∗ (η2) ‖ =
√

2

∣∣∣∣∣∣ Rµ
√

2
(
L+µ
2 + 1

n

∑n
i=1(η1)i

) − Rµ
√

2
(
L+µ
2 + 1

n

∑n
i=1(η2)i

)
∣∣∣∣∣∣

= Rµ

∣∣∣∣∣ 1
L+µ
2 − L−µ

2

− 1
L+µ
2 − (n−1)(L−µ)

2n + L−µ
2n

∣∣∣∣∣
= Rµ

∣∣∣∣∣∣
L+µ
2 − (n−1)(L−µ)

2n + L−µ
2n −

L+µ
2 + L−µ

2(
L+µ
2 − L−µ

2

)(
L+µ
2 − (n−1)(L−µ)

2n + L−µ
2n

)
∣∣∣∣∣∣

= R

∣∣∣∣∣−
(n−1)(L−µ)

n + L−µ
n + L− µ

L+ µ− (n−1)(L−µ)
n + L−µ

n

∣∣∣∣∣
= 2R

∣∣∣∣∣ L−µ
n

L+ µ− (n−1)(L−µ)
n + L−µ

n

∣∣∣∣∣
= 2R

∣∣∣∣∣ 1

nκ+1
κ−1 − (n− 1) + 1

∣∣∣∣∣
= 2R

∣∣∣∣∣ 1

nκ+1
κ−1 − n+ 2

∣∣∣∣∣
≥ 2R

n+ 2
,

where the last inequality follows from κ > 3.

Theorem 5. The iteration complexity of any stochastic optimization algorithm (not necessarily CLI)
which gathers information on Fη (with κ > 3) only by means of incremental oracles, i.e., oracles
which upon receiving query return an answer which depends on not more than one individual function,
is at least n.

Proof LetA be a stochastic optimization algorithm. According to Yao’s principle, we can bound from
below the ε-optimality of A after k < n iterations by estimating the ε-optimality of any deterministic
algorithm w.r.t. to distribution D(H) overH defined by: draw j ∈ [n] and set η to be ηj,1 or ηj,2 as
defined in Lemma 2 w.p. 1/2. Then,

max
{ηj,i|j∈[n],i∈[2]}

EA[Fηj,i(w
(k)
(
ηj,i
)
)− Fηj,i(w

∗ (ηj,i))]
≥ min

deterministic algorithms
E
η∼D(H)[Fη(w(k) (η)− Fη(w∗ (η))]

≥ min
deterministic algorithms

E
η∼D(H)

µ

2
‖w(k) (η)−w∗ (η) ‖2

≥ µ

2
min

deterministic algorithms

(
E
η∼D(H)‖w(k) (η)−w∗ (η) ‖

)2
≥ µ

2

(
R

n(n+ 2)

)2

,

where the last inequality follows from Lemma 2. Thus, for sufficiently small ε, one must perform at
least n iterations in order to obtain an ε-optimal solution.

A.3 Proof of Theorem 3 - Smooth Functions

The following notation

Pk := {p ∈ Pk|p(0) = 0} (25)
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will come in handy in subsequent proofs.

Lemma 3. When applied on

gη(x) :=
η

2
‖x‖2 −Rηe>1 x, η ∈ (0, L] (26)

with a first-order oracle (as defined in 10 with n = 1), the coordinates of iterates produced by
oblivious stochastic CLIs whose is initialization iterate is x

(0)
i = 0 form polynomials in η with

random real coefficients which vanishes at η = 0 and whose degree does not exceed the iteration
number.

Proof Let A be an oblivious stochastic CLI, and suppose we apply A on the class of problems
(26) parameterized by η, using a first-order. We use mathematical induction to show that for any
k = 0, 1, . . . , the coordinate of the k’th iterate produced by such process can be expressed as a
distribution over Pk.

As the first iterate x
(0)
i is assumed to be zero, the base case is trivial. For the inductive step, assume

that any coordinate of x(k)
i can be expressed as a distribution over Pk. It is easy to see that for any

x
(k)
i , the answers of the first-order oracle,

First-order oracle: O(x
(k)
i ;A,B, c) = A(ηx

(k)
i −Rηe1) +Bx

(k)
i + c,

form a distribution over P0
k+1, as the random quantities involved in the expressions (A,B and c) do

not depend on η (due to obliviousness) and the rest of the terms (η and Rηei) are homogenous in η.
Lastly, x(k+1)

i are computed by simply summing up all the oracle answers, and as such, form again
distributions over P0

k+1.

Proof [Theorem 3] Let N be an oblivious stochastic CLI and let α ∈ (−1, 0). Our derivation of
lower bounds for stochastic CLIs is established via Yao principle. Fix some k ∈ {0, 1, . . . }. By
Lemma 3, x(k)

1 (η) distributes according to some distribution D over (Pk)d. Thus, by Yao principle,
since each vector of polynomials in (Pk)d represents a single deterministic algorithm, we have

max
η∈[0,L]

E
x
(k)
1 (η)∼D[gη(x

(k)
1 (η))− gη(x∗(η))] ≥ min

s(η)∈(Pk)d
Eη∼E([0,L])[gη(s(η))− gη(x∗(η))],

where E([0, L], α) (abbr. E) denotes a distribution over (0, L] with a probability density function

pE(η) =
(α+ 1)ηα

Lα+1
.

