A Proofs

A.1 Proof of Theorem[]

Proof According to the way A generates iterates, we have

lw® (1) — w*(n)| = [sx(n) — 1/nl, 7€ |u L]

for some polynomial s (n) of degree at most k. By Lemma@ we have

k
L— -1
min |ls() — > > Lot ()
s(n)€Px Ui Loo([,L]) 2L/.L \/E—f—l
where k = L/p. Thus,
k
1 L—p (-1 L-
(k) o > : _‘ > M( ) > #(
w w min ||s w —_—
|[w'™ (n) (] 2 min, (1) iy > 2B \Vr1 2 (W (=7 N

Now, since f,, is u-strongly convex, we have,

F® () = f(w*(n))] g\w(k)(ﬂ) —w*(n)?

2<|w =z <\/E+1> )
IO A AV A
(i) ()

Hence, by Lemma|T2] the minimal number of iterations required to get an e-optimal solution is at
least

vV

\%

im (m’; +21In (|w*(n)|L_“) + ln(l/e)) :

2L
]
A.2  Proof of Theorem 2] - Finite Sums
When dealing with multivariate polynomials it is convenient to define multi-indices i = (41,...,4,) €

NG , where N} is the set of all n-tuples of non-negative integers. In addition, with a slight abuse of
notation, we define

P} := span {ni | ieNj, [i| <k}, (20)

where we put o' = n}' ---nir and |i| = i; + -+ + i,. In words, P} is the set of all multivariate
polynomials over n indeterminates whose total degree (the maximal sum of the degrees over all
terms) is less than or equal to k. Lastly, given s(n) € P} we define

L—p L—pu L—p L—up

51(771):5 - 9 [ y T s T Ty ey 9

7’th entry

This notation will come in handy in the main proof.
The lemma below describes the functional form assumed by iterates produced by oblivious CLIs.

Lemma 1. When applied on with suitable first-order and coordinate-descent oracles (as defined
in[I4)), the coordinates of iterates produced by oblivious stochastic CLIs form multivariate polynomials
in 1) with random real coefficients whose total degree does not exceed the iteration number.
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Proof Let A be an oblivious stochastic CLI, and suppose we apply A on the class of problems
parameterized by 7, using both first-order and coordinate-descent oracles as defined in[T4] We use
mathematical induction to show that for any £k = 0, 1, .. ., the coordinate of the k’th iterate produced
by such process can be expressed as a distribution over multivariate polynomials in 17 of degree at
most k.

(0) .

As the first iterate w, ’ is allowed to depend only on L, i« and n, the base case is trivial. That is, the

coordinates of wz(» ) form distributions over R = Py which do not depend on 7.

For the inductive step, assume that any coordinate of w( )( ) can be expressed as a distribution over
Pp. Itis easy to see that for any WZ( )( ), the answers of both oracles,

First-order oracle: O(w;, *). A, B ,C,J) = A(Qn, W, wik) q) + Bw(k) +c,
Coordinate-descent oracle: O(w Z(k) i,7) = ( (1/(Qm)“)ei(Qm)i7*) W — ql/(Qm)“el7

form a distribution over P!, ;, as all the random quantities involved in the expressions
(A, B, c,i and j) do not depend on 7, ...,n, (due to obliviousness) and the rest of the terms
I, Qn,;, 1/(@7]])117 (Qm)z «»€;,q; and q) are either linear in 7); or constants. Lastly, w (kﬂ) are
computed by simply summing up all the oracle answers, and as such, form again distributions over
P ]

Proof [Theorem Let A be an oblivious stochastic CLI. By Lemmathe first coordinate of wgk) (n)
(the point returned by the algorithm at the £’th iteration) when applied on class of problems
distributes according to some distribution D over P;}. Thus, by Yao principle, since each polynomial
in (P}*)9 represents a single deterministic algorithm, we have

(k) w* . .
Ina E W) > min E, . S - W 21
maxE ., yopllWi (m) — W (n)]| Z i, En u)lls(n) ()|l 21

where U (H) denotes a distribution over 7 which corresponds to first drawing j ~ U ([n]) at random,
and then setting the coordinates of 7 as follows

mi~ UL = w)/2,(L—w)/2) i=j
I . (22)
N=————=> i F
Furthermore, it is easy to verify that the corresponding minimizers of (I2) are
1 T
. 1 & Ru Ry
W(nlv"'vnn)(ZQm) q= " 703"'70
n i=1 \/i <L+M + = Zz 1 Uz) \/§ (# + % 21:1 77i>
(23)
We now have,
S(n)fgggg)d En~uolis(n) —w*(n)| = S(n)rgggn)d Bt (i) By, oy (- 252 22y [I8(0) — w7 ()]
1 Ry
> — min E Low Louyy (85(7) -
n s(n) epnz ;i ~U([— D i(03) = \/5(%21':1771'—"_#)
Ry . 1
= — min E i L—n L—up |S;(n;) —
\/ﬁs(n)epgjgl nj L{([ PR} ]) J(n]) ’I’]]—(’I’L—]_)%-’-TLL%
n L—p
Ry . / 2 1 1
= —— min si(nj) —
\/§s<n>epi‘; - o) nj—(n =154 +nigt | L—p
n Lg“