We have,

min
s(η)∈(Pk)d

Eη∼E [gη(s(η))− gη(x∗(η))] ≥ min
s(η)∈Pk

Eη∼E
[
η‖s(η)− x∗(η)‖2

]
≥ min
s(η)∈Pk

Eη∼E
[
η(s(η)−R)2

]
= R2 min

s(η)∈Pk
Eη∼E

[
η(s(η)− 1)2

]
=
R2(α+ 1)

Lα+1
min

s(η)∈Pk

∫ L

0

η(s(η)− 1)2ηαdη

=
R2(α+ 1)

Lα+1
min

s(η)∈Pk

∫ 1

0

Lη(s(Lη)− 1)2(Lη)αL dη

= LR2(α+ 1) min
s(η)∈Pk

∫ 1

0

η(s(η)− 1)2ηα dη

14



where the first inequality follows by the fact that hη is η-strongly convex and the second inequality
follows by focusing on the first coordinate of s(η)− x∗(η). Invoking Lemma 9 yields

LR2(α+ 1) min
s(η)∈Pk

∫ 1

0

η(s(η)− 1)2ηα dη = LR2(α+ 1) min
s(η)∈Pk−1

∫ 1

0

η(s(η)η − 1)2ηαdη,

≥ LR2(α+ 1)

e2(k + 2)2(α+1)+2
.

Thus, in this case the iteration complexity is bound from below by

2(α+1)+2

√
LR2(α+ 1)

e2ε
− 2.

A.4 Proof of Theorem 4 - Regularized Empirical Loss Minimization

For ease of presentation, we assume that ‖xi‖ ≤ 1, φi take non-negative values and φi(0) ≤ 1.
Furthermore, throughout the proof we assume that n is even and that L = 1 (the proof for odd n and
general L > 0 holds mutatis mutandis). First, we give an explicit definition of the parametrized set of
functions we will be focusing on, as well as the oracles under which our bounds hold. We denote by
H the set of all (ψ1, . . . , ψn/2) ∈ Rn/2 such that all the entries are 0, except for some j ∈ [n/2], for
which ψj ∈ [−π/2, π/2]. Now, given ψ ∈ H, we set

φi(w) =
1

2
(w + 1)2 =⇒ φ∗i (u) =

1

2
u2 − u

xψ,i =

{
cos(ψ(i+1)/2)ei + sin(ψ(i+1)/2)ei+1 i is odd
ei o.w.

.

In which case, the corresponding dual is:

Dψ(α) =
1

2n
‖α‖2 − 1

n
1>α+

1

2λn2
‖Xψαi‖2 (27)

where
Xψ := (xψ,1, . . . ,xψ,n) .

Equivalently

Dψ =
1

2
α>

(
1

n
I +

1

λn2
X>ψXψ

)
α− 1

n
1>α

Note that

Qψ :=
1

n
I +

1

λn2
X>ψXψ =

1

n


1 + 1

λn
1
λn sin(ψ1)

1
λn sin(ψ1) 1 + 1

λn
1 + 1

λn
1
λn sin(ψ2)

1
λn sin(ψ2) 1 + 1

λn
. . .

 .

Note that, all the eigenvalues of Qψ are bigger than 1. Therefore, Dψ is 1-strongly convex. We
assume that the oracles at the algorithms’ disposal are the dual RLM oracles defined in (19),

Lastly, we will need the following definitions

Pnk,d(η1, η2, . . . , ηn) :=


 p1(η1, η2, . . . , ηn)

...
pd(η1, η2, . . . , ηn)


∣∣∣∣∣∣∣ p1, . . . , pd ∈ Pnk , ∂p1 + · · ·+ ∂pd ≤ k


(28)

Qnk,d(ψ1, ψ2, . . . , ψn) :=


 p1(sinψ1, sinψ2, . . . , sinψn)

...
pd(sinψ1, sinψ2, . . . , sinψn)


∣∣∣∣∣∣∣ p1, . . . , pd ∈ Pnk,d

 (29)
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to ease notation in subsequent proofs (where ∂p denotes the total degree of p and Pnk is defined
in (20)). Thus, Qnk contains d-dimensional vectors whose entries are n-multivariate polynomials
expressions in sinψ1, . . . , sinψn, such that the sum of the degrees of the d-polynomials does not
exceed k. In addition, given t(ψ) ∈ Qnk,d we define

ti(ψi) := t

0, . . . , 0, ψi︸︷︷︸
i’th entry

, 0, . . . , 0

 , ∀i ∈ [d].