_ B Z/ s:(n;) — 1
V2(L — ) stmepy o= ) 1o T = (n = 1)Est 4 pLde

(24)
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where the first inequality follows by focusing on the first coordinate of s(n) — w*(n). Now, set
a=—(n- 1)% + n% and note that

20+ L—p _ 2(7(n71)%+n#)+L7u: Ii—1+1.
2a+p—L 2(—(n— )52 4ty 4 — L n
Thus, by Lemma(using the same value for « and noting that o > (L — ) /2) yields
kj
Ly VEL+1-1
/ dnj > | T 2=—— .
-5 VEL+1+1

where k; denotes the degree of s;(n;). Plugging in this into Inequality we get

k;
n [ k—1

(k) min —

maxE_ ) w,(n) —w*(n)|| > ———— S
neH Wi (n)ND” 1 ( ) ( )“ \/i(L—,u) S("I)E'P,?’I’LJ,:1 /%+1+1

Since u — p" is a decreasing and convex function for any 1 > p > 0, we have

— k; — Lk
nRu 1 & \/KT"'I_l nRu \/'QT'*‘l_1
—= 7 in *Z — >———— min |[+—em—evu-——
VAL =) smerp na= | feml g4 VAL =) smerp | fem1 g 4q

= k/n
nRu \/HTJrlf1
>
VAL =)\ fet 141

where the last inequality is due to the fact that s(n) € P} which implies that 2;21 k; < k. Finally,
we have,

k * I k *
maxE ) [Fn (W1 (1)) = F(w* ()] 2 max oot Wi (m) = w ()]

) k/n
I nRu Vo T 1-1

2\ V2(L—m) \ | /e=2 4141
- 2k/n

_u( nRu )2 VA

VAL =) et

2
where the first inequality follows by the p-strong convexity of I}, and the second inequality follows
by Jensen inequality. Using Lemma[I2] we get that the iteration complexity of A is at least

1
nj — (n— 1) F58 + nEgk

sj(n;) —

Y

1 I nRu
1 ( (ks — 1)) (nf+ 2t In(1/e)).

This, together with Theorem [5| below (through which we establish the Q(n) part), concludes the
proof.

‘We bound from below the number of iterations required to obtain a non-trivial accuracy.

Lemma 2. Let j € [n], let ;1 € H be a parameters vector whose all coordinates ar —% and
let m; o € H be a parameters vector whose all coordinates are —%, except for the j’'th coordinate
which we set to be % If Kk > 3, then

2R
n+2°

W™ (1) = w™ ()] >
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Proof By Equation we have

Ru Ru
Iws () = w () | = V2| ———F— 1
VE(EE A o)) VR (B4 LT (m))
1 1
i =T =i v e ey
2 2 2 2n 2n
Ltp _ (n=1)(L—p) | L—p _ L4p | L—p
=R 2 2n 2n 2 2
: (Bie — Lge) (Lo — oo | Loe)
2 2 2 2n 2n
_p| T L
L+M_ (n—l)TEL—u) + %
L—p
=2R n
Ly B | T
1
=2R
ntt —(n—1)+1
1
=2R |
2R
> a0
T n+2
where the last inequality follows from « > 3. ]

Theorem S. The iteration complexity of any stochastic optimization algorithm (not necessarily CLI)
which gathers information on Iy, (with k > 3) only by means of incremental oracles, i.e., oracles
which upon receiving query return an answer which depends on not more than one individual function,
is at least n.

Proof Let A be a stochastic optimization algorithm. According to Yao’s principle, we can bound from
below the e-optimality of A after k < n iterations by estimating the e-optimality of any deterministic
algorithm w.r.t. to distribution D(#) over H defined by: draw j € [n] and set  to be n; ; or m; 5 as
defined in Lemma[2|w.p. 1/2. Then,

max E4[F, (w® V= F, (w*(n.,
S o AL, (W (00)) = Py (W7 ()

> min E, ~p() [Fn(w® (1) — Fy(w™ (0))]

deterministic algorithms

: H *
> min ]E"ND(H)§||WUC) (n) —w* (n)|?

deterministic algorithms

S

(&, [ ()~ w* () )

= min
2 deterministic algorithms

4 ()

where the last inequality follows from Lemma[2] Thus, for sufficiently small €, one must perform at
least n iterations in order to obtain an e-optimal solution. |

A.3 Proof of Theorem 3]- Smooth Functions

The following notation

Pi = {p € Pi|p(0) =0} (25)
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will come in handy in subsequent proofs.

Lemma 3. When applied on
n
g5(x) = 3 [XII" = Rne[x, n € (0,L] (26)

with a first-order oracle (as defined in[IQwith n = 1), the coordinates of iterates produced by
oblivious stochastic CLIs whose is initialization iterate is XEO) = 0 form polynomials in n with
random real coefficients which vanishes at n = 0 and whose degree does not exceed the iteration

number.

Proof Let A be an oblivious stochastic CLI, and suppose we apply .4 on the class of problems
(26) parameterized by 7, using a first-order. We use mathematical induction to show that for any
k = 0,1,..., the coordinate of the k’th iterate produced by such process can be expressed as a
distribution over Pj,.

As the first iterate XEO) is assumed to be zero, the base case is trivial. For the inductive step, assume
(k)

that any coordinate of x; "~ can be expressed as a distribution over Py. It is easy to see that for any

xz(-k), the answers of the first-order oracle,
First-order oracle: O(xgk); A,B,c) = A(nxgk) — Rne1) + Bxgk) +c,

form a distribution over 77,8 11 as the random quantities involved in the expressions (A4, B and c) do

not depend on 7 (due to obliviousness) and the rest of the terms (1 and Rne;) are homogenous in 7).

Lastly, ngﬂ) are computed by simply summing up all the oracle answers, and as such, form again

distributions over 77,8 1

Proof [Theorem [3]] Let A/ be an oblivious stochastic CLI and let o € (—1,0). Our derivation of
lower bounds for stochastic CLIs is established via Yao principle. Fix some k € {0,1,...}. By

Lemrna ng) (n) distributes according to some distribution D over (P )?. Thus, by Yao principle,
since each vector of polynomials in (P} )? represents a single deterministic algorithm, we have

(k) * ; *
E — > E,. — )
e B (901 (1)) = 90 (7 ()] Z ohin By £(0,L))[9n(8(1) = g (x* ()]

where £([0, L], ) (abbr. £) denotes a distribution over (0, L] with a probability density function

~ (a+1)p”
pe(n) = T Lo+l
‘We have,
min  E,egy(s(n) — gn(x*())] > min Eye [nlls(n) —x*(n)]?]
s(n)€(Pr) s(n)EPy,
> min E,e [n(s(n) — R)?
s(N)EPK
= R® min E,.¢ [n(s(n) —1)?]
s(n)EP
R*(a+1) /L )
="~ "7 min s(n) — 1)*n“d
Lert i) n(s(n) —1)"n"dn
2 1 1
S B0t i [ Gl - 1L L dg
Lott smyepr Jo

1
— Lo+ 1) min [ n(sn) - 17 dy
s(n)€Pr Jo
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where the first inequality follows by the fact that h,, is n-strongly convex and the second inequality
follows by focusing on the first coordinate of s(n) — x*(n). Invoking Lemma 9] yields

1 1
LR*(ar+1) min / n(s(n) —1)°n™ dn = LR*(a+ 1) min / n(s(n)n —1)%n"dn,
s(m€EPK JO s(M€EPr-1.Jo
LR*(a+1)
— 62(l€ + 2)2(a+1)+2'
Thus, in this case the iteration complexity is bound from below by

2(a+1)+2 LR2(a —+ 1)
V 2. 2.
ece

A4  Proof of Theoremd]- Regularized Empirical Loss Minimization

For ease of presentation, we assume that ||x;|| < 1, ¢; take non-negative values and ¢;(0) < 1.
Furthermore, throughout the proof we assume that n is even and that L = 1 (the proof for odd n and
general L > 0 holds mutatis mutandis). First, we give an explicit definition of the parametrized set of
functions we will be focusing on, as well as the oracles under which our bounds hold. We denote by
H the set of all (¢)1, ..., wn/g) € R™/2 such that all the entries are 0, except for some j € [n/2], for
which ¢; € [-7/2,7/2]. Now, given ¢ € H, we set

1 . 1
oi(w) = §(w+ 1)? = ¢i(u) = iuz —u
= Jeos(Wirny a)ei +sin(ir)2)eir iisodd
P e; ow.
In which case, the corresponding dual is:
1 2 1 T 1 2
D = — --1 Xy 27
w(@) = o llal’ = ~1Ta+ o [ Xyai @7
where
XU’ = (Xw}l, e ’X’d”’ﬂ) .
Equivalently
1 +/1 1 T 1.+
Note that
1+ Tln ﬁ sin (1)
1 1 ﬁ sin(1) bt ﬁ 1 1
Qu= T+ 13X Xy =~ Ao msin(ve)
n n n 5o sin(y) 14 5