As usual, we start by stating the functional form assumed by iterates produced by this sort of
optimization algorithms.
Lemma 4. When applied on (27) with a dual RLM oracle (as defined in 19), the coordinates
of iterates produced by oblivious stochastic CLIs form n multivariate polynomials expressions in
sinψ1, . . . , sinψn/2 with random coefficients, such that the sum of the degrees of these polynomials
does not exceed the iteration number.

Proof Let A be a oblivious stochastic CLI, and suppose we apply A on the class of problems (27)
parameterized by ψ, using dual RLM oracles as defined in 19. We use mathematical induction to
show that for any k = 0, 1, . . . , the coordinate of the k’th iterate produced by such process can
be expressed as a distribution over polynomial expressions in sinψ1, . . . , sinψn/2 whose sum of
degrees is less than or equal k.

As the first iterate α(0)
i is allowed to depend only on n and λ, the base case is trivial. That is, α(0)

i

forms a distribution over Rn = Qn/20,n which does not depend on sinψ1, . . . , sinψn/2.

For the inductive step, assume that α(k)
i can be expressed as a distribution over Qn/2k,n . It is easy to

see that for any α(k)
i , the answer of the dual RLM oracle

O(α
(k)
i ; t, `) = α+ te>` (Qψα

(k)
i −

1

n
1)e`, t ∈ R, j ∈ [n],

O(α
(k)
i ; `) =

(
I − 1

(Qψ)``
e`(Qψ)`,∗

)
α(k) +

1

n(Qψ)``
e`

are distributions overQn/2k+1,n, as the only random quantity involved in the expressions t, ` does not de-
pend onψ (due to obliviousness), the only linear factor in sinψ` (i.e., e>` (Qψα− 1

n1)e`, e`(Qj,η)`,∗)
’touches’ α(k)

i at exactly one entry and the rest of the terms (1/n1, I, 1/(Qj,η)`` and n) are constants
(w.r.t. sinψ` ). Lastly, α(k+1)

i are computed by simply summing up all the oracle answers, and as
such, form again distributions over Qn/2k+1,n.

Proof [Theorem 4]

Let A be a oblivious stochastic CLI. By Lemma 4 the coordinates of α(k)
1 (the point returned by the

algorithm at the k’th iteration) when applied on the class of problems (27) distributes according to
some distributionD over (Qn/2k )n. Furthermore, it is easy to verify that the corresponding minimizers
of (27) are

α∗(ψ) =

(
1

λn+1
λn + 1

λn sin(ψ1)
,

1
λn+1
λn + 1

λn sin(ψ1)
,

1
λn+1
λn + 1

λn sin(ψ2)
,

1
λn+1
λn + 1

λn sin(ψ2)
, . . .

)
.

(30)

α
(k)
1 (ψ) distributes according to some distribution D over Qn/2k,n . Thus, by Yao principle, since each

polynomial in Qn/2k,n represents a single deterministic algorithm, we have

max
ψ∈H

E
α

(k)
1 (ψ)∼D‖α

(k)
1 (ψ)−α∗(ψ)‖ ≥ min

t(ψ)∈Qn/2k,n

Eψ∼U(H)‖t(ψ)−α∗(ψ)‖ (31)
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where U(H) denotes a distribution over H which corresponds to of first drawing j ∼ U([n/2]) at
random, and then drawing ψj according to distribution defined by the p.d.f. pψj (ψ) = cos(ψ)/2 over
[−π/2, π/2] (for i 6= j we set ψi = 0 ). We now have,

min
t(ψ)∈Qn/2k,n

Eψ∼U(H)‖t(ψ)−α∗(ψ)‖

= min
t(ψ)∈Qn/2k,n

Ej∼U([n/2])Eψj∼U([−π/2,π/2])‖t(ψ)−α∗(ψ)‖

=
2

n

n/2∑
j=1

min
t(ψ)∈Qn/2k,n

Eψj∼U([−π/2,π/2])‖t(ψ)−α∗(ψ)‖

≥ 2

n

n/2∑
j=1

min
t(ψ)∈Qn/2k,n

Eψj∼U([−π/2,π/2])

∣∣∣∣∣tj(ψj)− 1
λn+1
λn + 1

λn sin(ψj)

∣∣∣∣∣
≥ 1

n

n/2∑
j=1

min
t(ψ)∈Qn/2k,n

∫ π/2

−π/2

∣∣∣∣∣tj(ψj)− 1
λn+1
λn + 1

λn sin(ψj)

∣∣∣∣∣ cosψj dψj

=
1

n

n/2∑
j=1

min
s(ψ)∈Qn/2k,n

∫ 1

−1

∣∣∣∣∣sj(ηj)− 1
λn+1
λn + 1

λnηj

∣∣∣∣∣ dηj
= λ

n/2∑
j=1

min
s(ψ)∈Qn/2k,n

∫ 1

−1

∣∣∣∣sj(ηj)− 1

λn+ 1 + ηj

∣∣∣∣ dηj (32)

where the first inequality follows by focusing on the j’th coordinate of s(ψ) − α∗(ψ) in each
summand. Now, set α = 1 + λn,L = 3, µ = 1 and note that√

2α+ L− µ
2α+ µ− L

=

√
2λn+ 4

2λn
=

√
λn+ 2

λn
=

√
2

λn
+ 1

Thus, by Lemma 8, using the same value for α and noting that α > 1 = (L− µ)/2) yields

∫ 1

−1

∣∣∣∣sj(ηj)− 1

λn+ 1 + ηj

∣∣∣∣ dηj ≥

√

2
λn + 1− 1√
2
λn + 1 + 1

kj

where kj denotes the degree of sj(ηj). Plugging in this into Inequality (32) we get

max
ψ∈H

E
α

(k)
1 (ψ)∼D‖α

(k)
1 (ψ)−α∗(ψ)‖ ≥ λ min

s(ψ)∈Qn/2k,n

n/2∑
j=1


√

2
λn + 1− 1√
2
λn + 1 + 1

kj

.

Since u 7→ ρu is a decreasing and convex function for any 1 > ρ > 0, we have

λ min
s(ψ)∈Qn/2k,n

n/2∑
j=1


√

2
λn + 1− 1√
2
λn + 1 + 1

kj

≥ nλ/2 min
s(ψ)∈Qn/2k,n


√

2
λn + 1− 1√
2
λn + 1 + 1


2
n

∑n/2
j=1 kj

≥ nλ/2 min
s(ψ)∈Qn/2k,n


√

2
λn + 1− 1√
2
λn + 1 + 1


2k
n
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where the last inequality is due to the fact that s(ψ) ∈ Qn/2k,n (sinψ) which implies that
∑n
j=1 kj ≤ k.

Finally, we have,

max
ψ∈H

E
α

(k)
1 (ψ)∼D[Dψ(α

(k)
1 (ψ))−Dψ(α∗(ψ))] ≥ max

ψ∈H
E
α

(k)
1 (ψ)∼D

1

2
‖α(k)

1 (ψ)−α∗(ψ)‖2

≥ 1

2

(
max
ψ∈H

E
α

(k)
1 (ψ)∼D‖α

(k)
1 (ψ)−α∗(ψ)‖

)2

≥ 1

2

nλ/2 min
s(ψ)∈Qn/2k,n


√

2
λn + 1− 1√
2
λn + 1 + 1


2k
n


2

,

where the first inequality follows by the 1-strong convexity of Dψ and the third inequality follows by
Jensen inequality. Using Lemma 12, we get that the iteration complexity of A is at least

1

8

√
2n

λ

(
ln
n2λ2

8
+ ln(1/ε)

)
.

Lastly, we bound from below the number of iterations required to obtain a non-trivial accuracy.

Lemma 5. Let j ∈ [n], let ψj,1 ∈ H be a parameters vector whose all coordinates are −π/2 and
let ηψ,2 ∈ H be a parameters vector whose all coordinates are −π/2, except for the j’th coordinate
which we set to be π/2. Then

‖α∗(ψ1)−α∗(ψ2)‖ ≥ 2
√

2

λn+ 2

Proof By Equation (30) we have

‖α∗(ψ1)−α∗(ψ2)‖ =
√

2

(
1

λn+1
λn −

1
λn

− 1
λn+1
λn + 1

λn

)

=
√

2

(
1− λn

λn+ 2

)
=

2
√

2

λn+ 2
.

Theorem 6. When applied on (27) ,the iteration complexity of oblivious stochastic CLI algorithms
equipped with a dual RLM oracle Dψ is at least n/2.

Proof Let A be a stochastic optimization algorithm. By Lemma 4 the coordinates of α(k)
1 (the point

returned by the algorithm at the k’th iteration) when applied on the class of problems (27) distributes
according to some distribution D over (Qn/2k )n. By Yao principle, since each polynomial in Qn/2k,n

represents a single deterministic algorithm, we have

max
ψ∈H

E
α

(k)
1 (ψ)∼D‖α

(k)
1 (ψ)−α∗(ψ)‖ ≥ min

t(ψ)∈Qn/2k,n

Eψ∼D(H)‖t(ψ)−α∗(ψ)‖ (33)

where D(H) denotes a distribution over H which corresponds to the process of first drawing j ∼
U([n/2]) at random, and then set ψ to be ψj,1 or ψj,2 as defined in Lemma 5 with equal probability.
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Now, for k < n/2, there exists some j ∈ [n/2] such that t(ψ) does not depend on ψj . This yields,

max
{ψj,i|j∈[n/2],i∈[2]}

EA[Dψj,i(α
(k)
(
ψj,i

)
)−Dψj,i(α

∗ (ψj,i))]
≥ min

deterministic algorithms
E
ψ∼D(H)[Dψj,i(α

(k)
(
ψj,i

)
)−Dψj,i(α

∗ (ψj,i))]
≥ min

deterministic algorithms
E
ψ∼D(H)

1

2
‖α(k)

(
ψj,i

)
)−α∗

(
ψj,i

)
‖2

≥ 1

2
min

deterministic algorithms

(
E
ψ∼D(H)‖α(k)

(
ψj,i

)
)−α∗

(
ψj,i

)
‖
)2

≥ 1

2

(
2
√

2

n(λn+ 2)

)2

,

where the last inequality follows from Lemma 5. Thus, for sufficiently small ε, one must perform at
least n/2 iterations in order to obtain an ε-optimal solution.