Note that, all the eigenvalues of (), are bigger than 1. Therefore, Dy, is 1-strongly convex. We
assume that the oracles at the algorithms’ disposal are the dual RLM oracles defined in (I9),

Lastly, we will need the following definitions
p1(m1,m2, -3 Mn)
,P]?’d(nlv’r]Qv"'vn’n) = plwvadePI?a 6p1++8pd§k
pd(nla 2, ... 7”%)

(28)
p1(siny, sints, . .., siny,)
ka1, Y2, ) = : P1s--Pd € Py (29)
pa(sinin, sins, ..., siny,)

15



to ease notation in subsequent proofs (where 0p denotes the total degree of p and P} is defined
in @])). Thus, QF contains d-dimensional vectors whose entries are n-multivariate polynomials
expressions in sin ¢y, . . ., sin v, such that the sum of the degrees of the d-polynomials does not
exceed k. In addition, given t(v)) € Q}. 4 we define

ti() =t10,...,0, o ,0,....0|, Vield.
—~—

i’th entry

As usual, we start by stating the functional form assumed by iterates produced by this sort of
optimization algorithms.

Lemma 4. When applied on (27) with a dual RLM oracle (as defined in [19), the coordinates
of iterates produced by oblivious stochastic CLIs form n multivariate polynomials expressions in
siny, ... ,sin, ;o with random coefficients, such that the sum of the degrees of these polynomials
does not exceed the iteration number.

Proof Let A be a oblivious stochastic CLI, and suppose we apply .4 on the class of problems
parameterized by ), using dual RLM oracles as defined in We use mathematical induction to
show that for any £ = 0,1, ..., the coordinate of the k’th iterate produced by such process can
be expressed as a distribution over polynomial expressions in sin i, ... ,sin, ;, whose sum of
degrees is less than or equal k.

(0)

i

(0)

As the first iterate «; ~ is allowed to depend only on n and A, the base case is trivial. That is, o,

forms a distribution over R"™ = Qg/nQ which does not depend on sin ¢y, . .., sin ¢y, 5.

(k)

For the inductive step, assume that a;”” can be expressed as a distribution over Qz/f . Itis easy to

see that for any az(-k) , the answer of the dual RLM oracle

1
(’)(agk); t,0) =a+ teZ(Qwagk) - gl)eg, teR,j € [n],

W (7L W, L
Oles™:6) <I (Qw)uee(Qd’)Z’*)a Jrn(Qw)ueZ

are distributions over QZfl .,» as the only random quantity involved in the expressions ¢, £ does not de-
pend on 9 (due to obliviousness), the only linear factor in sin ¢ (i.e., e/ (Qyo—=1)ep, €4(Qjy)r,)

"touches’ agk) at exactly one entry and the rest of the terms (1/n1,1,1/(Q; ,)ee and n) are constants
(k+1)

) are computed by simply summing up all the oracle answers, and as

. . . . 2
such, form again distributions over QZJ/rl n- n

(w.r.t. siny ). Lastly, o

Proof [Theorem[4]]

Let A be a oblivious stochastic CLI. By Lemmathe coordinates of agk) (the point returned by the
algorithm at the k’th iteration) when applied on the class of problems distributes according to

some distribution D over (Qz/ 2)”. Furthermore, it is easy to verify that the corresponding minimizers

of (27) are

. 1 1 1 1
@ (1/1) = ()\n+1 7 An+1 7 An+1 ? An+1 ycce

ntl o Lgin(yy) 225 + Losin(ypy)” 2250 + Losin(ypy) " 225 4+ L sin(vy)
(30)

agk) (7)) distributes according to some distribution D over QZ/HQ . Thus, by Yao principle, since each

polynomial in Qz/nz represents a single deterministic algorithm, we have

(k) ok . ok
max B o ) pllen (V) — e (¥)] Zt(wr)léngl’;/?]Ewm(H)Ht(w a’(y)] G
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where U(H) denotes a distribution over H which corresponds to of first drawing j ~ U([n/2]) at
random, and then drawing v; according to distribution defined by the p.d.f. py, (¢) = cos(v))/2 over

[—7/2, /2] (for i # j we set ¢; = 0 ). We now have,

min By It(9) — ™ ()|

t(y)eQ)?
= t(d’r)l.lelgn/2 EjNM([n/g])E¢jNz,{([—w/Q,ﬂ-/Q]) ||t(¢) - a*("/’)H
9 n/2
== min By gy —n/2,x2)[t(¥) — (¥
n j;t(lp)EQZf '
9 n/2 1
> EZ (1/}1)%1191”/2 ijwu([fw/z,w/z]) tj(¢j) - An+1 + Sm(w )
>\ J
1 n/2 /7r/2 (¢ ) 1 dw
> — min ti(;) — : cos P; dip;
n o wweep2Son | BE S sin(yy) |
n/2 1
1 1
= - min / sj(n;) — fvEn dn;
Dspreer/? )1 + 37
n/2 1 1
=\ min () — ~————| dn; 32
;S(d’)egz/f/ ) = 5 T .

where the first inequality follows by focusing on the j’th coordinate of s(¢)) — a*(1)) in each
summand. Now, set « = 1 + An, L = 3, = 1 and note that

2a+L—u_\/2)\n+4_\/)\n+2 \/+1
204+pu—L 22

Thus, by Lemma using the same value for « and noting that « > 1 = (L — p)/2) yields

kj
1 Ve +1-1
/ dnj > | ———
-1 Vs +1+1

where k; denotes the degree of s;(n;). Plugging in this into Inequality we get

kj
n/2 /2411

(k) % . An
maxE o).\ ol (¥P) —a* ()] > A min Z S )
PeEH 1 () 5("&)69:,/712]‘:1 /%4—1_'_1

Since u — p" is a decreasing and convex function for any 1 > p > 0, we have

2 ki 5 250k
W2 E+1-1 Ve +1-1
A min Z _— >nA/2 min —
sel i /& +1+1

sj(n;) —

An+1+n;

s¥)€Q’ \ \/ 2 +1+1
2
V411
Zn)\/z 1 )‘ni

min

s@eQi? \ /2 +1+1

2k
n
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where the last inequality is due to the fact that s(v) € Qz/nz (sin ) which implies that 37, k; < k.
Finally, we have,

k . Lo .
maxE o) pDy(er” (1)) = Dyl @))] 2 maxE ) o3 led” () - o ()]

1 2

k *
=2 (geaﬁ]EaY")(w)wag ') -« (1b)||)

2k \ 2

v
Zhe
_|_
AR
|
—
3
\

1
s | nA/2 min | YFYV—m—
2 sweql \ /2 +1+1

where the first inequality follows by the 1-strong convexity of D, and the third inequality follows by
Jensen inequality. Using Lemma[T2] we get that the iteration complexity of A is at least

8V A

1 2n< n2\?
In

- ot 1n(1/e)> .

Lastly, we bound from below the number of iterations required to obtain a non-trivial accuracy.

Lemma 5. Let j € [n], let v, ; € H be a parameters vector whose all coordinates are —m /2 and
let My, o € H be a parameters vector whose all coordinates are —m /2, except for the j’th coordinate
which we set to be 7 /2. Then

2V2

o (1)~ & (W) = 15

Proof By Equation (30) we have

An An An +)\n
An
=vV2[(1— —
< )\n+2)
_2v2
A +2°

Theorem 6. When applied on ,the iteration complexity of oblivious stochastic CLI algorithms
equipped with a dual RLM oracle D, is at least n/2.

Proof Let A be a stochastic optimization algorithm. By Lemma@the coordinates of agk) (the point
returned by the algorithm at the k’th iteration) when applied on the class of problems distributes

according to some distribution D over (QZ/ 2)”. By Yao principle, since each polynomial in QZ/HQ
represents a single deterministic algorithm, we have

(k) ok : ok
B Eu o108 )~ @@ 2| iy Bypul®) @ @] G

where D(H) denotes a distribution over 7 which corresponds to the process of first drawing j ~
U([n/2]) at random, and then set 1 to be 1, ; or 1), , as defined in Lemma S| with equal probability.

18



Now, for k < n/2, there exists some j € [n/2] such that t(¢/) does not depend on ;. This yields,
]EA[ij,i(a(k) (d’gi)) - Dz/)j,i(a* ("ﬂ“))]

min EwND(H) [D"l’j,i (a(k) (wjﬂ)) - D"/’j,i(a* (’lpjﬂ))]

" deterministic algorithms

max
{;,:l5€ln/2],ic2]}

1
> i Nea™® (. ) — a* (. ) |12
- determinigilirallgorithms EWND(H) 2 ||(X (Q/)J’l)) @ (1/]]’1) H
1 2
> = . (k) o K o )
-2 determinirsﬁc}l'jlgorithms (E¢ND(H) Ha (¢'7’Z)) @ (w'j’z) ||