A.5 Best polynomial approximation over closed intervals in R

In the following section we analyze the best polynomial approximation of some functions w.r.t. L∞,
L1 and L2 norm, based on standard results from the approximation theory (see generally, Allan
Pinkus. On L1-approximation, 1989; Theodore J Rivlin. An introduction to the approximation of
functions, 2003; Ronald A DeVore and George G Lorentz. Constructive approximation, 1993; Naum
Il’ich Akhiezer and Charles J Hyman. Theory of approximation. Translated by Charles J. Hyman.
New York, 1956; Isidor Pavlovich Natanson. Constructive function theory, 1964).

A.5.1 Approximation w.r.t. L∞

Lemma 6. Let b > a > 0 and c > −a, then

min
s(η)∈Pk

∥∥∥∥s(η)− 1

η + c

∥∥∥∥
L∞([a,b])

≥ 2(b− a)

(b+ a+ 2c)2 − (b− a)2


√

b+c
a+c − 1√
b+c
a+c + 1

k

.

Proof We have,

min
s(η)∈Pk

∥∥∥∥s(η)− 1

η + c

∥∥∥∥
L∞([a,b])

= min
s(η)∈Pk

∥∥∥∥∥s
(
a− b

2
η +

a+ b

2

)
− 1

a−b
2 η + b+a

2 + c

∥∥∥∥∥
L∞([−1,1])

= min
s(η)∈Pk

∥∥∥∥∥s (η)− 1
a−b
2 η + b+a+2c

2

∥∥∥∥∥
L∞([−1,1])

=
2

b− a
min

s(η)∈Pk

∥∥∥∥∥b− a2
s (η)−

b−a
2

a−b
2 η + b+a+2c

2

∥∥∥∥∥
L∞([−1,1])

=
2

b− a
min

s(η)∈Pk

∥∥∥∥∥s (η) +
1

η − b+a+2c
b−a

∥∥∥∥∥
L∞([−1,1])

=
2

b− a
min

s(η)∈Pk

∥∥∥∥∥−s (η) +
1

η − b+a+2c
b−a

∥∥∥∥∥
L∞([−1,1])

=
2

b− a
min

s(η)∈Pk

∥∥∥∥∥s (η)− 1

η − b+a+2c
b−a

∥∥∥∥∥
L∞([−1,1])
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where we used the fact that Pk is invariant under pre-composition and post-composition with linear
function in the second, fourth and fifth equalities. Now, since

c > −a =⇒ b+ a+ 2c

b− a
> 1,

combining Inequality 8 with Lemma 10, yields

min
s(η)∈Pk

∥∥∥∥∥s(η)− 1

η − b+a+2c
b−a

∥∥∥∥∥
L∞([−1,1])

≥

((
b+a+2c
b−a

)
−
√(

b+a+2c
b−a

)2
− 1

)k
(
b+a+2c
b−a

)2
− 1

=
1(

b+a+2c
b−a

)2
− 1

1−
√

b+a+2c
b−a −1

b+a+2c
b−a +1

1 +

√
b+a+2c
b−a −1

b+a+2c
b−a +1


k

(34)

Noting that

b+a+2c
b−a − 1

b+a+2c
b−a + 1

=
b+ a+ 2c− (b− a)

b+ a+ 2c+ b− a
=
a+ c

b+ c
,

we get

min
s(η)∈Pk

∥∥∥∥s(η)− 1

η + c

∥∥∥∥
L∞([a,b])

≥ 2

b− a
1(

b+a+2c
b−a

)2
− 1


√

b+c
a+c − 1√
b+c
a+c + 1

k

.

Finally, since

2

b− a
1(

b+a+2c
b−a

)2
− 1

=
2

b− a
(b− a)2

(b+ a+ 2c)2 − (b− a)2
=

2(b− a)

(b+ a+ 2c)2 − (b− a)2
,

we get

min
s(η)∈Pk

∥∥∥∥s(η)− 1

η + c

∥∥∥∥
L∞([a,b])

≥ 2(b− a)

(b+ a+ 2c)2 − (b− a)2


√

b+c
a+c − 1√
b+c
a+c + 1

k

.

A.5.2 Approximation w.r.t. L1

Let Uk(η) denote the k’th second order Chebyshev polynomial, i.e.,

Uk(η) :=
sin((k + 1) arccos η)√

1− η2
(35)

(To see why these are indeed polynomials, observe that Uk(η) are the derivative of Chebyshev
polynomials of first order scaled by a factor of 1/k). The zeros of Uk(η) are ηj = cos( jπ

k+1 ), j =

1, . . . , k. First, let us establish the orthogonality of sgn(Uk(η)) with respect to Pk−1 over [−1, 1].