2
Sl 2v/2
“2\n(n+2)) "’
where the last inequality follows from Lemma 5] Thus, for sufficiently small €, one must perform at
least n/2 iterations in order to obtain an e-optimal solution. |

A.5 Best polynomial approximation over closed intervals in R

In the following section we analyze the best polynomial approximation of some functions w.r.t. L,
L; and Ly norm, based on standard results from the approximation theory (see generally, Allan
Pinkus. On L1-approximation, 1989; Theodore J Rivlin. An introduction to the approximation of
functions, 2003; Ronald A DeVore and George G Lorentz. Constructive approximation, 1993; Naum
II’ich Akhiezer and Charles J Hyman. Theory of approximation. Translated by Charles J. Hyman.
New York, 1956; Isidor Pavlovich Natanson. Constructive function theory, 1964).

A.5.1 Approximation w.r.t. L.,

Lemma 6. Letb > a > 0 and ¢ > —a, then

k
/ b+c
2(b — (l) a+c -1

) 1
min S -
[hin, (n) n+cllp_ ey  (bF+at+20?—(b—a)? bre |
Proof We have,
min ||s() — = min ||s n T a—
s(mePs N+l (s  sMEP: 2 2 T el
in ||sn) 1
= min S -
s(n)EP asby) 4 biadic Loo([-1,1])
2 . b—a () b_Ta
= min S
b—as(ner. || 2 7 asby 4 brat2c Leo([=1,1))
Y OR—
- min ||s —
b—a s(neps ! n- % Loo([-1,1])
2 . ( ) + 1
= min (|—s(n T btfat2e
b—a s(mePr n— bt)%az Loo([-1,1])
2 . ) 1
= mmn - s\n) — —pr Tee
b—a s(ner. Ul % Lo ([-1,1])
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where we used the fact that P, is invariant under pre-composition and post-composition with linear
function in the second, fourth and fifth equalities. Now, since

b+a+2¢c
c>—-a — —— > 1,
b—a

combining Inequality [§] with Lemmal[T0} yields

1
min |1s(n) — —ro7o0 2
s(n)EPx n- b+b—J;2 Loo([-1,1]) (%)2 -1
b+a+2c_l k
1— _b-a -
1 b#;)a_t?c_"_l
= 3 (34
(b+a+2c) N brovze
b—a b-f;)a_—tgc_,'_l
Noting that
btat2e _b+a+2c—(b—a) a+c
%4—1 T b+a+4+2+b—a  b+c’
we get
bie _ 1 g
. 1 2 1 a+tc
min |[s(n) — > 5 5 .
SCIEP B AN Lh
Finally, since
2 1 2 (b—a)? B 2(b—a)
b—a <b+a+26)2_1 S b—a(bt+a+20)2—-(b—-a)2 (b+a+2c)?—(b—a)?’
b—a
we get
b+ F
&
. ( ) 1 2(b — a) atc 1
min ||s(n) —
swer |77 F el oy~ GFa+207 = (-0 aetl
]
A.5.2 Approximation w.r.t. 1
Let Uy (n) denote the k’th second order Chebyshev polynomial, i.e.,
sin((k + 1) arccos
Ui () = AL arecos ) (35)

V1-—n?
(To see why these are indeed polynomials, observe that Uy () are the derivative of Chebyshev

polynomials of first order scaled by a factor of 1/k). The zeros of Uy (n) are n; = cos(;47), j =
1,..., k. First, let us establish the orthogonality of sgn(Uj (1)) with respect to Pj,_1 over [—1, 1].

Lemma 7. Let p(n) € Pi_1, then

| pwsen@im) i =0

-1
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Proof We integrate by substituting n = ewz‘fw (= cos()),

1 —ePgem0 00 0 —if 0 —io 0 . _if
[ vy an = [ (*2) sgn (yk <+2>) (2) a6
—1 .
T (el e sin((k +1)8)\ [ie " — ie®
B /0 P ( 2 ) sen ( sin(6) ) ( 2 ) df
™ 6 —160 . —i0 . if
:/ p<e+€> sgn (sin((k +1)0)) (H> do
0 2 2
™ 6 —160 . 00+ if

—T

where the last equality is due to the fact that the integrand is an even function in 6. Lastly, since for
any j = 1,...,k we have
w27 /(k+1)

/ e~ 0sgn(sin((k + 1)6))dd = / e ?sgu(sin((k + 1)6))d6
- —m+27/(k+1)

= /7T e~ W02/ (k1)) gom (sin((k + 1)) (0 + 27/ (k 4 1)) )d6

= ¢ 2mij/(k+1) / e 0sgn(sin((k + 1)6))d6,
and since e =27/ (k1) oL | for j = 1,..., k, it follows that
/ e 0sin((k+1)0)dd =0, j=1,...,k.