Lemma 7. Let p(η) ∈ Pk−1, then ∫ 1

−1
p(η)sgn(Uk(η)) dη = 0
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Proof We integrate by substituting η = eiθ+e−iθ

2 (= cos(θ)),∫ 1

−1
p(η)sgn(Uk(η)) dη

η= eiθ+e−iθ
2=

∫ 0

π

p

(
eiθ + e−iθ

2

)
sgn

(
Uk

(
eiθ + e−iθ

2

))(
ieiθ − ie−iθ

2

)
dθ

=

∫ π

0

p

(
eiθ + e−iθ

2

)
sgn

(
sin((k + 1)θ)

sin(θ)

)(
ie−iθ − ieiθ

2

)
dθ

=

∫ π

0

p

(
eiθ + e−iθ

2

)
sgn (sin((k + 1)θ))

(
ie−iθ − ieiθ

2

)
dθ

=
1

2

∫ π

−π
p

(
eiθ + e−iθ

2

)
sgn (sin((k + 1)θ))

(
ie−iθ − ieiθ

2

)
dθ (36)

where the last equality is due to the fact that the integrand is an even function in θ. Lastly, since for
any j = 1, . . . , k we have∫ π

−π
e−ijθsgn(sin((k + 1)θ))dθ =

∫ π+2π/(k+1)

−π+2π/(k+1)

e−ijθsgn(sin((k + 1)θ))dθ

=

∫ π

−π
e−ij(θ+2π/(k+1))sgn(sin((k + 1))(θ + 2π/(k + 1)))dθ

= e−2πij/(k+1)

∫ π

−π
e−ijθsgn(sin((k + 1)θ))dθ,

and since e−2πij/(k+1) 6= 1 for j = 1, . . . , k, it follows that∫ π

−π
e−ijθ sin((k + 1)θ)dθ = 0, j = 1, . . . , k.

This, together with the case where j = 0,∫ π

−π
sin((k + 1)θ)dθ = (− cos((k + 1)θ)/(k + 1))

∣∣∣π
−π

= 0,

implies that all the terms in (36) vanish, thus concluding the proof.

Given µ < L (note that, here µ and L are allowed to take negative values), we define

Ũk(η) := Uk

(
2η

µ− L

)
.

By substituting η for (µ−L)η
2 , we get the following corollary.

Corollary 1. Let p(η) ∈ Pk−1, then∫ L−µ
2

−L−µ2

p(η) sgn(Ũk(η)) dη = 0 (37)

We now use Corollary 1 to bound from below the best polynomial L1-approximation error w.r.t.
1/(η + α) over the interval [µ,L].
Lemma 8. Let p(η) ∈ Pk−1. Then, for any (L− µ)/2 < α we have∫ L−µ

2

−L−µ2

|p(η)− 1/(η + α)|dη ≥


√

2α+L−µ
2α+µ−L − 1√
2α+L−µ
2α+µ−L + 1

k

.

Proof First, note that the following two inequalities∫ L−µ
2

−L−µ2

|p(η)− 1/(η + α)|dη ≥
∫ L−µ

2

−L−µ2

(p(η)− 1/(η + α))sgn(Ũk(η))dη = −
∫ L−µ

2

−L−µ2

1/(η + α)sgn(Ũk(η))dη

∫ L−µ
2

−L−µ2

|p(η)− 1/(η + α)|dη ≥
∫ L−µ

2

−L−µ2

(p(η)− 1/(η + α))sgn(−Ũk(η))dη =

∫ L−µ
2

−L−µ2

1/(η + α)sgn(Ũk(η))dη
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hold due to orthogonality condition (37) and the fact that sgn(·) is odd. Therefore,∫ L−µ
2

−L−µ2

|p(η)− 1/(η + α)|dη ≥

∣∣∣∣∣
∫ L−µ

2

−L−µ2

1/(η + α) sgn(Ũk(η))dη

∣∣∣∣∣ .
Substituting µ−L

2 η for η, yields∣∣∣∣∣
∫ L−µ

2

−L−µ2

1/(η + α) sgn(Ũk(η))dη

∣∣∣∣∣ =

∣∣∣∣∣
∫ −1
1

1
µ−L
2 η + α

sgn(Uk(η))
µ− L

2
dη

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

−1

1
µ−L
2 η + α

sgn(Uk(η))
L− µ

2
dη

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

−1

1

−η + 2α
L−µ

sgn(Uk(η))dη

∣∣∣∣∣ (38)

Now, plugging in the definition of Uk(η) (see (35)) and applying Lemma 11, we get

∫ 1

−1

sgn(sin(k arccos(η)))

u− η
dη ≥

1−
√

u−1
u+1

1 +
√

u−1
u+1

k

for any u > 1. Using this inequality with (38) where u = 2α
L−µ , yields

∫ L−µ
2

−L−µ2

|p(η)− 1/(η + α)|dη ≥


√

2α+L−µ
2α+µ−L − 1√
2α+L−µ
2α+µ−L + 1

k

.

A.5.3 Approximation w.r.t. L2

Lemma 9. For any α ∈ (−1, 0),

min
s(η)∈Pk−1

∫ 1

0

η(s(η)η − 1)2ηαdη ≥ 1

e2(k + 2)2(α+1)+2

Proof Rephrasing it equivalently as

min
s(η)∈Pk−1

∫ 1

0

(s(η)η
3+α
2 − η

1+α
2 )2dη,

shows that this problem can be seen as a best L2-approximation for η
1+α
2 in the k-dimensional space

spanned by gi = ηi+
1+α
2 , i = 1, . . . , k (accordingly, g0 = η

1+α
2 ). By [2, Equation (3), p. 16], we

have

min
s(η)∈Pk−1

∫ 1

0

(s(η)η
3+α
2 − η

1+α
2 )2dη =

detG(g0, g1, . . . , gn)

detG(g1, . . . , gn)

where G(·) is Gram matrix (whose entries are the inner products of its arguments). First, note that

〈gi, gj〉 =

∫ 1

0

ηi+
1+α
2 ηj+

1+α
2 dη =

∫ 1

0

ηi+j+1+αdη =
1

i+ j + α+ 2
, i, j = 0, 1, . . . , k

Thus,

G(g1, . . . , gk)i,j =
1

i+ j + α+ 2
,

G(g0, . . . , gk)i,j =
1

i+ j + α
.
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It follows that both matrices can be expressed as a Cauchy matrices, that is

G(g1, . . . , gk)i,j =
1

xi − yj
,

G(g0, . . . , gk)i,j =
1

ui − vj
.

where xi = i + α + 1, yj = −j − 1, i, j ∈ [k] and ui = i + α, vj = −j, i, j ∈ [k + 1]. The
determinant of Cauchy matrix A defined by sequences wi, zj one has

detA =

∏k
i=2

∏i−1
j=1(wi − wj)(zj − zi)∏k
i=1

∏k
j=1(wi − zj)

Hence,

detG(g0, g1, . . . , gk)

detG(g1, . . . , gk)
=

∏k+1
i=2

∏i−1
j=1(ui−uj)(vj−vi)∏k+1

i=1

∏k+1
j=1 (ui−vj)∏k

i=2

∏i−1
j=1(xi−xj)(yj−yi)∏k

i=1

∏k
j=1(xi−yj)

=

∏k+1
i=2

∏i−1
j=1(i−j)(−j−(−i))∏k+1

i=1

∏k+1
j=1 (i+α−(−j))∏k

i=2

∏i−1
j=1((i+1)−(j+1))((−j−1)−(−i−1))∏k
i=1

∏k
j=1((i+α+1)−(−j−1))

=

∏k+1
i=2

∏i−1
j=1(i−j)

2∏k+1
i=1

∏k+1
j=1 (i+j+α)∏k

i=2

∏i−1
j=1(i−j)2∏k

i=1

∏k
j=1(i+j+α+2)

=

∏k+1
i=2

∏i−1
j=1(i− j)2∏k+1

i=1

∏k+1
j=1 (i+ j + α)

∏k
i=1

∏k
j=1(i+ j + α+ 2)∏k

i=2

∏i−1
j=1(i− j)2

=

∏k
j=1(k + 1− j)2

∏k
i=1

∏k
j=1(i+ j + α+ 2)∏k+1

i=1

∏k+1
j=1 (i+ j + α)

=

∏k
j=1(k + 1− j)2

∏k
i=1

∏k
j=1((i+ α+ 1) + (j + 1))∏k+1

i=1

∏k+1
j=1 ((i+ α) + j)

=

∏k
j=1(k + 1− j)2

∏k+1
i=2

∏k+1
j=2 ((i+ α) + j)∏k+1

i=1

∏k+1
j=1 ((i+ α) + j)

=

∏k
j=1(k + 1− j)2∏k+1

i=1 (i+ α+ 1)
∏k+1
j=2 (1 + α+ j)

=

∏k
j=1 j

2∏k+1
i=1 (i+ α+ 1)

∏k+1
j=2 (1 + α+ j)

=
(α+ 2)

∏k
j=1 j

2∏k+1
i=1 (i+ α+ 1)2

= (α+ 2)

 k∏
j=1

j

j + α+ 1

2

1

(k + α+ 2)2

To estimate the middle term, we apply arguments similar to the integral test for infinite series. First,
note that,

k∏
j=1

j

j + α+ 1
= exp

(
k∑
i=1

ln
j

j + α+ 1

)
.
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Now, since for any α ∈ (−1, 0), it holds that x 7→ ln x
x+α+1 is a monotone decreasing function (over

x 6= α), it holds that

k∑
i=1

ln
j

j + α+ 1
≥
∫ k+1

1

ln
x

x+ α+ 1
dx =

(
x ln

x

α+ x+ 1
− (α+ 1) ln(α+ x+ 1)

)∣∣∣∣k+1

1

Hence,
k∏
j=1

j

j + α+ 1
≥ exp

(
(k + 1) ln

k + 1

α+ (k + 1) + 1
− (α+ 1) ln(α+ (k + 1) + 1)− ln

1

α+ 2
+ (α+ 1) ln(α+ 2)

)

=

(
k + 1

k + α+ 2

)k+1

(k + α+ 2)−(α+1)(α+ 2)α+2

≥
(

k + 1

k + α+ 2

)k+1

(k + α+ 2)−(α+1)

=

(
1− α+ 1

k + α+ 2

)k+1

(k + α+ 2)−(α+1)

=

(
1− 1

k+1
α+1 + 1

)k+1

(k + α+ 2)−(α+1).