—T

This, together with the case where j = 0,

/ﬂ sin((k + 1)8)d8 = (— cos((k + 1)6)/(k +1))| =0,

—T

implies that all the terms in vanish, thus concluding the proof. |

Given p < L (note that, here i and L are allowed to take negative values), we define

~ 277
U =Up | —— ).
k(1) k (,u — L)
(p—L)
2

By substituting 7 for 1 we get the following corollary.
Corollary 1. Let p(n) € Pj_1, then

L—p

/ o) sen(0(n)) i = 0 (37)

—u

We now use Corollary [I] to bound from below the best polynomial L;-approximation error w.r.t.
1/(n 4+ «) over the interval [, L].

Lemma 8. Let p(n) € Pr—1. Then, for any (L — p1)/2 < « we have

Lgu 2a+L—p 1 K
2a4+p—L
[ o = v+ apian > |V
-5 [2atl—p 4 q
2 2a4+p—L
Proof First, note that the following two inequalities
L—p L—p L—p
2 2 ~ 2 ~
/ L () = 1/(n+a)ldn = / o, w(n) = 1/(n + a))sgn(Uk(1))dn = —/ L, Y+ a)sgn(Ux(n))dn

—p
2

[ =y adn= [ -1+ a)sen(-Oumdn= [ © 1)+ apsen(@in)dn
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hold due to orthogonality condition and the fact that sgn(-) is odd. Therefore,

L—p

/_; 1/(n+ @) sgn(Us(m))dn

L—p

/_; Ip(n) — 1/(n+ a)ldn >

Substituting %n for 7, yields

L—p
2

[t s@utain = | [ g st

Bt a

1
1 L—p
= —— sgn(Uk(n dn
/—1“2L77+a U(n) =

1
1
| = st a9
_1—N+ j=—n
Now, plugging in the definition of Uy (n) (see (35)) and applying Lemmal[11] we get
k
L sgn(sin(k arccos(n))) 1- %
| e (Y
— u — u—1
! 7 L+
for any v > 1. Using this inequality with lb where u = % yields
k
% 2a+L—p 1
2a+p—L
[t - ey > [ Y2
—=F [204L—pn +1
2 2a+p—L
|

A.5.3 Approximation w.r.t. L,

Lemma 9. Forany o € (—1,0),

1
e2(k + 2)2(at1)+2

1
min / n(s(n)n — 1)*n*dn >
s(m€Pr-1.Jo

Proof Rephrasing it equivalently as

L 3+a e
win [ (st = 0
s(M€Pr-1Jo
shows that this problem can be seen as a best Lo-approximation for nlJ‘rTa in the k-dimensional space
spanned by g; = 77"'+HTQ, t=1,...,k (accordingly, go = nHTQ). By [2, Equation (3), p. 16], we
have
min
s(N)EPK-1

1
3ta 1ta . 9 detG(gOagla"'7gn)
s PR Pl dn =

where G(-) is Gram matrix (whose entries are the inner products of its arguments). First, note that

1 1
) = i+ i g :/ iitltag, - 1 i=0.1 k
(96, 95) /0 n Ui n= o Ut s SUEARURIEREE
Thus,
& Jig =
915+, 9k 2,]_i+j+a+27
1
G e
(g()a 7gk)z,] Z+]+O{
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It follows that both matrices can be expressed as a Cauchy matrices, that is

1
G(Qh cee agk)i,j =

G(907 cee »gk)i,j =

ui—vj'

where z; =i+ a+1,y; = —j—1,4,j € [kland u; = i+ o,v; = —3, i,j € [k +1]. The
determinant of Cauchy matrix A defined by sequences w;, z; one has

T, T (wi — w)) (25 — 2)

det A = - -
| Hj:1(wi - 7))

Hence,

T TT02) (i —wy) (v;—vi)
det G(QOaglv"'7gk) — Hk+l Hk+1(uL7’UJ)
det G(g1,...,9x) T T2 (i —a) (v —vs)

f1HJ 1(Ti—y;)
[T TIE21 i—d) (—i—(—9))
[ T (ita—(—4)
P I 1((z+1> G+D) (=i —1)—(—i—1))
1“1 _1 ((iFat1)—(—j—1))

[ Iz i(z 3)?
[T TIE Gti+a)

H,; QHJ 1(1 J)?
k TTE Gi+i+at2)

H’““H Wi =) TL TG+ +a+2)
HkJrlH’Hl( +j+a) Hz QHJ 1(2_3)
_ szl(’f“—j)?l_[f 1H§:1(i+3 +a+2)
[ TG+ + )
[y (k+1 =TT, [T (G a+ 1) + (G + 1)
[ TEA (G + ) + )
+1— )2 TLE, TIEE (G + o) + )
T T (G + a) + )
15y (k+1— )2
z+a+1)Hk+1(l+a+j)
I, 52
i+ a+ DI+ a+))
_ (a+2) 5, 52
I+ et 1)
k

J 1
= 2
(a+2) gﬁaﬂ (k+at2)?

[ (k

- Hk+1(

To estimate the middle term, we apply arguments similar to the integral test for infinite series. First,

note that,
k j k j
—_— ex lni .
H]+a+1 p(Z j+a+1>

i=1
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x

Now, since for any « € (—1,0), it holds that z — In TFoT 1 is a monotone decreasing function (over
T # «), it holds that

k ] k+1 2 2 k+1
ZIH%Z/ In——dzx = (xln—(a+1)ln(a+x+l)>

P jta+1 1 r+a+1 at+z+1 1
Hence,

k .
H]>exp<(/€+1)lnk+l—(Oz+1)ln(o¢+(/€+1)—|—1)—ln ! —|—(oz—|—1)ln(oz—|—2)>
j+a+1— a+(k+1)+1 a+2

j=1

k+1
k+1
~(rrag)  Grar e

k+a+2
Ea1 \Ft
> (_r - k 2—(oc+1)
(k+a+2) (k+a+2)
k+1
a+1

=(1-——— k 2)~(a+1)

( k+a+2> (k+a+2)

1 k+1
=|1- k+a+2)~ @D,
(omg) e

Now, by the following standard inequality

2 -2
1-— > exp ,
rz+1 r—1

we get,
! 1 2 > —2 —1 (—(a + 1))
T REL g T e Rl oy o ZSXP | o oy o =exXp | —/— =exp| ——=
R NC = R =2} ki
therefore,
k i k+1 2
! : —(a+1) ~(ectD) 1
? Z (a+2 — k 2)~ (@ .
o j1;[1j+0‘+1 Eratop =" )<exp< k+1 (kta+2) (k+a+t2)?2
= (a+2)exp(—2(a+1)) (k + a+2) 22
> (a4 2)exp (—2(a + 1)) (k + 2)~2(@FD=2,

Lastly, since
(a+2) exp(=2(a+ 1)) > exp(-2),
for any a € (—1,0), we get

1
e2(k + 2)2(a+D+2”

1
min / n(s(mn —1)*n%dn >
s(M€Pr-1Jo

A.6 Technical Lemmas

Lemma 10. Forany u > 1,

24



Proof We have,

Y Y = R R R = R e BV 1

u—1
ut+1—2y/(u+1)(u—1)+ (u—1) 3
- =u—+Vu—1
2
Lemma 11. Forany u > 1,
o\
1 . 1— u—21
/ sgn(sin(k arccos(n)))dn > ut1
_ U — u—1
! 7 L+
Proof First, note that the function
r+1 1
=1 - —
(@) =ln—— ——
takes non-negative for any x > 1, as
oy r—le—-1-(z+1) 1 z-1 -2 1
7(x)—x+1 (x —1)2 +x2_x—|—1(x—1)2+x2
B -2 n 1 -2 n 1
(e D(x—-1) 22 22-1 a2
-2 1 -1

< + 0

= <
—zx2-1 22-1 22-1

and lim,_, o, y(z) = 0. Therefore, by using identity (see Section F.31. in [2])), we get

/1 sgn(sin(k arccos(n)))dn o (u+Vu2 —1)F +1
-1 u—=n (u+vVu?—1)F -1
1- /=2 '
> (u— Va2 - F= [ — )
Ly

where the last equality is due to Lemma([I0]

Lemma 12. Let L > ;1 > 0, ¢ > 0and a > 0. Then

k
L+O¢_1
\ nta 1 L
€>c ZJri :>k22< ia—l
[ Lt o
u+a+1 a

Proof Note that the function

) (In(c) + In(1/e))

-1 2
0(z) =1n Ve +
Virl Vioi
takes non-negative values for x > 1, as
5(x) = VZ+10527 (Ve +1) - 052”2 (Vr —1) 1
Vo —1 (Vz +1)2 (x—1)vr—1
1 1
= - <0

(- DvE (w—Lva-1
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and lim,_,~, 6(x) = 0. Thus, we obtained the following inequality

VI —1 -2
>exp| —— 1), z>1,
V1 =P\ ot

yields
L+ F
pto - 1 72]{
N ]~ =
pto + 1 pta -1
Hence,
—2k
Ine > In(c) +
Lta 4
pto
2k
= ———— >In(c) +In(1/e)
Lta 1
pto

— k> % ( iiz - 1) (In(c) + In(1/e))
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