Now, by the following standard inequality

1− 2

x+ 1
≥ exp

(
−2

x− 1

)
,

we get,

1− 1
k+1
α+1 + 1

= 1− 2

(2 k+1
α+1 + 1) + 1

≥ exp

(
−2

(2 k+1
α+1 + 1)− 1

)
= exp

(
−1
k+1
α+1

)
= exp

(
−(α+ 1)

k + 1

)
therefore,

(α+ 2)

 k∏
j=1

j

j + α+ 1

2

1

(k + α+ 2)2
≥ (α+ 2)

(
exp

(
−(α+ 1)

k + 1

)k+1

(k + α+ 2)−(α+1)

)2
1

(k + α+ 2)2

= (α+ 2) exp (−2(α+ 1)) (k + α+ 2)−2(α+1)−2

≥ (α+ 2) exp (−2(α+ 1)) (k + 2)−2(α+1)−2.

Lastly, since

(α+ 2) exp(−2(α+ 1)) ≥ exp(−2),

for any α ∈ (−1, 0), we get

min
s(η)∈Pk−1

∫ 1

0

η(s(η)η − 1)2ηαdη ≥ 1

e2(k + 2)2(α+1)+2
.

A.6 Technical Lemmas

Lemma 10. For any u ≥ 1,

u−
√
u2 − 1 =

1−
√

u−1
u+1

1 +
√

u−1
u+1

.
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Proof We have,

1−
√

u−1
u+1

1 +
√

u−1
u+1

=

(
1−

√
u−1
u+1

)2
1− u−1

u+1

=
(u+ 1)

(
1−

√
u−1
u+1

)2
u+ 1− (u− 1)

=

(√
u+ 1−

√
u− 1

)2
2

=
u+ 1− 2

√
(u+ 1)(u− 1) + (u− 1)

2
= u−

√
u2 − 1

Lemma 11. For any u > 1,

∫ 1

−1

sgn(sin(k arccos(η)))

u− η
dη ≥

1−
√

u−1
u+1

1 +
√

u−1
u+1

k

.

Proof First, note that the function

γ(x) := ln
x+ 1

x− 1
− 1

x

takes non-negative for any x > 1, as

γ′(x) =
x− 1

x+ 1

x− 1− (x+ 1)

(x− 1)2
+

1

x2
=
x− 1

x+ 1

−2

(x− 1)2
+

1

x2

=
−2

(x+ 1)(x− 1)
+

1

x2
=
−2

x2 − 1
+

1

x2

≤ −2

x2 − 1
+

1

x2 − 1
=
−1

x2 − 1
< 0

and limx→∞ γ(x) = 0. Therefore, by using identity (see Section F.31. in [2]), we get∫ 1

−1

sgn(sin(k arccos(η)))

u− η
dη = 2 ln

(u+
√
u2 − 1)k + 1

(u+
√
u2 − 1)k − 1

≥ (u−
√
u2 − 1)k =

1−
√

u−1
u+1

1 +
√

u−1
u+1

k

,

where the last equality is due to Lemma 10.

Lemma 12. Let L > µ > 0, c > 0 and α ≥ 0. Then

ε ≥ c


√

L+α
µ+α − 1√
L+α
µ+α + 1

k

=⇒ k ≥ 1

2

(√
L+ α

µ+ α
− 1

)
(ln(c) + ln(1/ε))

Proof Note that the function

δ(x) = ln

√
x− 1√
x+ 1

+
2√
x− 1

takes non-negative values for x > 1, as

δ′(x) =

√
x+ 1√
x− 1

0.5x−1/2(
√
x+ 1)− 0.5x−1/2(

√
x− 1)

(
√
x+ 1)2

− 1

(x− 1)
√
x− 1

=
1

(x− 1)
√
x
− 1

(x− 1)
√
x− 1

< 0
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and limx→∞ δ(x) = 0. Thus, we obtained the following inequality
√
x− 1√
x+ 1

≥ exp

(
−2√
x− 1

)
, x > 1,

yields

c


√

L+α
µ+α − 1√
L+α
µ+α + 1

k

≥ c exp

 −2k√
L+α
µ+α − 1

 .

Hence,

ln ε ≥ ln(c) +
−2k√
L+α
µ+α − 1

=⇒ 2k√
L+α
µ+α − 1

≥ ln(c) + ln(1/ε)

=⇒ k ≥ 1

2

(√
L+ α

µ+ α
− 1

)
(ln(c) + ln(1/ε))
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